
Presentation at MODPROD’2019
Department of Computer and Information Science

Linköping University
2019-02-05

Peter Fritzson, et al

Research in Model-Based Product Development
at PELAB in the MODPROD Center

class x {
public
int a;
float b;
int func (int a,int b);
Asa asad
Asda ad
Asd ad cc
Aac sdscfcc c a
Ascccv ca
Ascc cac
}

class x {
public
int a;
float b;
int func (int a,int b);
Asa asad
Asda ad
Asd ad cc
Aac sdscfcc c a
Ascccv ca
Ascc cac
}

class x {
public
int a;
float b;
int func (int a,int b);
Asa asad
Asda ad
Asd ad cc
Aac sdscfcc c a
Ascccv ca
Ascc cac
}

class x {
public
int a;
float b;
int func (int a,int b);
Asa asad
Asda ad
Asd ad cc
Aac sdscfcc c a
Ascccv ca
Ascc cac
}

2

Examples of Complex Systems in Engineering

• Robotics
• Automotive
• Aircraft
• Mobile Phone Systems
• Business Software
• Power plants
• Heavy Vehicles
• Process industry

3

Industrial Challenges for Complex Products
of both Software and Hardware

• Increased Software Fraction

• Embedded and real time constraints

• Higher demands on effective
strategic decision making

Digitalization Revolution
Happening Now!

4

Research

Modeling-Language Design

Model-Based Co-simulation with FMI and TLM

Model Debugging

Model-Based Fault Analysis

Multi-Core based Simulation

Embedded System Real-Time Modeling

Modeling Support Environments

5

Digital Twins using Modelica and
OpenModelica

Collaboration with
Modelicon InfoTech, Bangalore, India

6

Digital Twin OpenModelica Applications by Modelicon (Bangalore)
Model-based Control of UAVs and Walking Robots

• UAV control and
simulation

• Walking 2-wheel
robot

UAV
Movie demo

Walking 2-wheel Robot,

Movie demo

Talk Wednesday
Afternoon!

All models and control
software done using OpenModelica!

7

Large-Scale, High Performance
Model-Based Development

Per Östlund, Adrian Pop, Martin Sjölund,

Peter Fritzson, et al

8

High Performance Modelica Compilation Methods
for Large Model Applications – A Quantum Leap!
• The OpenModelica new compiler frontend – a large effort

to redesign and rewrite more than half of the compiler to gain
high compilation performance and 100% Modelica
semantics

• Uses Model-centric and multiple phases design principles
• Status January 2019, OMC with newfrontend simulates more

than 95% of Modelica Standard Library
• The New frontend is about 10 to 100 times faster than the

old compiler frontend.

• Scientific paper accepted to the International Modelica
Conference, Regensburg, March, 2019

9

Simultaneous Param-based Sensitivity Analysis and
Robust Optimization (collaboration with Univ. Buenos Aires)

• To define a sensitivity experiment:
• The state variable to analyze
• The set of parameters to perturb
• The allowed perturbation intervals for each parameter

• Main goal: pinpoint a small number of parameters that produce the
largest deviations when perturbed within narrow ranges around their
default values

• To select parameters and their intervals is not a trivial task
• Responsibility relies completely on the expertise of the user
• Enabling all parameters can lead to very costly experiments

• Use a top-N subset of parameters from a ranked list
• obtained using individual parameter-based analysis

• Using CURVIF robust derivative-free model building
method for few function evaluations

• Heat-map visualization of parameter influence

Paper published at
EOOLT 2017 (prototype)

Planned OpenModelica
Release spring 2019

10

Parallel Execution
Compilation to MultiCore

Mahder Gebremedhin, Peter Fritzson

11

Compiling Models to Efficient Parallel Code
(scheduling on multiple cores)

18 Tasks
72 Edges

1122 Tasks
1360 Edges

Modelica.Electrical.Spice3.Examples.Spice3BenchmarkFourBitBinaryAdde

Original task system of Four Bit Binary Adder
model

Task system after
clustering for level

scheduler

12

ParModAuto Parallelization (Release spring 2019)
Automatic AutoTuned Parallelization of Equation-based Models

• Mahder Gebremedhin’s
PhD defended Jan 24, 2019

• Automatic Parallelization
• Automatic clustering of

small tasks
• Automatic load balancing

based on measurements,
automatically adapts to
changing load

• Shared-memory task
parallelization

• Planned for OpenMOdelica
release spring 2019

SteamPipe640 model, Speedup 5.2 on 6 cores:

BranchingDynamicPipes model, Speedup 4 on 6 cores:

13

Model Debugging
and Performance Analysis

Martin Sjölund,
Adrian Pop, Adeel Asghar

Dept Computer and Information Science
Linköping University

14

Mapping dynamic run-time error to source model position

Integrated Static-Dynamic
OpenModelica Equation Model Debugger

Showing
equation
transfor
mations
of a
model:

Efficient
handling
of
Large
Equation
Systems

15

Ongoing Research on Debugging

Debugging of new features
• clocked synchronous

models
• real-time debugging and

event tracing
• graphic support for state

machine debugging

16

Co-simulation, FMI, Model
Composition

Lennart Ochel, Robert Braun, Adeel Asghar,
Adrian Pop, Arunkumar Palanisamy,

Peter Fritzson

17

General Tool Interoperability & Model Exchange
Functional Mock-up Interface (FMI)

• FMI development was started by ITEA2 MODELISAR project. FMI is a
Modelica Association Project now

• Version 1.0
• FMI for Model Exchange (released Jan 26,2010)
• FMI for Co-Simulation (released Oct 12,2010)
• Version 2.0
• FMI for Model Exchange and Co-Simulation (released July 25,2014)
• > 100 tools supporting it (https://www.fmi-standard.org/tools)

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling
courtesy Daimler

18

Enhanced FMI Co-simulation, Run-time, and Master
Simulation Tool – Research in OPENCPS Project

• Further extensions to the FMI standard to support TLM-based
co-simulation including support for SKF mechanical bearing
models

• Enhanced run-time for efficient co-simulation of FMUs,
including FMUs from OpenModelica and Papyrus

• General Master simulation tool support for FMI

19 Copyright © Open Source Modelica Consortium

OMSimulator – Integrated FMI and TLM-based
Cosimulator/Simulator – part of OpenModelica

OMSimulator
Integrated TLM & FMI

libOMSimulator

Simulink wrapper
Beast wrapper

ADAMS wrapper

TLM component

C-API
interface

OMEdit

Papyrus

Scripting
…

OMC
FMI component

FMI component

FMI FMU

Modelica model

Composite FMI
component

Unified co-simulation/simulation tool
• FMI 2.0 (model exchange and co-
simulation)
• TLM (transition line modelling)
• Real-time and offline simulation

Standalone open source simulation tool
with rich interfaces

• C/Java
• Scripting languages Python, Lua

Co-simulation framework as a solid base
for engineering tools

• Integration into
OpenModelica/Papyrus
• Open for integration into third-party
tools and specialized applications
(e.g. flight simulators, optimization)

Main Framework Aspects

OMSimulator in OpenModelica 1.13.0
• Supports both FMI and TLM
• TLM connections are optional
• Co-simulation to multiple tools
• Composite model editor
• External API interface and scripting

20 Copyright © Open Source Modelica Consortium

OMSimulator Simulation, SSP, and Tool Comparison

Adding SSP bus connections FMI Simulation
results
in OMEdit

OMSimulator DACCOSIM Simulink PyFMI
Commercial No No Yes No
Open-source OSMC-PL, GPL AGPL2 No LGPL
Lookup Table Yes Yes Yes No
Alg. Loops Yes Yes No Yes
Scripting Python, Lua proprietary proprietary Python
GUI Yes Yes Yes No
SSP Yes No No No
platform Linux/Win/macOS Linux/Win Linux/Win/macOS Linux/Win/macOS

Dymola PySimulator FMI Go! FMI Composer
Commercial Yes No No Yes
Open-source No BSD MIT No
Lookup Table Yes Yes Yes Yes
Alg. Loops Yes Yes Yes Yes
Scripting proprietary Python Go No
GUI Yes Yes No Yes
SSP No No Yes Yes
platform Linux/Win Linux/Win Linux/Win/macOS Linux/Win/macOS

FMI Simulation Tool Comparison

21

Model Management and
Traceability

Adrian Pop, Alachew Mengist, Peter Fritzson

Traceability Information collected by OpenModelica

22Using Open Services for Lifecycle Collaboration (OSLC)

Model Management with Git Integration

23

24

Dynamic Verification/Testing of
Requirements vs Usage Scenario Models

Lena Buffoni et al

25

Testing a single verification model in Modelica

• Req. 001: The volume of each
tank shall be at least 2 m3.

• Req. 002: The level of liquid in
a tank shall never exceed 80%
of the tank height.

• Req. 003: After each change of
the tank input flow, the
controller shall, within 20
seconds, ensure that the level of
liquid in each tank is equal to
the reference level with a
tolerance of ± 0.05 m.

• …

Start with
constant flow and
increase at t=150

Design alternative:
two tank model

Design alternative:
two tank model One possible test

scenario

26

Analyzing a single requirement status

Requirement
violated

Requirement not
violated

Req. 002: The level of liquid in a tank
shall never exceed 80% of the tank
height.

27

Model-based Development Tooling
for Embedded Systems

ITEA3 project EMPHYSIS
EMbedded systems with PHYSIcal models In production

code Software

Lennart Ochel, Martin Sjölund, Adrian Pop, et al
Dept Computer and Information Science

Linköping University

28

Technology Gap between Modeling and
Simulation Tools and Embedded Software

Physical Modelling Tools:
High‐level modeling,
Model libraries

symbolic manipulation
solvers, advanced numerics

etc.

ECU code generation tools.
(Simulink, with special extensions

(target link), ASCET)

Signal‐flow oriented,
with strong restrictions

(e.g., no continuous states)

Currently the design flow for physical models in ECU
software is interrupted

No automation,
Models
re‐implemented
(hand‐coded)

ASCET

29

Bridging the gap between modelling and simulation
tools and embedded systems through a new interface
definition (eFMI)

Seamless model‐based design of ECU‐Software based on physical models.

30

Embedded Systems Real-time Control
Code Generation Using OpenModelica

Martin Sjölund et al
Dept Computer and Information Science

Linköping University

31 Copyright © Open Source Modelica Consortium

OpenModelica Code Generators for
Embedded Real-time Code

• A full-fledged OpenModelica-generated source-code FMU
(Functional Mockup Unit) code generator
• Can be used to cross-compile FMUs for platforms with more

available memory.
• These platforms can map FMI inputs/outputs to analog/digital I/O in

the importing FMI master.
• A very simple code generator generating a small footprint

statically linked executable.
• Not an FMU because there is no OS, filesystem, or shared objects in

microcontrollers.

32 Copyright © Open Source Modelica Consortium

Single board heating system (IIT
Bombay)

• Use for teaching basic control
theory

• Usually controlled by serial
port (set fan value, read
temperature, etc)

• OpenModelica can generate
code targeting the ATmega16
on the board (AVR-ISP
programmer in the lower left).
 Program size is 4090
bytes including LCD driver
and PID-controller (out of 16
kB flash memory available).

Use Case: SBHS (Single Board Heating System)

33 Copyright © Open Source Modelica Consortium

Thanks for Listening!

