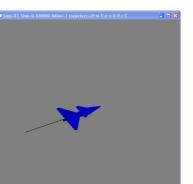
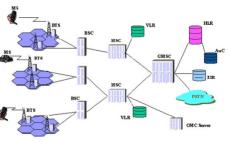

Research in Model-Based Product Development at PELAB in the MODPROD Center

Presentation at MODPROD'2019 Department of Computer and Information Science Linköping University 2019-02-05 Peter Fritzson, et al

Examples of Complex Systems in Engineering

- Robotics
- Automotive
- Aircraft
- Mobile Phone Systems
- Business Software
- Power plants
- Heavy Vehicles
- Process industry





Industrial Challenges for Complex Products of both Software and Hardware

- Increased Software Fraction
- Embedded and real time constraints
- Higher demands on effective strategic decision making

Digitalization Revolution Happening Now!

Research

Modeling-Language Design

Model-Based Co-simulation with FMI and TLM

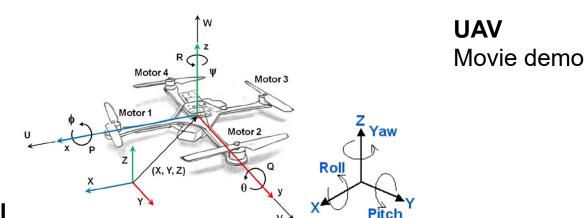
Model Debugging

Model-Based Fault Analysis

Multi-Core based Simulation

Embedded System Real-Time Modeling

Modeling Support Environments


Digital Twins using Modelica and OpenModelica

Collaboration with Modelicon InfoTech, Bangalore, India

Digital Twin OpenModelica Applications by Modelicon (Bangalore) Model-based Control of UAVs and Walking Robots

- UAV control and simulation
- Walking 2-wheel
 robot

All models and control software done using OpenModelica!

Walking 2-wheel Robot,

Movie demo

Talk Wednesday Afternoon!

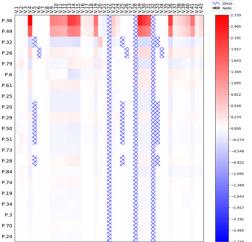
Large-Scale, High Performance Model-Based Development

Per Östlund, Adrian Pop, Martin Sjölund,

Peter Fritzson, et al

High Performance Modelica Compilation Methods for Large Model Applications – A Quantum Leap!

- The OpenModelica new compiler frontend a large effort to redesign and rewrite more than half of the compiler to gain high compilation performance and 100% Modelica semantics
- Uses Model-centric and multiple phases design principles
- Status January 2019, OMC with newfrontend simulates more than 95% of Modelica Standard Library
- The New frontend is about **10 to 100 times faster** than the old compiler frontend.
- Scientific paper accepted to the International Modelica Conference, Regensburg, March, 2019


Simultaneous Param-based Sensitivity Analysis and Robust Optimization (collaboration with Univ. Buenos Aires)

- To define a sensitivity experiment:
 - The state variable to analyze
 - The set of parameters to perturb
 - The allowed perturbation intervals for each parameter
- Main goal: pinpoint a small number of parameters that produce the largest deviations when perturbed within narrow ranges around their default values
- To select parameters and their intervals is not a trivial task
 - Responsibility relies completely on the expertise of the user
 - Enabling all parameters can lead to very costly experiments
- Use a top-N subset of parameters from a ranked list
 - obtained using individual parameter-based analysis
- Using CURVIF robust derivative-free model building method for few function evaluations
- Heat-map visualization of parameter influence

9

Paper published at EOOLT 2017 (prototype)

Planned OpenModelica Release spring 2019

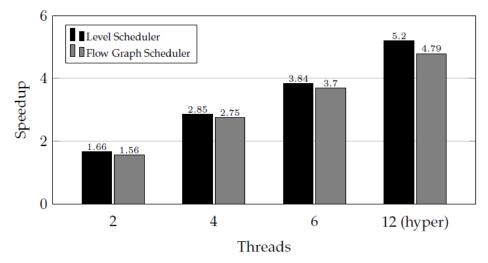
Parallel Execution Compilation to MultiCore

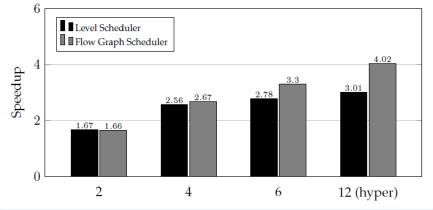
Mahder Gebremedhin, Peter Fritzson

Compiling Models to Efficient Parallel Code (scheduling on multiple cores)

Modelica.Electrical.Spice3.Examples.Spice3BenchmarkFourBitBinaryAdde

Task system after clustering for level scheduler

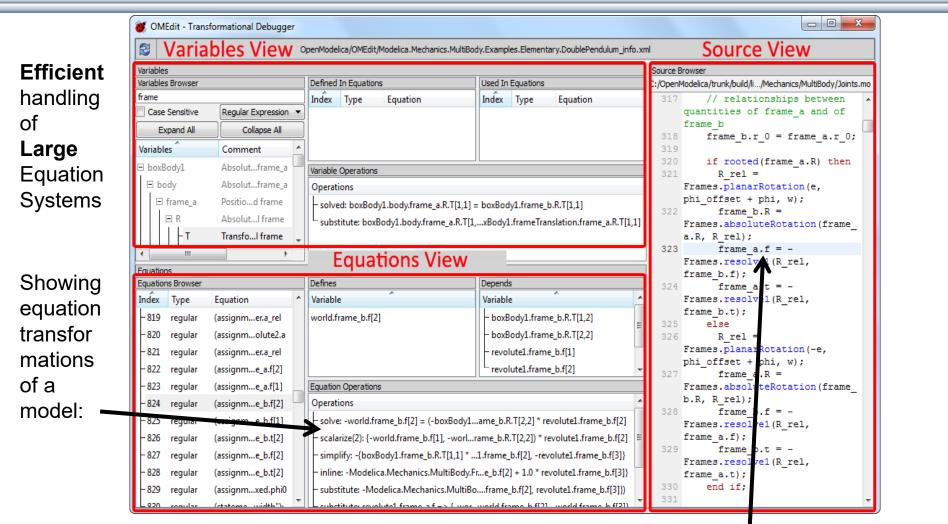

> 18 Tasks 72 Edges


ParModAuto Parallelization (Release spring 2019) Automatic AutoTuned Parallelization of Equation-based Models

- Mahder Gebremedhin's PhD defended Jan 24, 2019
- Automatic Parallelization
- Automatic clustering of small tasks
- Automatic load balancing based on measurements, automatically adapts to changing load
- Shared-memory task parallelization
- Planned for OpenMOdelica
 release spring 2019

SteamPipe640 model, Speedup 5.2 on 6 cores:

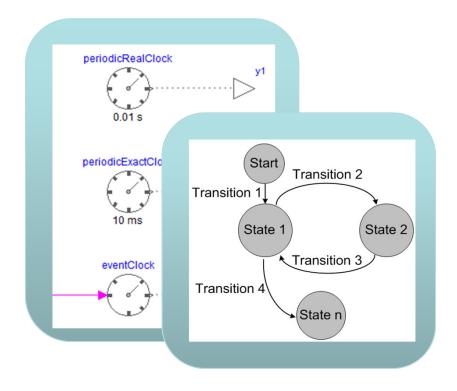
BranchingDynamicPipes model, Speedup 4 on 6 cores:



Model Debugging and Performance Analysis

Martin Sjölund, Adrian Pop, Adeel Asghar Dept Computer and Information Science Linköping University

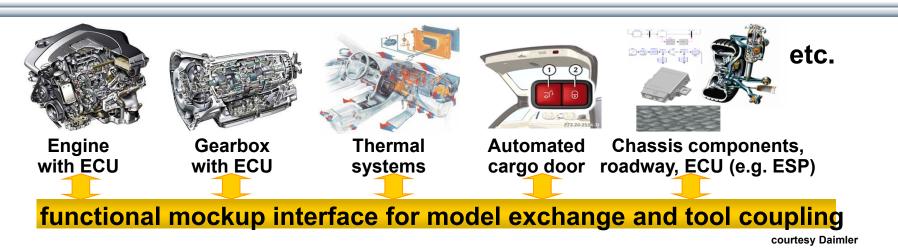
Integrated Static-Dynamic OpenModelica Equation Model Debugger


Mapping dynamic run-time error to source model position

Ongoing Research on Debugging

Debugging of new features

- clocked synchronous models
- real-time debugging and event tracing
- graphic support for state machine debugging

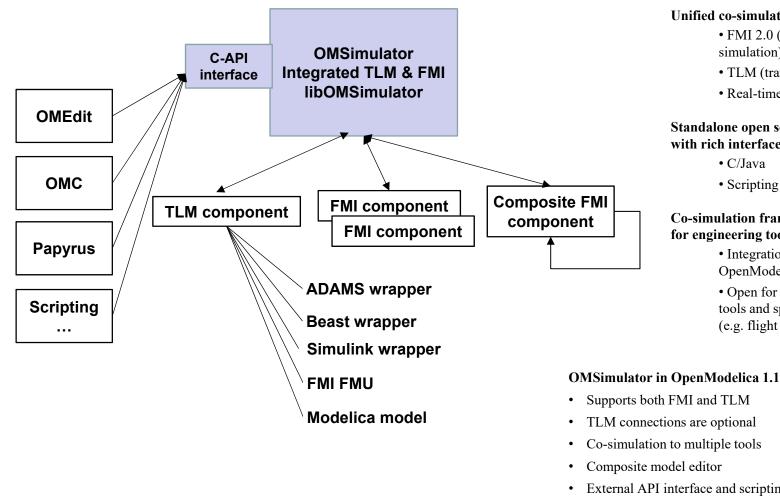


Co-simulation, FMI, Model Composition

Lennart Ochel, Robert Braun, Adeel Asghar, Adrian Pop, Arunkumar Palanisamy, Peter Fritzson

General Tool Interoperability & Model Exchange Functional Mock-up Interface (FMI)

- FMI development was started by ITEA2 MODELISAR project. FMI is a Modelica Association Project now
- Version 1.0
- FMI for Model Exchange (released Jan 26,2010)
- FMI for Co-Simulation (released Oct 12,2010)
- Version 2.0
- FMI for Model Exchange and Co-Simulation (released July 25,2014)
- > 100 tools supporting it (https://www.fmi-standard.org/tools)


Enhanced FMI Co-simulation, Run-time, and Master Simulation Tool – Research in OPENCPS Project

- Further extensions to the FMI standard to support TLM-based co-simulation including support for SKF mechanical bearing models
- Enhanced run-time for efficient co-simulation of FMUs, including FMUs from OpenModelica and Papyrus
- General **Master** simulation tool support for FMI

OMSimulator – Integrated FMI and TLM-based Cosimulator/Simulator – part of OpenModelica

Main Framework Aspects

Unified co-simulation/simulation tool

- FMI 2.0 (model exchange and cosimulation)
- TLM (transition line modelling)
- Real-time and offline simulation

Standalone open source simulation tool with rich interfaces

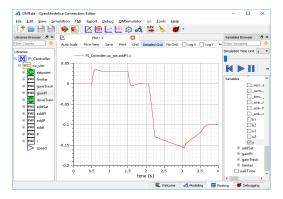
Scripting languages Python, Lua

Co-simulation framework as a solid base for engineering tools

- Integration into OpenModelica/Papyrus
- Open for integration into third-party tools and specialized applications (e.g. flight simulators, optimization)

OMSimulator in OpenModelica 1.13.0

• External API interface and scripting



OMSimulator Simulation, SSP, and Tool Comparison

Adding SSP bus connections

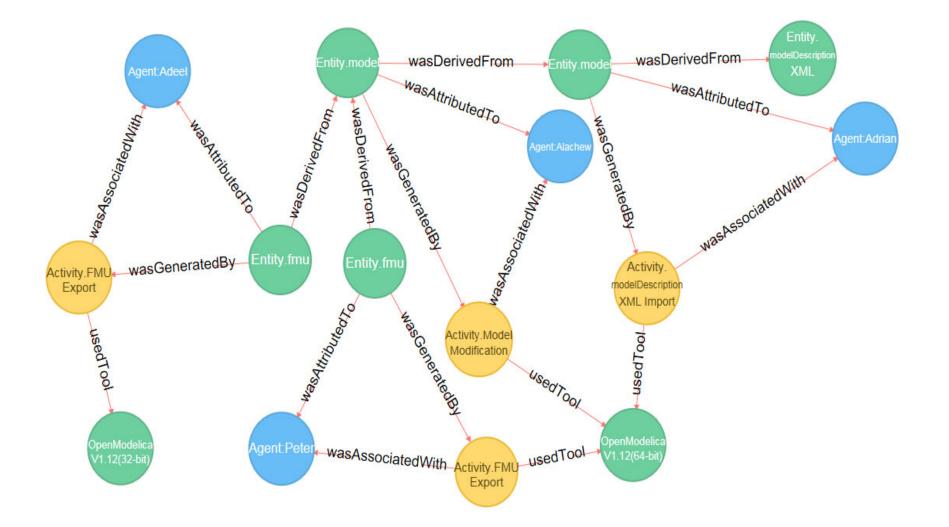
Å	🔏 OMEdit - Add Bus Connection 🤰 🗙							
A	Add Bus Connection							
Co	Connect bus2 input connectors to bus1 output connectors							
	bus2 inputs bus1 outputs		ssd:Connection					
1	☑ u1	у	<ssd:cont="sc2"< th=""></ssd:cont="sc2"<>					
2	🗌 u2							
Cor	Connect bus2 output connectors to bus1 input connectors							
	bus2 outputs	bus1 inputs	ssd:Connection					
1	⊻ y1	u1	<ssd:cont="sc2"< th=""></ssd:cont="sc2"<>					
2	⊘ y2	u2	<ssd:cont="sc2"< th=""></ssd:cont="sc2"<>					
3	□ y3							
OK Cancel								

FMI Simulation results in OMEdit

FMI Simulation Tool Comparison

	OMSimulat	or	DACC	OSIM	Simulink		PyFMI	
Commercial	commercial No		No		Yes		No	
Open-source	OSMC-PL, GPL		AGPL	2	No		LGPL	
Lookup Table	Lookup Table Yes		Yes		Yes		No	
Alg. Loops	Yes		Yes No			Yes		
Scripting	Python, Lua		proprie	etary	proprietary		Python	
GUI	Yes		Yes		Yes		No	
SSP	Yes		No		No		No	
platform	Linux/Win/m	Linux/Win/macOS Linu		Win	Linux/Win/macOS		Linux/Win/	macOS
	Dymola	PySim	nulator	FMI G	o!	FMI Co	mposer	
Commercial	ommercial Yes No			No		Yes		
Open course				MIT		No		

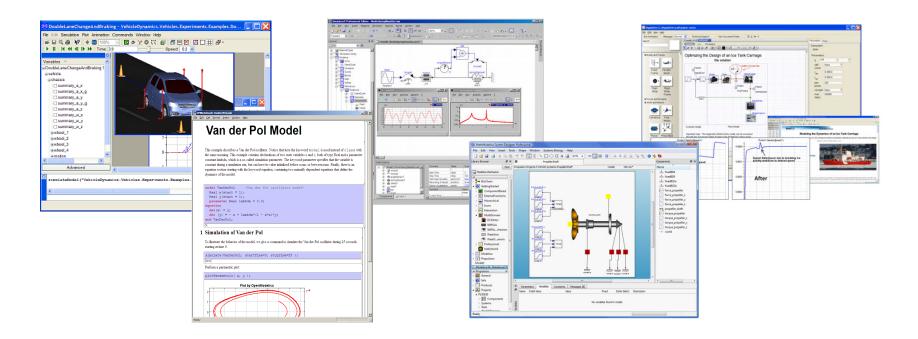
Commercial	Yes	No	No	Yes
Open-source	No	BSD	MIT	No
Lookup Table	Yes	Yes	Yes	Yes
Alg. Loops	Yes	Yes	Yes	Yes
Scripting	proprietary	Python	Go	No
GUI	Yes	Yes	No	Yes
SSP	No	No	Yes	Yes
platform	Linux/Win	Linux/Win	Linux/Win/macOS	Linux/Win/macOS



Model Management and Traceability

Adrian Pop, Alachew Mengist, Peter Fritzson

Traceability Information collected by OpenModelica

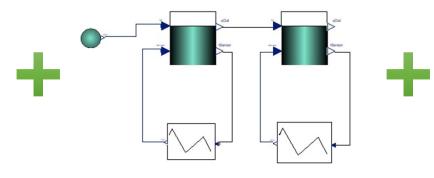

Using Open Services for Lifecycle Collaboration (OSLC) 22

Model Management with Git Integration

🚓 OMEdit - OpenModelica Connection Editor						
File Edit View Simulation	FMI Export Debug	Git Tools Help	at OMEdit - Commit			
📑 🖶 🔂 🔬	2 🖽 🔍 🔍	Create Repository	Repository Information:			
Libraries Browser 🗗 🗙	💰 Sen	Log Current File	Repository: C:/Users/alame60/Desktop/INTOCPS/OpenModelca			
Search Classes 😽 🧧	Writable C:/Users/al	Stage Current File	Branch: master			
Libraries	1 model Se	Unstage Current File	Commit Information:			
P OpenModelica	2 parame	Commit				
ModelicaReference	3 parame	Revert	Author: alash325			
	4 Modeli	heren	Email: alachew.mengist@liu.se			
ModelicaServices	5 Modeli	Clean	Description:			
Complex	6 Modeli	Traceability				
1 22 Modelica	7 Modeli 8 Modelia	ca.Blocks.Inter				
🗆 🝌 OpenModelca		ents.Sensor ser				
🗉 📜 FMUs		ulate sensor po				
ModelDescriptions		notation (Placer				
	12 equation		Files:			
	Models 13 connect		V Select All			
		t(robot_theta,	Status File			
		t(robot_z, sens t(robot y, sens	Modified Models/SensorBlock1.mo			
		t (robot_y, sens				
		tion (uses (Model	Generate traceability URI			
		orBlock1;				
	20		commit Cancel			
Commiting modified files to the repository						

Dynamic Verification/Testing of Requirements vs Usage Scenario Models

Lena Buffoni et al

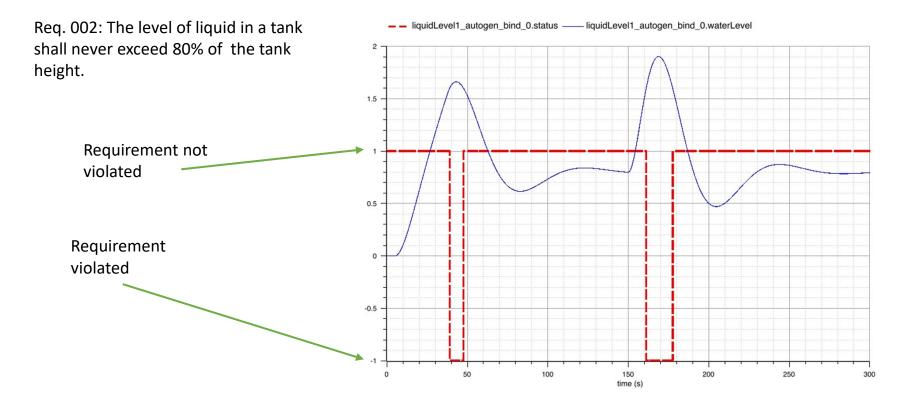

Testing a single verification model in Modelica

- Req. 001: The volume of each tank shall be at least 2 m3.
- Req. 002: The level of liquid in a tank shall never exceed 80% of the tank height.
- Req. 003: After each change of the tank input flow, the controller shall, within 20 seconds, ensure that the level of liquid in each tank is equal to the reference level with a tolerance of \pm 0.05 m.

٠

•••

Design alternative: two tank model


Start with constant flow and increase at t=150

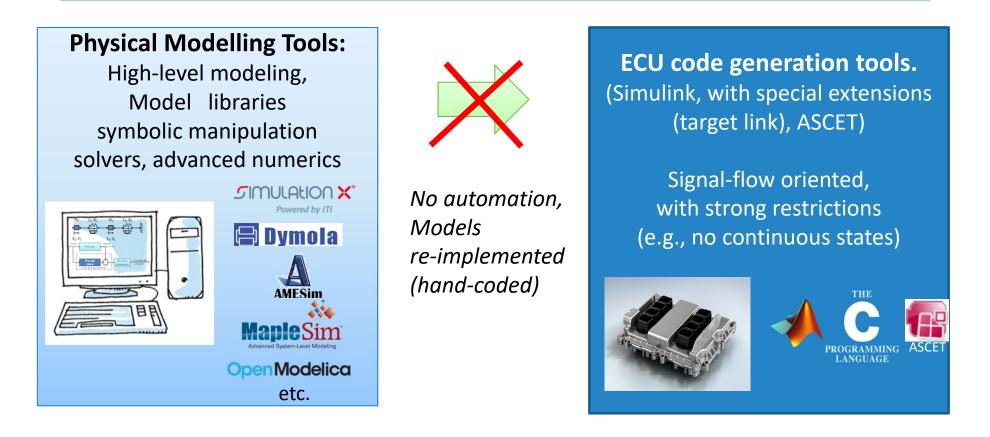
Design alternative: two tank model

One possible test scenario

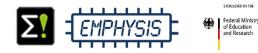
Analyzing a single requirement status

Model-based Development Tooling for Embedded Systems

ITEA3 project EMPHYSIS

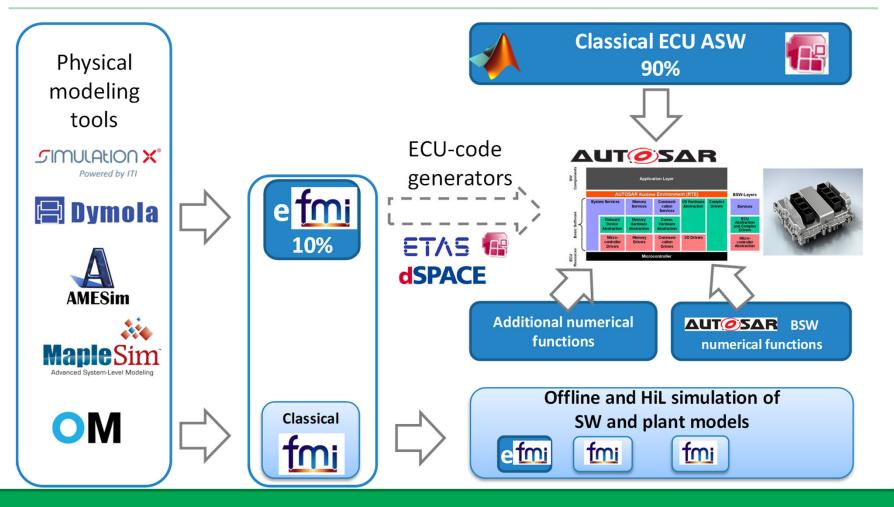

EMbedded systems with PHYSIcal models In production code Software

Lennart Ochel, Martin Sjölund, Adrian Pop, et al Dept Computer and Information Science Linköping University



Technology Gap between Modeling and Simulation Tools and Embedded Software

Currently the design flow for physical models in ECU software is **interrupted**



Bridging the gap between modelling and simulation tools and embedded systems through a new interface definition (eFMI)

29

Seamless model-based design of ECU-Software based on physical models.

Embedded Systems Real-time Control Code Generation Using OpenModelica

Martin Sjölund et al Dept Computer and Information Science Linköping University

OpenModelica Code Generators for Embedded Real-time Code

- A **full-fledged** OpenModelica-generated source-code FMU (Functional Mockup Unit) code generator
 - Can be used to **cross-compile FMUs** for platforms with more available memory.
 - These platforms can map FMI inputs/outputs to analog/digital I/O in the importing FMI master.
- A very **simple code generator** generating a **small footprint** statically linked executable.
 - Not an FMU because there is no OS, filesystem, or shared objects in microcontrollers.

Use Case: SBHS (Single Board Heating System)

Single board heating system (IIT Bombay)

- Use for teaching basic control theory
- Usually controlled by serial port (set fan value, read temperature, etc)
- OpenModelica can generate code targeting the ATmega16 on the board (AVR-ISP programmer in the lower left). Program size is 4090 bytes including LCD driver and PID-controller (out of 16 kB flash memory available).

Thanks for Listening!

