
Introduction to Object-Oriented
Modeling and Simulation

with Modelica and OpenModelica

2019-02-05

Tutorial 2019-02-05
Peter Fritzson
Linköping University, peter.fritzson@liu.se
Director of the Open Source Modelica Consortium
Vice Chairman of Modelica Association
Adrian Pop
Linköping University, adrian.pop@liu.se
Technical Coordinator of the Open Source Modelica Consortium

Slides
Based on book and lecture notes by Peter Fritzson
Contributions 2004-2005 by Emma Larsdotter Nilsson, Peter Bunus
Contributions 2006-2018 by Adrian Pop and Peter Fritzson
Contributions 2009 by David Broman, Peter Fritzson, Jan Brugård, and
Mohsen Torabzadeh-Tari
Contributions 2010 by Peter Fritzson
Contributions 2011 by Peter F., Mohsen T,. Adeel Asghar,
Contributions 2012-2018 by Peter Fritzson, Lena Buffoni, Mahder
Gebremedhin, Bernhard Thiele, Lennart Ochel
Contributions 2019 by Peter Fritzson, Arunkumar Palanisamy, Bernt Lie,
Adrian Pop

2 Copyright © Open Source Modelica Consortium

Peter Fritzson
Principles of Object Oriented
Modeling and Simulation with
Modelica 3.3
A Cyber-Physical Approach

Can be ordered from Wiley or Amazon

Wiley-IEEE Press, 2014, 1250 pages

• OpenModelica
• www.openmodelica.org

• Modelica Association
• www.modelica.org

Tutorial Based on Book, December 2014
Download OpenModelica Software

3 Copyright © Open Source Modelica Consortium

September 2011
232 pages

Translations
available in
Chinese,
Japanese,
Spanish

Wiley
IEEE Press

For Introductory
Short Courses on
Object Oriented
Mathematical Modeling

Introductory
Modelica Book

4 Copyright © Open Source Modelica Consortium

Acknowledgements, Usage, Copyrights

• If you want to use the Powerpoint version of these slides in
your own course, send an email to: peter.fritzson@ida.liu.se

• Thanks to Emma Larsdotter Nilsson, Peter Bunus, David
Broman, Jan Brugård, Mohsen-Torabzadeh-Tari, Adeel
Asghar, Lena Buffoni, for contributions to these slides.

• Most examples and figures in this tutorial are adapted with
permission from Peter Fritzson’s book ”Principles of Object
Oriented Modeling and Simulation with Modelica 2.1”,
copyright Wiley-IEEE Press

• Some examples and figures reproduced with permission
from Modelica Association, Martin Otter, Hilding Elmqvist,
Wolfram MathCore, Siemens

• Modelica Association: www.modelica.org
• OpenModelica: www.openmodelica.org

5 Copyright © Open Source Modelica Consortium

Outline

Part I
Introduction to Modelica and a

demo example

Part II
Modelica environments

Part III
Modelica language concepts

and textual modeling

Part IV
Graphical modeling and the

Modelica standard library

6 Copyright © Open Source Modelica Consortium

Software Installation - Windows

• Start the software installation

• Install OpenModelica-1.13.2 Download or from the
USB Stick

7 Copyright © Open Source Modelica Consortium

Software Installation – Linux (requires internet connection)

• Go to
https://openmodelica.org/index.php/download/down
load-linux and follow the instructions.

8 Copyright © Open Source Modelica Consortium

Software Installation – MAC (requires internet connection)

• Go to
https://openmodelica.org/index.php/download/down
load-mac and follow the instructions or follow the
instructions written below.

• The installation uses MacPorts. After setting up a
MacPorts installation, run the following commands
on the terminal (as root):
• echo rsync://build.openmodelica.org/macports/ >>

/opt/local/etc/macports/sources.conf # assuming you installed into /opt/local
• port selfupdate
• port install openmodelica-devel

9 Copyright © Open Source Modelica Consortium

Software Installation – Julia and Jupyter Notebook
If you have already have python installed in your computer and not jupyter notebook, you
can install jupyter notebook using the following commands.

If Python3 installed
>> python3 -m pip install --upgrade pip
>> python3 -m pip install jupyter

If Python2 installed
>> python3 -m pip install --upgrade pip
>> python3 -m pip install jupyter

If you don’t satisfy the above requirements, Then install all the needed parts from the
USB stick.

USB INSTALLATION

Install Anaconda3.exe from USB stick (Windows 64 bit)
Install Julia 1.01 from USB stick (Windows 64 bit)
Copy “OMJulia-tutorial Folder”, for the later part of the Exercises.

For other platforms, download from
Julia : https://julialang.org/downloads/
Anaconda : https://www.anaconda.com/distribution/

10 Copyright © Open Source Modelica Consortium

Software Installation – OMJulia (requires internet)

• After Julia is installed, now we are ready to install OMJulia and its
dependencies.

• Open the Julia REPL or julia terminal, from the windows search, type Julia and
click Julia-1.0.1 from the start menu and perform the following commands

julia>import Pkg
julia>Pkg.clone("https://github.com/OpenModelica/OMJulia.jl")

// dependencies packages
julia>Pkg.add("ZMQ")
julia>Pkg.add("Compat")
julia>Pkg.add("DataFrames")
julia>Pkg.add("Plots")
julia>Pkg.add("pyplot")
julia>Pkg.add("DataStructures")
julia>Pkg.add("LightXML")
julia>Pkg.add("Random")
// For using julia and OMJulia from Jupyter Notebook
julia>Pkg.add("IJulia")

Now we are ready to start using OMJulia from the Jupyter Notebook

11 Copyright © Open Source Modelica Consortium

Part I

Introduction to Modelica and
a demo example

12 Copyright © Open Source Modelica Consortium

Modelica Background: Stored Knowledge

Model knowledge is stored in books and human
minds which computers cannot access

“The change of motion is proportional
to the motive force impressed “
– Newton

13 Copyright © Open Source Modelica Consortium

Modelica Background: The Form – Equations

• Equations were used in the third millennium B.C.
• Equality sign was introduced by Robert Recorde in 1557

Newton still wrote text (Principia, vol. 1, 1686)
“The change of motion is proportional to the motive force
impressed ”
CSSL (1967) introduced a special form of “equation”:

variable = expression
v = INTEG(F)/m

Programming languages usually do not allow equations!

14 Copyright © Open Source Modelica Consortium

What is Modelica?

• Robotics
• Automotive
• Aircrafts
• Satellites
• Power plants
• Systems biology

A language for modeling of complex cyber-physical systems

15 Copyright © Open Source Modelica Consortium

What is Modelica?

A language for modeling of complex cyber-physical systems

Primary designed for simulation, but there are also other
usages of models, e.g. optimization.

16 Copyright © Open Source Modelica Consortium

What is Modelica?

A language for modeling of complex cyber-physical systems
i.e., Modelica is not a tool

Free, open language
specification: There exist several free and commercial

tools, for example:
• OpenModelica from OSMC
(in ABB Optimax, Bosch-Rexr Control Edge Designer, Mike DHI)

• Dymola from Dassault systems
• Wolfram System Modeler from Wolfram MathCore
• SimulationX from ITI, part of ESI Group
• MapleSim from MapleSoft

(also in Altair solidThinking Activate)
• AMESIM from LMS
• JModelica.org/Optimica Toolkit from Modelon
(also in ANSYS Simplorer, etc.)

• MWORKS from Tongyang Sw & Control
• IDA Simulation Env, from Equa
•

Available at: www.modelica.org
Developed and standardized
by Modelica Association

17 Copyright © Open Source Modelica Consortium

Declarative statically typed language
Equations and mathematical functions allow acausal modeling,
high level specification and static type checking for increased correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic, hydraulic,
biological, control, event, real-time, etc...

Everything is a class
Safe engineering practices by statically typed object-oriented language,
general class concept, Java & MATLAB-like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, non-proprietary
Efficiency comparable to C; advanced equation compilation,
e.g. 300 000 equations, ~150 000 lines on standard PC

Modelica – The Next Generation Modeling Language

18 Copyright © Open Source Modelica Consortium

What is acausal modeling/design?
Why does it increase reuse?

The acausality makes Modelica library classes more
reusable than traditional classes containing assignment
statements where the input-output causality is fixed.

Example: a resistor equation:
R*i = v;

can be used in three ways:
i := v/R;
v := R*i;
R := v/i;

Modelica Acausal Modeling

19 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

• Multi-Domain Modeling
• Visual acausal hierarchical component modeling
• Typed declarative equation-based textual language
• Hybrid modeling and simulation

20 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Multi-Domain
Modeling

Cyber-Physical Modeling

Physical

Cyber

3 domains
- electric
- mechanics
- control

21 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Multi-Domain
Modeling

Acausal model
(Modelica)

Causal
block-based
model
(Simulink)

Keeps the physical
structure

Visual Acausal
Hierarchical
Component

Modeling

22 Copyright © Open Source Modelica Consortium

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6
r3Drive1

1
r3Motor

r3ControlqdRef
1

S

qRef
1

S

k2

i

k1

i

qddRef cut joint

l

qd

tn

Jmotor=J

gear=i

spring=c

fr
ic

=R
v0

S
rel

joint=0

S

V
s

-

+
diff

-

+
pow er

emf

La=(250/(2*D*w
m

))
Ra=250

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200

Rp
2=

50

Rd4=100

hall2

Rd
3=

10
0

g1

g2

g3

hall1

g4

g5

rw

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

What is Special about Modelica?

Visual Acausal
Hierarchical
Component

Modeling

Multi-Domain
Modeling

Hierarchical system
modeling

Courtesy of Martin Otter

Srel = n*transpose(n)+(identity(3)- n*transpose(n))*cos(q)-
skew(n)*sin(q);
wrela = n*qd;
zrela = n*qdd;
Sb = Sa*transpose(Srel);
r0b = r0a;
vb = Srel*va;
wb = Srel*(wa + wrela);
ab = Srel*aa;
zb = Srel*(za + zrela + cross(wa, wrela));

23 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Multi-Domain
Modeling

Typed
Declarative
Equation-based
Textual Language

A textual class-based language
OO primary used for as a structuring concept

Behaviour described declaratively using
• Differential algebraic equations (DAE) (continuous-time)
• Event triggers (discrete-time)

class VanDerPol "Van der Pol oscillator model"
Real x(start = 1) "Descriptive string for x”;
Real y(start = 1) "y coordinate”;
parameter Real lambda = 0.3;

equation
der(x) = y;
der(y) = -x + lambda*(1 - x*x)*y;

end VanDerPol;

Differential equations

Variable
declarations

Visual Acausal
Hierarchical
Component

Modeling

24 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Hybrid
Modeling

Visual Acausal
Component

Modeling

Multi-Domain
Modeling

Typed
Declarative
Equation-based
Textual Language

time

Continuous-time

Discrete-time

Hybrid modeling =
continuous-time + discrete-time modeling

Clocked discrete-time

25 Copyright © Open Source Modelica Consortium

Block Diagram (e.g. Simulink, ...) or
Proprietary Code (e.g. Ada, Fortran, C,...)
vs Modelica

Proprietary
Code

Block Diagram

Modelica

Systems
Definition

System
Decomposition

Modeling of
Subsystems

Causality
Derivation
(manual derivation of
input/output relations) Implementation Simulation

Modelica – Faster Development, Lower Maintenance
than with Traditional Tools

26 Copyright © Open Source Modelica Consortium

Modelica vs Simulink Block Oriented Modeling
Simple Electrical Model

R1=10

C=0.01 L=0.1

R2=100

G

AC=220

p
n

p

p p

p

p

n

n

n n

-1
 1

sum3

+1
 -1

sum1

+1
+1

sum2

1
s

l2

1
s

l1sinln

1/R1

Res1

1/C

Cap

1/L

Ind

R2

Res2

Modelica:
Physical model –
easy to understand

Simulink:
Signal-flow model – hard to
understand

Keeps the
physical
structure

27 Copyright © Open Source Modelica Consortium

Graphical Modeling - Using Drag and Drop Composition

28 Copyright © Open Source Modelica Consortium

Graphical Modeling with OpenModelica Environment

29 Copyright © Open Source Modelica Consortium

• A DC motor can be thought of as an electrical circuit which
also contains an electromechanical component
model DCMotor

Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
ElectroMechanicalElement EM(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, EM.n);
connect(EM.p, DC.n);
connect(DC.n,G.p);
connect(EM.flange,load.flange);

end DCMotor

load

EM
DC

G

R L

Multi-Domain (Electro-Mechanical) Modelica Model

30 Copyright © Open Source Modelica Consortium

Automatic transformation to ODE or DAE for simulation:

(load component not included)

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

31 Copyright © Open Source Modelica Consortium

Model Translation Process to Hybrid DAE to Code

Modelica Model

Flat model Hybrid DAE

Sorted equations

C Code

Executable

Optimized sorted
equations

Modelica
Model

Modelica
Graphical Editor Modelica

Source code

Translator

Analyzer

Optimizer

Code generator

C Compiler

Simulation

Modelica
Textual Editor

Frontend

Backend

"Middle-end"

Modeling
Environment

32 Copyright © Open Source Modelica Consortium

Modelica in Power Generation
GTX Gas Turbine Power Cutoff Mechanism

Hello

Courtesy of Siemens Industrial Turbomachinery AB

Developed
by MathCore
for Siemens

33 Copyright © Open Source Modelica Consortium

Modelica in Automotive Industry

34 Copyright © Open Source Modelica Consortium

Modelica in Avionics

35 Copyright © Open Source Modelica Consortium

Modelica in Biomechanics

36 Copyright © Open Source Modelica Consortium

Application of Modelica in Robotics Models
Real-time Training Simulator for Flight, Driving

Courtesy of Tobias Bellmann, DLR,
Oberphaffenhofen, Germany

• Using Modelica models
generating real-time
code

• Different simulation
environments (e.g.
Flight, Car Driving,
Helicopter)

• Developed at DLR
Munich, Germany

• Dymola Modelica tool

(Movie demo next page)

37 Copyright © Open Source Modelica Consortium

DLR Real-time Training Simulator Movie Demo

38 Copyright © Open Source Modelica Consortium

• GT unit, ST unit, Drum
boilers unit and HRSG units,
connected by thermo-fluid
ports and by signal buses

• Low-temperature parts
(condenser, feedwater
system, LP circuits) are
represented by trivial
boundary conditions.

• GT model: simple law
relating the electrical load
request with the exhaust gas
temperature and flow rate.

Combined-Cycle Power Plant
Plant model – system level

Courtesy Francesco Casella, Politecnico di Milano – Italy
and Francesco Pretolani, CESI SpA - Italy

39 Copyright © Open Source Modelica Consortium

Attitude control for satellites
using magnetic coils as actuators

Torque generation mechanism:
interaction between coils and
geomagnetic field

Formation flying on elliptical orbits

Control the relative motion of two or more
spacecraft

Modelica Spacecraft Dynamics Library

Courtesy of Francesco Casella, Politecnico di Milano, Italy

40 Copyright © Open Source Modelica Consortium

Large-scale ABB OpenModelica Application
Generate code for controlling 7.5 to 10% of German Power Production

ABB OPTIMAX PowerFit
• Real-time optimizing control of large-

scale virtual power plant for system
integration

• Software including OpenModelica now
used in managing more than 2500
renewable plants, total up to 1.5 GW

High scalability supporting growth
• 2012: initial delivery (for 50 plants)
• 2013: SW extension (500 plants)
• 2014: HW+SW extension (> 2000)
• 2015: HW+SW extension,

incl. OpenModelica generating optimizing
controller code in FMI 2.0 form

Manage 7.5% - 10% of German Power
• 2015, Aug: OpenModelica Exports FMUs

for real-time optimizing control (seconds)
of about 5.000 MW (7.5%) of power in
Germany

41 Copyright © Open Source Modelica Consortium

Industrial Product with OEM Usage of OpenModelica –
MIKE by DHI, WEST Water Quality, Water Treatment and Sludge

• MIKE by DHI, www.mikebydhi.com, WEST Water Quality modeling and
simulation environment

• Includes a large part of the OpenModelica compiler using the OEM license.
• Here a water treatment effluent and sludge simulation.

42 Copyright © Open Source Modelica Consortium

Most important challenge
for humanity -

Develop a sustainable society!

Use Modelica in to model and optimize
sustainable technical innovations,
and a sustainable circular economy

43 Copyright © Open Source Modelica Consortium

System Dynamics – World Society Simulation
Limits to Material Growth; Population, Energy and Material flows

• System Dynamics Modelica library by Francois Cellier (ETH), et al in OM distribution.
• Warming converts many agriculture areas to deserts (USA, Europe, India, Amazonas)
• Ecological breakdown around 2080-2100, drastic reduction of world population
• To avoid this: Need for massive investments in sustainable technology and renewable

energy sources

CO2 Emissions per
person:
• USA 17 ton/yr
• Sweden 7 ton/yr
• India 1.4 ton/yr
• Bangladesh 0.3 ton/yr

Left. World3 simulation
with OpenModelica
• 2 collapse scenarios

(close to current
developments)

• 1 sustainable scenario
(green).

44 Copyright © Open Source Modelica Consortium

Are Humans More Intelligent than Bacteria?

Not yet evident!

Bacterial growth curve /kinetic curve (Wikipedia)

Humans
on a
finite
Earth

vs

Bacteria
on a
finite
substrate

45 Copyright © Open Source Modelica Consortium

World3 Simulations with Different Start Years
for Sustainable Policies – Collapse if starting too late

46 Copyright © Open Source Modelica Consortium

How the world could be in 80-100 years
at a global warming of 4 degrees

Sea level rise 2 m
flooding coastal cities

Uninhabitable

New Scientist, 28 february 2009
IPCC, business as usual scenario
www.climate-lab-book.ac.uk
www.atmosfair.de

References

Cities, agriculture

Uninhabitable desert

Uninhabitable due
to extreme weather

Flooded

Business-as-usual
scenario, IPCC

Massive migration to
to northern Europe,
Russia, and Canada

Example Emissions
CO2e / person
- Earth can handle 2 ton/yr
- Flight Spain – 1 ton
- Flight Canaryisl – 2 ton
- Flight Thailand – 4 ton

48 Copyright © Open Source Modelica Consortium

What Can You Do?
Need Global Sustainability Mass Movement

• Develop smart Cyber-Physical systems for reduced energy and material footprint
• Model-based circular economy for re-use of products and materials
• Promote sustainable lifestyle and technology
• Install electric solar PV panels
• Buy shares in cooperative wind power

20 sqm solar panels on garage roof, Nov 2012
Generated 2700 W at noon March 10, 2013

Expanded to 93 sqm, 12 kW, March 2013
House produced 11600 kwh, used 9500 kwh
Avoids 10 ton CO2 emission per year

49 Copyright © Open Source Modelica Consortium

Example Electric Cars
Can be charged by electricity from own solar panels

Renault ZOE; 5 seat; Range:
22kwh (2014) vs 40 kwh battery (2017)
• Realistic Swedish drive cycle:
• Summer: 165 km, now 300 km
• Winter: 110 km, now 200 km
Cheap fast AC chargers (22kw, 43kw)

DLR ROboMObil
• experimental electric car
• Modelica models Tesla Model S, range about 550 km

2018, Tesla Model 3 LR, range 560 km

50 Copyright © Open Source Modelica Consortium

Example Foldable Electric Bike
Lightweight and compact electric mobility

Example, Avance bike
Range up to 100 km on one charge

(about 50 km at higher speeds)
Speed up to 25 km/h (or 40 km/h)
Fold and bring on bus or train

Folded bike

Bike in
a bag

51 Copyright © Open Source Modelica Consortium

What Can You Do?
More Train Travel – Less Air Travel

• Air travel by Swedish Citizens
– about the same emissions
as all personal car traffic in
Sweden!

• By train from Linköping to
Munich and back – saves
almost 1 ton of CO2e
emissions compared to flight

• Leave Linköping 07.00
in Munich 23.14

More Examples, PF travel 2016:
• Train Linköping-Paris, Dec 3-

6, EU project meeting
• Train Linköping-Dresden,

Dec 10-16, 1 week workshop

Train
travel
Linköping
- Munich

52 Copyright © Open Source Modelica Consortium

Small rectangles – surface needed
for 100% solar energy for humanity

53 Copyright © Open Source Modelica Consortium

Solar Energy PhotoVoltaics Growth Trends

Exponential
worldwide
Growth of
Photovoltaics
2006 - 2018

100% of global electricity
production year 2030 if
strong exponential growth
continues

2018 2.5% solar

54 Copyright © Open Source Modelica Consortium

Sustainable Society Necessary for Human Survival

Almost Sustainable
• India, recently 1.4 ton C02/person/year
• Healthy vegetarian food
• Small-scale agriculture
• Small-scale shops
• Simpler life-style (Mahatma Gandhi)

Non-sustainable
• USA 17 ton CO2, Sweden 7 ton CO2/yr
• High meat consumption (1 kg beef uses ca

4000 L water for production)
• Hamburgers, unhealthy , includes beef
• Energy-consuming mechanized agriculture
• Transport dependent shopping centres
• Stressful materialistic lifestyle

Gandhi – role model for
future less materialistic
life style

55 Copyright © Open Source Modelica Consortium

Brief Modelica History
• First Modelica design group meeting in fall 1996

• International group of people with expert knowledge in both language design
and physical modeling

• Industry and academia
• Modelica Versions

• 1.0 released September 1997
• 2.0 released March 2002
• 2.2 released March 2005
• 3.0 released September 2007
• 3.1 released May 2009
• 3.2 released March 2010
• 3.3 released May 2012
• 3.2 rev 2 released November 2013
• 3.3 rev 1 released July 2014
• 3.4 released April 2017

• Modelica Association established 2000 in Linköping
• Open, non-profit organization

56 Copyright © Open Source Modelica Consortium

Modelica Conferences
• The 1st International Modelica conference October, 2000
• The 2nd International Modelica conference March 18-19, 2002
• The 3rd International Modelica conference November 5-6, 2003 in Linköping, Sweden
• The 4th International Modelica conference March 6-7, 2005 in Hamburg, Germany
• The 5th International Modelica conference September 4-5, 2006 in Vienna, Austria
• The 6th International Modelica conference March 3-4, 2008 in Bielefeld, Germany
• The 7th International Modelica conference Sept 21-22, 2009 in Como, Italy
• The 8th International Modelica conference March 20-22, 2011 in Dresden, Germany
• The 9th International Modelica conference Sept 3-5, 2012 in Munich, Germany
• The 10th International Modelica conference March 10-12, 2014 in Lund, Sweden
• The 11th International Modelica conference Sept 21-23, 2015 in Versailles, Paris
• The 12th International Modelica conference May 15-17, 2017 in Prague, Czech Rep
• Coming: 13th International Modelica conference March 4-6, 2019, Regensburg,

Germany
• Also: Japanese Modelica conferences 2016, 2017, 2018
• Also: US Modelica conference 2018

57 Copyright © Open Source Modelica Consortium

Exercises Part I
Hands-on graphical modeling

(15 minutes)

58 Copyright © Open Source Modelica Consortium

Exercises Part I – Basic Graphical Modeling
• (See instructions on next two pages)
• Start the OMEdit editor (part of OpenModelica)
• Draw the RLCircuit
• Simulate

A
C

R=10

R1

L=0.1

L

G

L=1R=100

SimulationThe RLCircuit

59 Copyright © Open Source Modelica Consortium

Exercises Part I – OMEdit Instructions (Part I)

• Start OMEdit from the Program menu under OpenModelica
• Go to File menu and choose New, and then select Model.
• E.g. write RLCircuit as the model name.
• For more information on how to use OMEdit, go to Help and choose

User Manual or press F1.

• Under the Modelica Library:
• Contains The standard Modelica library components
• The Modelica files contains the list of models you
have created.

60 Copyright © Open Source Modelica Consortium

Exercises Part I – OMEdit Instructions (Part II)

• For the RLCircuit model, browse the Modelica standard library and add
the following component models:

• Add Ground, Inductor and Resistor component models from
Modelica.Electrical.Analog.Basic package.

• Add SineVoltage component model from Modelica.Electrical.Analog.Sources
package.

• Make the corresponding connections between the component models
as shown in the previous slide.

• Simulate the model
• Go to Simulation menu and choose simulate or click on the simulate button in the

toolbar.

• Plot the instance variables
• Once the simulation is completed, a plot variables list will appear on the right side.

Select the variable that you want to plot.

61 Copyright © Open Source Modelica Consortium

Part II

Modelica environments and OpenModelica

62 Copyright © Open Source Modelica Consortium

• Dassault Systemes Sweden
• Sweden
• First Modelica tool on the market
• Initial main focus on automotive

industry
• www.dymola.com

Dymola

63 Copyright © Open Source Modelica Consortium

Courtesy
Wolfram
Research

• Wolfram Research
• USA, Sweden
• General purpose
• Mathematica integration
• www.wolfram.com
• www.mathcore.com

Car model graphical view

Wolfram System Modeler – Wolfram MathCore

Mathematica

Simulation and
analysis

64 Copyright © Open Source Modelica Consortium

Simulation X

• ITI Gmbh (Part of ESI Group)
• Germany
• Mechatronic systems
• www.simulationx.com

65 Copyright © Open Source Modelica Consortium

MapleSim

• Maplesoft
• Canada
• Integrated with Maple
• www.maplesoft.com

66 Copyright © Open Source Modelica Consortium

Modelon

• Modelon
• Sweden and International
• Library Suite
• Creator Suite with Optimica Compiler Toolbox

Jmodelica.org, and WAMS model editor
• www.modelon.com

67 Copyright © Open Source Modelica Consortium

The OpenModelica Environment
www.OpenModelica.org

68 Copyright © Open Source Modelica Consortium

OpenModelica – Free Open Source Tool
developed by the Open Source Modelica Consortium (OSMC)
• Graphical editor

• Model compiler
and simulator

• Debugger

• Performance
analyzer

• Dynamic optimizer

• Symbolic modeling

• Parallelization

• Electronic
Notebook and
OMWebbook
for teaching

• Spokentutorial for
teaching

EngineV6 11116
equation model

69 Copyright © Open Source Modelica Consortium

• Advanced Interactive Modelica compiler (OMC)
• Supports most of the Modelica Language
• Modelica, Python, Julia scripting

• OMSimulator – FMI Simulation/Co-simulation
• Basic environment for creating models

• OMShell – an interactive command handler
• OMNotebook – a literate programming notebook
• MDT – an advanced textual environment in Eclipse

69

• OMEdit graphic Editor
• OMDebugger for equations
• OMOptim optimization tool
• OM Dynamic optimizer collocation
• ModelicaML UML Profile
• MetaModelica extension
• ParModelica extension

The OpenModelica Open Source Environment
www.openmodelica.org

70 Copyright © Open Source Modelica Consortium

Industrial members
• ABB AB, Sweden
• Bosch Rexroth AG, Germany
• Brainheart Energy AB, Sweden
• CDAC Centre, Kerala, India
• Creative Connections, Prague
• DHI, Aarhus, Denmark
• Dynamica s.r.l., Cremona, Italy
• EDF, Paris, France
• Equa Simulation AB, Sweden
• Fraunhofer IWES, Bremerhaven
• INRIA, Rennes, France
• ISID Dentsu, Tokyo, Japan

Open-source community services
• Website and Support Forum
• Version-controlled source base
• Bug database
• Development courses
• www.openmodelica.org

Code Statistics
• Augsburg University, Germany
• FH Bielefeld, Bielefeld, Germany
• University of Bolivar, Colombia
• TU Braunschweig, Germany
• Univ California, Berkeley, USA
• Chalmers Univ, Control,Sweden
• Chalmers Univ, Machine, Sweden
• TU Darmstadt, Germany
• TU Delft, The Netherlands
• TU Dresden, Germany
• Université Laval, Canada
• Georgia Inst of Technology, USA
• Ghent University, Belgium
• Halmstad University, Sweden

University members

OSMC – International Consortium for Open Source
Model-based Development Tools, 51 members Febr 2019

Founded Dec 4, 2007 • Maplesoft, Canada
• RTE France, Paris, France
• Saab AB, Linköping, Sweden
• SKF, Göteborg, Sweden
• TLK Thermo, Germany
• Siemens Turbo, Sweden
• Sozhou Tongyuan, China
• Talent Swarm, Spain
• VTI, Linköping, Sweden
• VTT, Finland
• Wolfram MathCore, Sweden

• Heidelberg University, Germany
•TU Hamburg/Harburg Germany
• IIT Bombay, Mumbai, India
• KTH, Stockholm, Sweden
• Linköping University, Sweden
• Univ of Maryland, Syst Eng USA
• Univ of Maryland, CEEE, USA
• Politecnico di Milano, Italy
• Ecoles des Mines, CEP, France
• Mälardalen University, Sweden
• RPI, Troy, USA
• Univ Pisa, Italy
• Univ College SouthEast Norway
• Tsinghua Univ, Beijing, China
• Vanderbilt Univ, USA

71 Copyright © Open Source Modelica Consortium

Build System with Regression Testing

• Automatic Nightly build system (using Jenkins), and
several multi-core computers

• Regression testing of libraries
• Verification testing comparing results to references

72 Copyright © Open Source Modelica Consortium

The OpenModelica Tool Architecture

Simulation
Execution

OMEdit Graphic
and Textual

Model Editor

OMNotebook
Interactive
Notebooks

Debugger

OMC
Interactive Compiler

Server

ModelicaML
UML/Modelica

and requirement
verification

MDT
Eclipse Plugin

OMOptim
Optimization

3D
Visualization

OMShell
Modelica
Scripting

OMPython
Python

Scripting

OMSimulator
FMI Simulation

OMJulia
Julia

Scripting

OMWebbook
Interactive
Notebooks

OMMatlab
Matlab
Scripting

OMSens
sensitivity

analysis OMSysident

73 Copyright © Open Source Modelica Consortium

Spoken-Tutorial step-by-step OpenModelica and Modelica
Tutorial Using OMEdit. Link from www.openmodelica.org

https://spoken-tutorial.org/tutorial-search/?search_foss=OpenModelica&search_language=English

74 Copyright © Open Source Modelica Consortium

OMNotebook Electronic Notebook with DrModelica
• Primarily for teaching
• Interactive electronic book
• Platform independent

Commands:
• Shift-return (evaluates a cell)
• File Menu (open, close, etc.)
• Text Cursor (vertical), Cell

cursor (horizontal)
• Cell types: text cells &

executable code cells
• Copy, paste, group cells
• Copy, paste, group text
• Command Completion (shift-

tab)

75 Copyright © Open Source Modelica Consortium

OMnotebook Interactive Electronic Notebook
Here Used for Teaching Control Theory

76 Copyright © Open Source Modelica Consortium

OM Web Notebook Generated from OMNotebook
Edit, Simulate, Plot Models on a Web Page
http://omwebbook.openmodelica.org/

OMweb
bookOMNote

book

77 Copyright © Open Source Modelica Consortium

BouncingBall Example of Using OMWebbook
Editing and Simulating the BouncingBall model

78 Copyright © Open Source Modelica Consortium

Mathematical Typesetting in OMNotebook
and OMWebbook

OMNotebook supports Latex formatting for mathematics

Latex instructions
can be hidden by
double clicking the
Cell in tree view

Contents in
OMWebbook
Generated from
OMNotebook

79 Copyright © Open Source Modelica Consortium

OpenModelica Environment Demo

80 Copyright © Open Source Modelica Consortium

OpenModelica MDT – Eclipse Plugin

• Browsing of packages, classes, functions
• Automatic building of executables;

separate compilation
• Syntax highlighting
• Code completion,

Code query support for developers
• Automatic Indentation
• Debugger

(Prel. version for algorithmic subset)

81 Copyright © Open Source Modelica Consortium 81

OpenModelica MDT: Code Outline and Hovering Info

Code Outline for
easy navigation within
Modelica files

Identifier Info on
Hovering

82 Copyright © Open Source Modelica Consortium

OpenModelica Simulation in Web Browser Client

OpenModelica compiles
to efficient
Java Script code which is
executed in web browser

MultiBody RobotR3.FullRobot

83 Copyright © Open Source Modelica Consortium

Interactive Simulation

Tank 1 Tank 2

Liquid
Source

MaxLevel

Level h

Level h

Plot View

Requirements
Evaluation View
in ModelicaML

Domain-Specific
Visualization View

Examples of Simulation
Visualization

Simulation Control

BT2

Slide 83

BT2 Update this slide considering the work by Christoffer Johansson
Thiele, Bernhard, 2017-06-20

84 Copyright © Open Source Modelica Consortium

OMPython – Python Scripting with OpenModelica

• Interpretation of Modelica
commands and expressions

• Interactive Session handling
• Library / Tool
• Optimized Parser results
• Helper functions
• Deployable, Extensible and

Distributable

85 Copyright © Open Source Modelica Consortium

OMJulia – New Julia Scripting with OpenModelica
• Interpretation of Modelica commands and

expressions from Julia, transfer of data
• Control design using Julia control

package together with OpenModelica
• Interactive Session handling
• Library / Tool
• Separately downloadable. be run with

OpenModelica 1.13.0
• Works with Jupyter notebooks

Control example with OMJulia in Jupyter notebooks

86 Copyright © Open Source Modelica Consortium

OMMatlab – Matlab Scripting with OpenModelica

• Interpretation of Modelica
commands and expressions from
Matlab, transfer of data

• Interactive Session handling
• Library / Tool
• Separately downloadable. be run

with OpenModelica 1.13.0 nightly
build

• Now a basic version supporting
basic simulation and plotting

Work in progress
Complete version in near future

87 Copyright © Open Source Modelica Consortium

PySimulator Package

• PySimulator, a
simulation and
analysis package
developed by DLR

• Free, downloadable
• Uses OMPython to

simulate Modelica
models by
OpenModelica

88 Copyright © Open Source Modelica Consortium

OMEdit 3D Visualization of Multi-Body Systems

• Built-in feature of OMEdit to
animate MSL-Multi-Body
shapes

• Visualization of simulation
results

• Animation of geometric
primitives and CAD-Files

New
Animation

Window

Simulate
with

Animation

89 Copyright © Open Source Modelica Consortium

OpenModelica 3D Animation Demo
(V6Engine and Excavator)

90 Copyright © Open Source Modelica Consortium

OpenModelica 3D Animation – Excavator

91 Copyright © Open Source Modelica Consortium

Visualization using Third-Party Libraries:
DLR Visualization Library
• Advanced, model-integrated

and vendor-unspecific
visualization tool for
Modelica models

• Offline, online and real-time
animation

• Video-export function
• Commercial library, feature

reduced free Community
Edition exists

Courtesy of Dr. Tobias Bellmann (DLR)

92 Copyright © Open Source Modelica Consortium

Exercise 1.2: Use 3D Visualization for Robot model

• Open the
Modelica.Mechanics.MultiBody.Examples.Systems.
RobotR3.fullRobot
example in OMEdit

• Press Simulate with Animation
• Replay the animation
• Compare with the plot

93 Copyright © Open Source Modelica Consortium

Exercise 1.3: Visualization using the
DLR Visualization Community Edition (1)
• Unpack

VisualizationCommunityEdition.zip
• Open the library in OMEdit
• Simulate the EMotor example
• The DLR SimVis visualization app should

start automatically
• Export the animation

(File→Export Replay as Video)

Please note: As of OpenModelica
v1.13 support for the library is only
partial and it is not yet as stable, fast
and complete as for the Dymola tool
(work in progress!)

94 Copyright © Open Source Modelica Consortium

Extending Modelica with PDEs
for 2D, 3D flow problems – Research

Insulated boundary:

Poorly insulated boundary:

20infT

Conducting boundary:
60u

class PDEModel
HeatNeumann h_iso;
Dirichlet h_heated(g=50);
HeatRobin h_glass(h_heat=30000);
HeatTransfer ht;
Rectangle2D dom;

equation
dom.eq=ht;
dom.left.bc=h_glass;
dom.top.bc=h_iso;
dom.right.bc=h_iso;
dom.bottom.bc=h_heated;

end PDEModel;

Prototype in OpenModelica 2005
PhD Thesis by Levon Saldamli
www.openmodelica.org
Currently not operational

95 Copyright © Open Source Modelica Consortium

Failure Mode and Effects Analysis (FMEA) in OM

• Modelica models augmented with reliability properties can be used to generate
reliability models in Figaro, which in turn can be used for static reliability analysis

• Prototype in OpenModelica integrated with Figaro tool (which is becoming open-
source)

Modelica Library
Application
Modelica model

Simulation

Figaro Reliability
Library

Reliability model
in Figaro FT generation FT processing

Automated
generation

96 Copyright © Open Source Modelica Consortium

Model structure Model Variables

Optimized
parameters

Optimized
Objectives

OMOptim – Optimization (1)

97 Copyright © Open Source Modelica Consortium

Problems

Solved problems Result plot Export result data .csv

OMOptim – Optimization (2)

98 Copyright © Open Source Modelica Consortium

Multiple-Shooting and Collocation
Dynamic Trajectory Optimization
• Minimize a goal function subject to model

equation constraints, useful e.g. for NMPC
• Multiple Shooting/Collocation

• Solve sub-problem in each sub-interval

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

1 2 4 8 16

MULTIPLE_COLLOCATION

ipopt [scaled] jac_g [scaled]

Example speedup, 16 cores:

99 Copyright © Open Source Modelica Consortium

OpenModelica Dynamic Optimization Collocation

100 Copyright © Open Source Modelica Consortium

OMSens – Multi-Parameter Sensitivity Analysis
• Individual and simultaneous multi-parameter analysis
• Optimization-based simultaneous analysis
• Robust derivative free optimizer Tool architecture

Heatmap visualization

Planned for
OpenModelica 1.14.0

101 Copyright © Open Source Modelica Consortium

OMSysIdent – System Parameter Identification

• OMSysIdent is a module for parameter estimation of behavioral
models (wrapped as FMUs) on top of the OMSimulator API.

• Identification of the parameter values is typically based on
measurement data

• It uses the Ceres solver (http://ceres-solver.org/) for the
optimization task.

102 Copyright © Open Source Modelica Consortium

General Tool Interoperability & Model Exchange
Functional Mock-up Interface (FMI)

• FMI development was started by ITEA2 MODELISAR project. FMI is a
Modelica Association Project now

• Version 1.0
• FMI for Model Exchange (released Jan 26,2010)
• FMI for Co-Simulation (released Oct 12,2010)
• Version 2.0
• FMI for Model Exchange and Co-Simulation (released July 25,2014)
• > 120 tools supporting it (https://www.fmi-standard.org/tools)

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling
courtesy Daimler

103 Copyright © Open Source Modelica Consortium

Functional Mockup Units
• Import and export of input/output blocks –

Functional Mock-Up Units – FMUs, described by
• differential-, algebraic-, discrete equations,
• with time-, state, and step-events

• An FMU can be large (e.g. 100 000 variables)
• An FMU can be used in an embedded system (small overhead)
• FMUs can be connected together

104 Copyright © Open Source Modelica Consortium

OMSimulator – Integrated FMI and TLM-based
Cosimulator/Simulator – part of OpenModelica

OMSimulator
Integrated TLM & FMI

libOMSimulator

Simulink wrapper
Beast wrapper

ADAMS wrapper

TLM component

C-API
interface

OMEdit

Papyrus

Scripting
…

OMC
FMI component

FMI component

FMI FMU

Modelica model

Composite FMI
component

Unified co-simulation/simulation tool
• FMI 2.0 (model exchange and co-
simulation)
• TLM (transition line modelling)
• Real-time and offline simulation

Standalone open source simulation tool
with rich interfaces

• C/Java
• Scripting languages Python, Lua

Co-simulation framework as a solid base
for engineering tools

• Integration into
OpenModelica/Papyrus
• Open for integration into third-party
tools and specialized applications
(e.g. flight simulators, optimization)

Main Framework Aspects

OMSimulator in OpenModelica 1.13.0
• Supports both FMI and TLM
• TLM connections are optional
• Co-simulation to multiple tools
• Composite model editor
• External API interface and scripting

105 Copyright © Open Source Modelica Consortium

OMSimulator Composite Model Editor with 3D Viewer

• Composite model editor
with 3D visualization of
connected mechanical
model components which
can be FMUs, Modelica
models, etc., or co-simulated
components

• 3D animation possible

• Composite model saved as
SSP XML-file

• Support for SSP – System
Structure and
Parameterization standard

• Numerically stable co-
simulation with TLM

106 Copyright © Open Source Modelica Consortium

OMSimulator Simulation, SSP, and Tool Comparison

Adding SSP bus connections FMI Simulation
results
in OMEdit

OMSimulator DACCOSIM Simulink PyFMI
Commercial No No Yes No
Open-source OSMC-PL, GPL AGPL2 No LGPL
Lookup Table Yes Yes Yes No
Alg. Loops Yes Yes No Yes
Scripting Python, Lua proprietary proprietary Python
GUI Yes Yes Yes No
SSP Yes No No No
platform Linux/Win/macOS Linux/Win Linux/Win/macOS Linux/Win/macOS

Dymola PySimulator FMI Go! FMI Composer
Commercial Yes No No Yes
Open-source No BSD MIT No
Lookup Table Yes Yes Yes Yes
Alg. Loops Yes Yes Yes Yes
Scripting proprietary Python Go No
GUI Yes Yes No Yes
SSP No No Yes Yes
platform Linux/Win Linux/Win Linux/Win/macOS Linux/Win/macOS

FMI Simulation Tool Comparison

107 Copyright © Open Source Modelica Consortium

OpenModelica Functional Mockup Interface (FMI)

108 Copyright © Open Source Modelica Consortium

FMI in OpenModelica

• Model Exchange implemented (FMI 1.0 and FMI 2.0)
• FMI 2.0 Co-simulation implemented
• The FMI interface is accessible via the OpenModelica scripting

environment, the OpenModelica connection editor and the
OMSimulator tool in OpenModelica

109 Copyright © Open Source Modelica Consortium

OpenModelica Code Generators for
Embedded Real-time Code

• A full-fledged OpenModelica-generated source-code FMU
(Functional Mockup Unit) code generator
• Can be used to cross-compile FMUs for platforms with more

available memory.
• These platforms can map FMI inputs/outputs to analog/digital I/O in

the importing FMI master.
• A very simple code generator generating a small footprint

statically linked executable.
• Not an FMU because there is no OS, filesystem, or shared objects in

microcontrollers.

110 Copyright © Open Source Modelica Consortium

Code Generator Comparison, Full vs Simple

Full Source-code FMU
targeting 8-bit AVR proc

Simple code generator
targeting 8-bit AVR proc

Hello World
(0 equations)

43 kB flash memory
23 kB variables (RAM)

130 B flash memory
0 B variables (RAM)

SBHS Board (real-time
PID controller, LCD, etc)

68 kB flash memory
25 kB variables (RAM)

4090 B flash memory
151 B variables (RAM)

The largest 8-bit AVR processor MCUs (Micro Controller Units) have 16 kB SRAM.

One of the more (ATmega328p; Arduino Uno) has 2 kB SRAM.

The ATmega16 we target has 1 kB SRAM available (stack, heap, and global variable

111 Copyright © Open Source Modelica Consortium

The Simple Code Generator

Supports only a limited Modelica subset

• No initialization (yet)

• No strongly connected components

• No events

• No functions (except external C and built-in)

• Only parts that OpenModelica can generate good and efficient code
for right now (extensions might need changes in the intermediate
code)

• Unused variables are not accepted (OM usually duplicates all
variables for pre() operators, non-linear system guesses, etc…
but only a few of them are actually used)

• FMU-like interface (but statically linked)

112 Copyright © Open Source Modelica Consortium

• Free library for interfacing hardware drivers

• Cross-platform (Windows and Linux)

• UDP, SharedMemory, CAN, Keyboard,
Joystick/Gamepad

• DAQ cards for digital and analog IO (only Linux)

• Developed for interactive real-time simulations

Communication & I/O Devices:
MODELICA_DEVICEDRIVERS Library

https://github.com/modelica/Modelica_DeviceDrivers/

113 Copyright © Open Source Modelica Consortium

OpenModelica and Device Drivers Library
AVR Processor Support

● No direct Atmel AVR or Arduino support in the OpenModelica
compiler

● Everything is done by the Modelica DeviceDrivers library
● All I/O is modeled explicitly in Modelica, which makes code

generation very simple

Modelica Device Drivers Library - AVR processor sub-packages:

• IO.AVR.Analog (ADC – Analog Input)

• IO.AVR.PWM (PWM output)

• IO.AVR.Digital.LCD (HD44780 LCD driver on a single 8-pin digital port)

• OS.AVR.Timers (Hardware timer setup, used by real-time and PWM
packages)

• OS.AVR.RealTime (very simple real-time synchronization; one interrupt per
clock cycle; works for single-step solvers)

114 Copyright © Open Source Modelica Consortium

Single board heating system (IIT
Bombay)

• Use for teaching basic control
theory

• Usually controlled by serial
port (set fan value, read
temperature, etc)

• OpenModelica can generate
code targeting the ATmega16
on the board (AVR-ISP
programmer in the lower left).
 Program size is 4090
bytes including LCD driver
and PID-controller (out of 16
kB flash memory available).

Use Case: SBHS (Single Board Heating System)

Movie Demo, see next page!

115 Copyright © Open Source Modelica Consortium

Example – Code Generation to SHBS

116 Copyright © Open Source Modelica Consortium

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements
models

Unified Modeling: Meta-modeling&Modelica& UML

Business
Process
Control

Requirements
Capture

Model-Driven
Design

Compilation
& Code Gen

System
Simulation

Software &
System Product

Platform
models

Process
models

OPENPROD – Large 28-partner European Project, 2009-2012
Vision of Cyber-Physical Model-Based Product Development

OPENPROD Vision of unified modeling framework for model-based
product development.

Open Standards – Modelica (HW, SW) and UML (SW)

117 Copyright © Open Source Modelica Consortium

OPENPROD Model-Based Development Environment
Covers Product-Design V

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML

Business
Process
Control

Requirements
Capture

Model-Driven
Design

Compilation
& Code Gen

System
Simulation

Software &
System Product

Platform
models

Process
models

Specification

Design

Design
Refinement

Component verification

Subsystem level integration and
verification

Subsystem level integration test
calibration and verification

Product verification and
deployment

Maintenance

Realization

Detailed feature design and
implementation

Architectural design and
system functional design

Preliminary feature design

System
requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

118 Copyright © Open Source Modelica Consortium

Business Process Control and Modeling

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML

Business
Process
Control

Requirements
Capture

Model-Driven
Design

Compilation
& Code Gen

System
Simulation

Software &
System Product

Platform
models

Process
models

Metso Business model & simulation
VTT Simantics Graphic Modeling To

OpenModelica based simulation

Simulation of 3 strategies with
outcomes

VTT Simantics
Business process modeler

OpenModelica
compiler & simulator

119 Copyright © Open Source Modelica Consortium

Requirement Capture

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML

Business
Process
Control

Requirements
Capture

Model-Driven
Design

Compilation
& Code Gen

System
Simulation

Software &
System Product

Platform
models

Process
models

OpenModelica based simulation

vVDR (virtual Verification of
Designs against Requirements)

in ModelicaML UML/Modelica
Profile, part of OpenModelica

Design Model

Scenario Model

Requirement
Models

Verification Model

Binding

Provider from
design model

Client from requirement model

120 Copyright © Open Source Modelica Consortium

OpenModelica – ModelicaML UML Profile
SysML/UML to Modelica OMG Standardization

• ModelicaML is a UML Profile for SW/HW modeling
• Applicable to “pure” UML or to other UML profiles, e.g. SysML

• Standardized Mapping UML/SysML to Modelica
• Defines transformation/mapping for executable models
• Being standardized by OMG

• ModelicaML
• Defines graphical concrete syntax (graphical notation for diagram) for

representing Modelica constructs integrated with UML
• Includes graphical formalisms (e.g. State Machines, Activities,

Requirements)
• Which do not exist in Modelica language
• Which are translated into executable Modelica code

• Is defined towards generation of executable Modelica code
• Current implementation based on the Papyrus UML tool + OpenModelica

121 Copyright © Open Source Modelica Consortium

Example: Simulation and Requirements Evaluation

Req. 001 is instantiated 2 times
(there are 2 tanks in the system)

tank-height is 0.6m

Req. 001 for the tank2 is
violated

Req. 001 for the tank1 is
not violated

122 Copyright © Open Source Modelica Consortium

vVDR Method –
virtual Verification of Designs vs Requirements

Formalize
Requirements

Formalize Designs

Formalize
Scenarios

Create Verification
Models

Execute and
Create Report

Analyze Results

RMM Requirement
Monitor Models

Scenario
Models

SM

Designs
Alternative
Models

DAM

VM Verification Models

AUTOMATED

Task Created Artifact

Goal: Enable on-demand
verification of designs
against requirements
using automated model
composition at any time
during development.

AUTOMATED

Actor

Reports

*

123 Copyright © Open Source Modelica Consortium

Need for Debugging Tools
Map Low vs High Abstraction Level

• A major part of the total cost of software projects
is due to testing and debugging

• US-Study 2002:
Software errors cost the US economy annually~ 60 Billion $

• Problem: Large Gap in Abstraction Level
from Equations to Executable Code

• Example error message (hard to understand)
Error solving nonlinear system 132

time = 0.002
residual[0] = 0.288956
x[0] = 1.105149
residual[1] = 17.000400
x[1] = 1.248448
...

124 Copyright © Open Source Modelica Consortium

OpenModelica MDT Algorithmic Code Debugger

125 Copyright © Open Source Modelica Consortium

The OpenModelica MDT Debugger (Eclipse-based)
Using Japanese Characters

126 Copyright © Open Source Modelica Consortium

OpenModelica Equation Model Debugger

0 = y + der(x * time * z); z = 1.0;

(1) substitution:
y + der(x * (time * z))
=>
y + der(x * (time * 1.0))

(2) simplify:
y + der(x * (time * 1.0))
=>
y + der(x * time)

(3) expand derivative (symbolic
diff):
y + der(x * time)
=>y + (x + der(x) * time)

(4) solve:
0.0 = y + (x + der(x) * time)
=>
der(x) = ((-y) - x) / time
time <> 0

Showing
equation
transformations
of a model:

Mapping run-time error to source model position

127 Copyright © Open Source Modelica Consortium

Transformations Browser – EngineV6 Overview
(11 116 equations in model)

128 Copyright © Open Source Modelica Consortium

Equation Model Debugger on Siemens Model
(Siemens Evaporator test model, 1100 equations)

Pointing out the buggy equation
y = u1/u2;
that gives division by zero

129 Copyright © Open Source Modelica Consortium

Debugging Example – Detecting Source of Chattering
(excessive event switching) causing bad performance

• Lkjlkjlj
• Lkjlkj
• lkjklj

equation
z = if x > 0 then -1 else 1;
y = 2 * z;

…

130 Copyright © Open Source Modelica Consortium

Error Indication – Simulation Slows Down

131 Copyright © Open Source Modelica Consortium

Performance Profiling for Faster Simulation
(Here: Profiling all equations in MSL 3.2.1 DoublePendulum)

• Measuring performance of equation blocks to find bottlenecks
• Useful as input before model simplification for real-time applications

• Integrated with the debugger to point out the slow equations
• Suitable for real-time profiling (collect less information), or a complete

view of all equation blocks and function calls

Performance profiling DoublePendulum:

132 Copyright © Open Source Modelica Consortium

Performance Profiling of
Siemens Drum Boiler Model with Evaporator

Conclusion from the evaluation:

“…the profiler makes the process
of performance optimization
radically shorter.”

133 Copyright © Open Source Modelica Consortium

• ABB OPTIMAX® provides advanced model based control products
for power generation and water utilities

• ABB: “ABB uses several compatible Modelica tools, including
OpenModelica, depending on specific application needs.”

• ABB: “OpenModelica provides outstanding debugging features that
help to save a lot of time during model development.”

ABB Industry Use of OpenModelica FMI 2.0 and Debugger

134 Copyright © Open Source Modelica Consortium

Exercise 1.2 – Equation-based Model Debugger

model ChatteringEvents1
Real x(start=1, fixed=true);
Real y;
Real z;

equation
z = noEvent(if x > 0 then -1 else 1);
y = 2*z;
der(x) = y;

end ChatteringNoEvents1;

In the model ChatteringEvents1, chattering takes place after t = 0.5, due to the
discontinuity in the right hand side of the first equation. Chattering can be detected
because lots of tightly spaced events are generated. The debugger allows to identify
the (faulty) equation that gives rise to all the zero crossing events.

• Switch to OMEdit text view (click on text button upper left)
• Open the Debugging.mo package file using OMEdit
• Open subpackage Chattering, then open model ChatteringEvents1
• Simulate in debug mode
• Click on the button Debug more (see prev. slide)
• Possibly start task manager and look at CPU. Then click stop simulation button

Uses 25% CPU

135 Copyright © Open Source Modelica Consortium

Exercise – FMU Export and Import (1)

• Open OMEdit and check FMI settings in
Tools->Options

136 Copyright © Open Source Modelica Consortium

Exercise – FMU Export and Import (2)

• Find the FMIExercise.mo file in the tutorial
folder and open it in OMEdit. Click on the + at the
left to open and see components TEstPIFMU, PI,
etc.

• Goal: (1) Export this PI block as FMU, (2) import
the exported FMU, (3) compare simulation results
of imported PI FMU block vs. native use of the PI
block

• Export the PI block by selecting the model and
use right-click context menu indicated at the right

• The message browser shows where the FMU was
generated on your system

137 Copyright © Open Source Modelica Consortium

Exercise – FMU Export and Import (3)

• Import FMU by selecting
FMI->Import FMU from the menu

• Find and select the FMU in the
directory where it was exported
before as indicated at the right

• The FMU should now appear in the
package browser

138 Copyright © Open Source Modelica Consortium

Exercise – FMU Export and Import (4)

• The imported FMU is wrapped inside a standard Modelica
model and can be inserted by drag and drop into an existing
model

• The model TestPIFMU has been prepared so that the
results of the imported FMU can be easily compared to the
native block. Simulate it and compare results by plotting

139 Copyright © Open Source Modelica Consortium

Exercise with OMJulia – New Julia Scripting for
Simulation and Control Design

• Why Python or Julia Scripting?
• Access to libraries for postprocessing,

control design, visualization

• Julia is a rather new, but rapidly
expanding language

• Efficient execution via LLVM compilation
• Access to large number of libraries
• Combined numeric and symbolic processing

• Interactive Session handling
• OMJulia Separately downloadable, run

with OpenModelica 1.13.0 or later
• Both OMJulia and OMPython work with

Jupyter notebooks

Control example with OMJulia in Jupyter notebooks

140 Copyright © Open Source Modelica Consortium

OMJulia Exercise from Jupyter Notebook
Step 1. Starting Jupyter Notebook from command Line

• If you have installed python and jupyter notebook independently, you can start
jupyter notebook directly from windows command prompt by typing the following.

>> jupyter notebook

• If you have installed jupyter notebook from anaconda distribution, then, from
windows search, search for ”anaconda prompt”, and open it and type the following

>> jupyter notebook

This will open the jupyter notebook in the webbrowser, it can take some 30 seconds to
open in the browser.
When the notebook opens in your browser, you will see the Notebook dashboard, which
will show a list of the notebooks, files, and subdirectories in the directory where the
notebook server was started.

Note:
Start the Notebook session from the OMJulia-tutorial folder, you have copied from the
USB stick.

141 Copyright © Open Source Modelica Consortium

Step 2. Starting Julia Session in Jupyter Notebook
Start the Julia 1.0.1 session given below.

142 Copyright © Open Source Modelica Consortium

Step 3. Exercise: Open OMJuliaStart.ipynb
If you have started the jupyter notebook from the “OMJulia-tutorial” folder, you can see
the list of notebooks, OMJuliaStart.ipynb, you can click on it. otherwise you can open
like given below

143 Copyright © Open Source Modelica Consortium

Step 3a. Exercise: List of APIs we will be Using
Start the OMJulia module and create an OMCSession() object referred to by s
>> using OMJulia
>> s=OMJulia.OMCSession();

Loading the model using the ModelicaSystem() constructor
>> s.ModelicaSystem("BouncingBall.mo","BouncingBall")

API calls to extract model information and simulate
>> s.showQuantities() // extracts list of all modelinformation in a table
>> s.getQuantities() // extracts list of all modelinformation in a dictionary
>> s.getInputs() // extracts list of all Inputs in the model
>> s.getOutputs() // extracts list of all Outputs in the model
>> s.getParameters() // extracts list of all Parameters in the model
>> s.setParameters(”e=0.9”) // set the parameters of the model to a new value
>> s.simulate() // simulate the model

Extraction of results and Plotting
>> s.getSoultions() // extracts list of result variables
>> results = s.getSolutions([”time”,”h”]) // extracts the simulation data from
the result file
Plot the results using Julia Plot Library
>>plot(results[1],results[2],title="BouncingBall",xlabel="time(s)",ylabel="h",le
gend=false)

144 Copyright © Open Source Modelica Consortium

Step 3b. Exercise: Starting OMJulia Session

145 Copyright © Open Source Modelica Consortium

Step 3c. Exercise: Getting and Setting Parameters

146 Copyright © Open Source Modelica Consortium

Step 3d. Exercise: Simulate and Extract Results

147 Copyright © Open Source Modelica Consortium

Step 3e. Exercise: Plotting the results

148 Copyright © Open Source Modelica Consortium

Extra Exercise: Control Design and Simulation of
Flat Tank Model from OMJulia, see waterTank.ipynb

model ModWaterTank
constant Real rho = 1 "Density of liquid, kg/L";
parameter Real A = 5 "Cross sectional area of tank, dm2";
parameter Real K = 5 "Valve constant, kg/s";
parameter Real h_s = 3 "Scaling level, dm";
// Initial state parameters
parameter Real h_0 = 1.5 "Initial tank level, dm";
parameter Real m_0 = rho*h_0*A "Initial tank mass, kg";
// Declaring variables
// -- states
Real m(start = m_0, fixed = true) "Mass in tank, kg";
// -- auxiliary variables
Real V "Tank liquid volume, L";
Real md_e "Effluent mass flow rate from tank, kg/s";
// -- input variables
input Real md_i "Influent mass flow rate to tank, kg/s";

// -- outut variables
output Real h "Tank liquid level, dm";

// Equations constituting the model
equation

// Algebraic equations
m = rho*V;
V = A*h;
md_e = K*sqrt(h/h_s);
// Differential equations
der(m) = md_i - md_e;

end ModWaterTank;

level h

inflow md_i

mass m
 tank

 source

outflow md_e

volume V

Note: waterTank.ipynb is available
in the USB Stick

149 Copyright © Open Source Modelica Consortium

Part III

Modelica language concepts
and textual modeling

Hybrid
Modeling

Typed
Declarative
Equation-based
Textual Language

150 Copyright © Open Source Modelica Consortium

A resistor equation:
R*i = v;

Acausal Modeling

The order of computations is not decided at modeling time

Acausal Causal

Causal possibilities:
i := v/R;
v := R*i;
R := v/i;

Visual
Component
Level

Equation
Level

151 Copyright © Open Source Modelica Consortium

Typical Simulation Process

152 Copyright © Open Source Modelica Consortium

Simple model - Hello World!

model HelloWorld "A simple equation"
Real x(start=1);
parameter Real a = -1;

equation
der(x)= a*x;

end HelloWorld;

Equation: x’ = - x
Initial condition: x(0) = 1

Simulation in OpenModelica environment

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

simulate(HelloWorld, stopTime = 2)
plot(x)

Name of model

Continuous-time
variable

Initial condition

Parameter, constant
during simulation

Differential equation

153 Copyright © Open Source Modelica Consortium

Modelica Variables and Constants

• Built-in primitive data types
Boolean true or false
Integer Integer value, e.g. 42 or –3
Real Floating point value, e.g. 2.4e-6
String String, e.g. “Hello world”
Enumeration Enumeration literal e.g. ShirtSize.Medium

• Parameters are constant during simulation
• Two types of constants in Modelica

• constant
• parameter

constant Real PI=3.141592653589793;
constant String redcolor = "red";
constant Integer one = 1;
parameter Real mass = 22.5;

154 Copyright © Open Source Modelica Consortium

A Simple Rocket Model

 abs

thrust mass gravityacceleration
mass

mass massLossRate thrust
altitude velocity
velocity acceleration

class Rocket "rocket class"
parameter String name;
Real mass(start=1038.358);
Real altitude(start= 59404);
Real velocity(start= -2003);
Real acceleration;
Real thrust; // Thrust force on rocket
Real gravity; // Gravity forcefield
parameter Real massLossRate=0.000277;

equation
(thrust-mass*gravity)/mass = acceleration;
der(mass) = -massLossRate * abs(thrust);
der(altitude) = velocity;
der(velocity) = acceleration;

end Rocket;

new model
declaration
comment

parameters (changeable
before the simulation)

name + default value

differentiation with
regards to time

mathematical
equation (acausal)

floating point
type

start value

thrustapollo13

mg

Rocket

155 Copyright © Open Source Modelica Consortium

Celestial Body Class

class CelestialBody
constant Real g = 6.672e-11;
parameter Real radius;
parameter String name;
parameter Real mass;

end CelestialBody;

An instance of the class can be
declared by prefixing the type
name to a variable name

...
CelestialBody moon;
...

A class declaration creates a type name in Modelica

The declaration states that moon is a variable
containing an object of type CelestialBody

156 Copyright © Open Source Modelica Consortium

Moon Landing

class MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;

protected
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;

public
Rocket apollo(name="apollo13");
CelestialBody moon(name="moon",mass=7.382e22,radius=1.738e6);

equation
apollo.thrust = if (time < thrustDecreaseTime) then force1

else if (time < thrustEndTime) then force2
else 0;

apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;
end MoonLanding;

 2..
...

radiusmoonaltitudeapollo
massmoongmoongravityapollo

only access
inside the class

access by dot
notation outside
the class

altitude
CelestialBody

thrust
apollo13

mg

Rocket

157 Copyright © Open Source Modelica Consortium

Simulation of Moon Landing

simulate(MoonLanding, stopTime=230)
plot(apollo.altitude, xrange={0,208})
plot(apollo.velocity, xrange={0,208})

50 100 150 200

5000

10000

15000

20000

25000

30000
50 100 150 200

-400

-300

-200

-100

It starts at an altitude of 59404
(not shown in the diagram) at
time zero, gradually reducing it
until touchdown at the lunar
surface when the altitude is zero

The rocket initially has a high
negative velocity when approaching
the lunar surface. This is reduced to
zero at touchdown, giving a smooth
landing

158 Copyright © Open Source Modelica Consortium

Specialized Class Keywords

• Classes can also be declared with other keywords, e.g.: model, record,
block, connector, function, ...

• Classes declared with such keywords have specialized properties
• Restrictions and enhancements apply to contents of specialized classes
• After Modelica 3.0 the class keyword means the same as model

• Example: (Modelica 2.2). A model is a class that cannot be used as a
connector class

• Example: A record is a class that only contains data, with no equations
• Example: A block is a class with fixed input-output causality

model CelestialBody
constant Real g = 6.672e-11;
parameter Real radius;
parameter String name;
parameter Real mass;

end CelestialBody;

159 Copyright © Open Source Modelica Consortium

Modelica Functions

• Modelica Functions can be viewed as a specialized
class with some restrictions and extensions

• A function can be called with arguments, and is
instantiated dynamically when called

function sum
input Real arg1;
input Real arg2;
output Real result;

algorithm
result := arg1+arg2;

end sum;

160 Copyright © Open Source Modelica Consortium

function PolynomialEvaluator
input Real A[:]; // array, size defined

// at function call time
input Real x := 1.0;// default value 1.0 for x
output Real sum;

protected
Real xpower; // local variable xpower

algorithm
sum := 0;
xpower := 1;
for i in 1:size(A,1) loop
sum := sum + A[i]*xpower;
xpower := xpower*x;

end for;
end PolynomialEvaluator;

Function Call – Example Function with for-loop

Example Modelica function call:

The function
PolynomialEvaluator
computes the value of a
polynomial given two
arguments:
a coefficient vector A and
a value of x.

...
p = polynomialEvaluator({1,2,3,4},21)

{1,2,3,4} becomes
the value of the
coefficient vector A, and
21 becomes the value of
the formal parameter x.

161 Copyright © Open Source Modelica Consortium

Inheritance

record ColorData
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real green;

end ColorData;

class Color
extends ColorData;

equation
red + blue + green = 1;

end Color;

Data and behavior: field declarations, equations, and
certain other contents are copied into the subclass

keyword
denoting
inheritance

restricted kind
of class without
equations

parent class to Color

child class or
subclass

class ExpandedColor
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end ExpandedColor;

162 Copyright © Open Source Modelica Consortium

Multiple Inheritance

Multiple Inheritance is fine – inheriting both geometry and color

class Point
Real x;
Real y,z;

end Point;

class Color
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end Color;
multiple inheritance

class ColoredPointWithoutInheritance
Real x;
Real y, z;
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real green;

equation
red + blue + green = 1;

end ColoredPointWithoutInheritance;

Equivalent to

class ColoredPoint
extends Point;
extends Color;

end ColoredPoint;

Extra slide

163 Copyright © Open Source Modelica Consortium

Multiple Inheritance cont’

Only one copy of multiply inherited class Point is kept
class Point
Real x;
Real y;

end Point;

Diamond Inheritance
class VerticalLine
extends Point;
Real vlength;

end VerticalLine;

class HorizontalLine
extends Point;
Real hlength;

end HorizontalLine;

class Rectangle
extends VerticalLine;
extends HorizontalLine;

end Rectangle;

Extra slide

164 Copyright © Open Source Modelica Consortium

Simple Class Definition

• Simple Class Definition
• Shorthand Case of Inheritance

• Example:
class SameColor = Color;

class SameColor
extends Color;

end SameColor;

Equivalent to:

• Often used for
introducing new
names of types:

type Resistor = Real;

connector MyPin = Pin;

inheritance

165 Copyright © Open Source Modelica Consortium

Inheritance Through Modification

• Modification is a concise way of combining inheritance
with declaration of classes or instances

• A modifier modifies a declaration equation in the
inherited class

• Example: The class Real is inherited, modified with a
different start value equation, and instantiated as an
altitude variable:

...
Real altitude(start= 59404);
...

166 Copyright © Open Source Modelica Consortium

The Moon Landing - Example Using Inheritance (I)

model Body "generic body"
Real mass;
String name;

end Body;

model CelestialBody
extends Body;
constant Real g = 6.672e-11;
parameter Real radius;

end CelestialBody;

model Rocket "generic rocket class"
extends Body;
parameter Real massLossRate=0.000277;
Real altitude(start= 59404);
Real velocity(start= -2003);
Real acceleration;
Real thrust;
Real gravity;

equation
thrust-mass*gravity= mass*acceleration;
der(mass)= -massLossRate*abs(thrust);
der(altitude)= velocity;
der(velocity)= acceleration;

end Rocket;

altitude CelestialBody

thrustapollo13

mg

Rocket

Extra slide

167 Copyright © Open Source Modelica Consortium

The Moon Landing - Example using Inheritance (II)

model MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;
Rocket apollo(name="apollo13", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");
equation
apollo.thrust = if (time<thrustDecreaseTime) then force1

else if (time<thrustEndTime) then force2
else 0;

apollo.gravity =moon.g*moon.mass/(apollo.altitude+moon.radius)^2;
end Landing;

inherited
parameters

Extra slide

168 Copyright © Open Source Modelica Consortium

Inheritance of Protected Elements

class ColoredPointWithoutInheritance
Real x;
Real y,z;
protected Real red;
protected Real blue;
protected Real green;

equation
red + blue + green = 1;

end ColoredPointWithoutInheritance;

If an extends-clause is preceded by the protected keyword,
all inherited elements from the superclass become protected
elements of the subclass

The inherited fields from Point keep
their protection status since that
extends-clause is preceded by
public

A protected element cannot be
accessed via dot notation!

class ColoredPoint
protected
extends Color;
public
extends Point;

end ColoredPoint;

class Color
Real red;
Real blue;
Real green;

equation
red + blue + green = 1;

end Color;

class Point
Real x;
Real y,z;

end Point;

Equivalent to

Extra slide

169 Copyright © Open Source Modelica Consortium

Exercises Part III a
(15 minutes)

170 Copyright © Open Source Modelica Consortium

Exercises Part III a

• Start OMNotebook (part of OpenModelica)
• Start->Programs->OpenModelica->OMNotebook
• Open File: Exercises-ModelicaTutorial.onb from the directory you copied

your tutorial files to.
• Note: The DrModelica electronic book has been automatically opened when

you started OMNotebook.

• (Alternatively: Open the OMWeb notebook
http://omwebbook.openmodelica.org/

• Open Exercises-ModelicaTutorial.pdf (also
available in printed handouts)

171 Copyright © Open Source Modelica Consortium

• Open the Exercises-ModelicaTutorial.onb found in the
Tutorial directory you copied at installation.

• Exercise 2.1. Simulate and plot the HelloWorld example. Do
a slight change in the model, re-simulate and re-plot. Try
command-completion, val(), etc.

• Locate the VanDerPol model in DrModelica (link from
Section 2.1), using OMNotebook!

• (extra) Exercise 2.2: Simulate and plot VanDerPol. Do a
slight change in the model, re-simulate and re-plot.

Exercises 2.1 and 2.2 (See also next two pages)

class HelloWorld "A simple equation"
Real x(start=1);

equation
der(x)= -x;

end HelloWorld;

simulate(HelloWorld, stopTime = 2)
plot(x)

172 Copyright © Open Source Modelica Consortium

Exercise 2.1 – Hello World!

A Modelica “Hello World” model
class HelloWorld "A simple equation”

parameter Real a=-1;
Real x(start=1);

equation
der(x)= a*x; (*xxxxx s*)

end HelloWorld;

Equation: x’ = - x
Initial condition: x(0) = 1

Simulation in OpenModelica environment

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

simulate(HelloWorld, stopTime = 2)
plot(x)

173 Copyright © Open Source Modelica Consortium

-1 1 2

-2

-1

1

2

-2

(extra) Exercise 2.2 – Van der Pol Oscillator
class VanDerPol "Van der Pol oscillator model"
Real x(start = 1) "Descriptive string for x"; // x starts at 1
Real y(start = 1) "y coordinate"; // y starts at 1
parameter Real lambda = 0.3;

equation
der(x) = y; // This is the 1st diff equation //
der(y) = -x + lambda*(1 - x*x)*y; /* This is the 2nd diff equation */

end VanDerPol;

simulate(VanDerPol,stopTime = 25)
plotParametric(x,y)

174 Copyright © Open Source Modelica Consortium

(extra) Exercise 2.3 – DAE Example

Include algebraic equation
Algebraic equations contain
no derivatives

Simulation in OpenModelica environment

0.2 0.4 0.6 0.8 1
time

0.90

0.95

1.05

1.10

1.15

1.20

1.0

simulate(DAEexample, stopTime = 1)
plot(x)

class DAEexample
Real x(start=0.9);
Real y;

equation
der(y)+(1+0.5*sin(y))*der(x)

= sin(time);
x - y = exp(-0.9*x)*cos(y);

end DAEexample;

Exercise: Locate in DrModelica.
Simulate and plot. Change
the model, simulate+plot.

175 Copyright © Open Source Modelica Consortium

Exercise 2.4 – Model the system below

• Model this Simple System of Equations in Modelica

176 Copyright © Open Source Modelica Consortium

(extra) Exercise 2.5 – Functions

• a) Write a function, sum2, which calculates the sum
of Real numbers, for a vector of arbitrary size.

• b) Write a function, average, which calculates the
average of Real numbers, in a vector of arbitrary
size. The function average should make use of a
function call to sum2.

177 Copyright © Open Source Modelica Consortium

Part III b
Discrete Events and Hybrid Systems

Picture: Courtesy Hilding Elmqvist

178 Copyright © Open Source Modelica Consortium

Modelica Hybrid Modeling
Hybrid modeling = continuous-time + discrete-time modeling

Real x;
Voltage v;
Current i;

Events

discrete Real x;
Integer i;
Boolean b;

• A point in time that is instantaneous, i.e., has zero duration
• An event condition or clock tick so that the event can take place
• A set of variables that are associated with the event
• Some behavior associated with the event,

e.g. conditional equations that become active or are deactivated at
the event

time

Continuous-time

Discrete-time

Clocked discrete-time

179 Copyright © Open Source Modelica Consortium

Event Creation – if

model Diode "Ideal diode"
extends TwoPin;
Real s;
Boolean off;

equation
off = s < 0;
if off then
v=s

else
v=0;

end if;
i = if off then 0 else s;

end Diode;

if <condition> then
<equations>

elseif <condition> then
<equations>

else
<equations>

end if;

if-equations, if-statements, and if-expressions

false if s<0

If-equation choosing
equation for v

If-expression

180 Copyright © Open Source Modelica Consortium

Event Creation – when

when <conditions> then
<equations>

end when; // un-clocked version

when-equations (two kinds: unclocked and clocked)

Only dependent on time, can be
scheduled in advance

Time event
when time >= 10.0 then

...
end when;

time
event 1 event 2 event 3

Equations only active at event times

State event
when sin(x) > 0.5 then

...
end when;

Related to a state. Check for
zero-crossing

when clock then
<equations>

end when; // clocked version

181 Copyright © Open Source Modelica Consortium

Generating Repeated Events by unclocked sample

The call sample(t0,d) returns
true and triggers events at times
t0+i*d, where i=0,1, …

model SamplingClock
Integer i;
discrete Real r;

equation
when sample(2,0.5) then
i = pre(i)+1;
r = pre(r)+0.3;

end when;
end SamplingClock;

time

sample(t0,d)

false

true

t0 t0+d t0+2d t0+3d t0+4d

Variables need to be
discrete

Creates an event
after 2 s, then
each 0.5 s

pre(...) takes the
previous value
before the event.

182 Copyright © Open Source Modelica Consortium

Generating Clock Tick Events using Clock()
(clocked models, Modelica 3.3)

• Clock() – inferred clock
• Clock(intervalCounter, resolution) – clock with

Integer quotient (rational number) interval
• Clock(interval) – clock with a Real value interval
• Clock(condition, startInterval)
• Clock – solver clock

class ClockTicks
// Integer quotient rational number interval clock
Clock c1 = Clock(3,10); // ticks: 0, 3/10, 6/10, ..
// Clock with real value interval between ticks
Clock c2 = Clock(0.2); // ticks: 0.0, 0.2, 0.4, ...

end ClockTicks;

183 Copyright © Open Source Modelica Consortium

Reinit - Discontinuous Changes

model BouncingBall "the bouncing ball model"
parameter Real g=9.81; //gravitational acc.
parameter Real c=0.90; //elasticity constant
Real height(start=10),velocity(start=0);

equation
der(height) = velocity;
der(velocity)=-g;
when height<0 then
reinit(velocity, -c*velocity);

end when;
end BouncingBall;

The value of a continuous-time state variable can be instantaneously
changed by a reinit-equation within a when-equation

Reinit ”assigns”
continuous-time variable
velocity a new value

Initial conditions

184 Copyright © Open Source Modelica Consortium

Exercise 2.6 – BouncingBall

• Locate the BouncingBall model in one of the hybrid
modeling sections of DrModelica (the When-
Equations link in Section 2.9), run it, change it
slightly, and re-run it.

185 Copyright © Open Source Modelica Consortium

Part IIIc

Clocked Synchronous Models
and State Machines

and Applications for
Digital Controllers

186 Copyright © Open Source Modelica Consortium

Control System Applications

Control System
A control system is a device, or set of devices, that manages,
commands, directs or regulates the behavior of other devices
or systems (wikipedia).

Sensors

Control
Computing

Actuators

Measurements Controller Outputs

187 Copyright © Open Source Modelica Consortium

Control Theory Perspective
Feedback Control System

r(t)
e(t)
y(t)
u(t)

reference (setpoint)
error
measured process variable (plant output)
control output variable (plant input)

Usual Objective
Plant output should follow the reference signal.

Controller Plant
(Physical System)

188 Copyright © Open Source Modelica Consortium

Embedded Real-Time Control System

Clock

Algorithm

Computer

1. Discrete-time controller + continuous-time plant ≡hybrid system or
sampled-data system

2. Interface between digital and analog world: Analog to Digital and Digital
to Analog Converters (ADC and DAC).

3. ADC→Algorithm→DAC is synchronous (zero-delay model!)

4. A clock controls the sampling instants. Usually periodic sampling.

A/D, Sample D/A, ZOH

Plant

189 Copyright © Open Source Modelica Consortium

Controller with Sampled Data-Systems
(unclocked models, using pre() and sample())

// time-discrete controller
when {initial(),sample(3,3)} then

E*xd = A*pre(xd)+ B*y;
ud = C*pre(xd) + D*y;

end when;

// plant (continuous-time process)
0 = f(der(x), x, ud);
y = g(x);

y ud

• y is automatically sampled at t = 3, 6, 9,…;
• xd, u are piecewise-constant variables that change values at sampling

events (implicit zero-order hold)
• initial() triggers event at initialization (t=0)

190 Copyright © Open Source Modelica Consortium

Controller with Clocked Synchronous Constructs
clocked models using Clock(), previous(), hold() in Modelica 3.3

191 Copyright © Open Source Modelica Consortium

Unclocked Variables in Modelica 3.2

192 Copyright © Open Source Modelica Consortium

Clock variables (Clock) and Clocked Variables (Real)
(in Modelica 3.3)

193 Copyright © Open Source Modelica Consortium

Clocked Synchronous Extension in Modelica 3.3

194 Copyright © Open Source Modelica Consortium

State Machines in Modelica 3.3: Simple Example

• Equations are active if corresponding clock ticks. Defaults to periodic
clock with 1.0 s sampling period

• “i” is a shared variable, “j” is a local variable. Transitions are “delayed”
and enter states by “reset”

195 Copyright © Open Source Modelica Consortium

Simple Example: Modelica Code
model Simple_NoAnnotations "Simple state machine"
inner Integer i(start=0);
block State1
outer output Integer i;
output Integer j(start=10);

equation
i = previous(i) + 2;
j = previous(j) - 1;

end State1;
State1 state1;
block State2
outer output Integer i;

equation
i = previous(i) - 1;

end State2;
State2 state2;

equation
transition(state1,state2,i > 10,immediate=false);
transition(state2,state1,i < 1,immediate=false);
initialState(state1);

end Simple_NoAnnotations;

196 Copyright © Open Source Modelica Consortium

Hierarchical and Parallel Composition of
Modelica State Machine Models

Semantics of Modelica state machines (and example above) inspired by
Florence Maraninchi & Yann Rémond’s “Mode-Automata” and by Marc
Pouzet’s Lucid Synchrone 3.0.

197 Copyright © Open Source Modelica Consortium

Hierarchical and Parallel Composition

Semantics of Modelica state machines (and example above)
inspired by Florence Maraninchi & Yann Rémond’s “Mode-
Automata” and by Marc Pouzet’s Lucid Synchrone 3.0.

198 Copyright © Open Source Modelica Consortium

Part IV

Components, Connectors and Connections –
Modelica Libraries and Graphical Modeling

199 Copyright © Open Source Modelica Consortium

Software Component Model

A component class should be defined independently of the
environment, very essential for reusability

A component may internally consist of other components, i.e.
hierarchical modeling
Complex systems usually consist of large numbers of
connected components

Component

Interface

ConnectionComponent

Connector
Acausal coupling

Causal coupling

200 Copyright © Open Source Modelica Consortium

Connectors and Connector Classes

Connectors are instances of connector classes

v +

i
pin

s

f
flange

connector Pin
Voltage v;
flow Current i;

end Pin;

Pin pin;

connector class

keyword flow
indicates that currents
of connected pins
sum to zero.

electrical connector

an instance pin
of class Pin

connector Flange
Position s;
flow Force f;

end Flange;

Flange flange;

connector class

mechanical connector

an instance flange
of class Flange

201 Copyright © Open Source Modelica Consortium

The flow prefix

Three possible kinds of variables in connectors:
• Potential variables potential or energy level
• Flow variables represent some kind of flow
• Stream variables represent fluid flow in convective transport

Coupling
• Equality coupling, for potential variables
• Sum-to-zero coupling, for flow variables

The value of a flow variable is positive when the current or the
flow is into the component

v

+ i
pin

positive flow direction:

202 Copyright © Open Source Modelica Consortium

Magnetic

Translational Position Force Linear momentum
Mechanical.
Translational

Physical Connector
Classes Based on Energy Flow

Domain
Type

Potential Flow Carrier Modelica
Library

Electrical Voltage Current Charge Electrical.
Analog

Rotational Angle Torque Angular
momentum

Mechanical.
Rotational

Magnetic Magnetic
potential

Magnetic
flux rate Magnetic flux

Hydraulic Pressure Volume flow Volume OpenHydraulics

Heat Temperature Heat flow Heat HeatFlow1D

Chemical Chemical
potential Particle flow Particles Chemical

Pneumatic Pressure Mass flow Air
PneuLibLight

203 Copyright © Open Source Modelica Consortium

connect-equations

pin1 pin2

+ +

i i

v v

connect(connector1,connector2)

Connections between connectors are realized as equations in Modelica

The two arguments of a connect-equation must be references to
connectors, either to be declared directly within the same class or be
members of one of the declared variables in that class

pin1.v = pin2.v;
pin1.i + pin2.i =0;

Pin pin1,pin2;
//A connect equation
//in Modelica:
connect(pin1,pin2); Corresponds to

204 Copyright © Open Source Modelica Consortium

Connection Equations

1 2 3 nv v v v

pin1.v = pin2.v;
pin1.i + pin2.i =0;

Pin pin1,pin2;
//A connect equation
//in Modelica
connect(pin1,pin2); Corresponds to

Each primitive connection set of potential variables is
used to generate equations of the form:

Each primitive connection set of flow variables is used to generate
sum-to-zero equations of the form:

1 2 () 0k ni i i i

connect(pin1,pin2); connect(pin1,pin3); ... connect(pin1,pinN);
Multiple connections are possible:

205 Copyright © Open Source Modelica Consortium

Common Component Structure

The base class TwoPin has
two connectors p and n for
positive and negative pins
respectively

p

p.i

p.v

n.i

n.v
n

i

i i + - TwoPin

electrical connector class

partial model TwoPin
Voltage v
Current i
Pin p;
Pin n;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;
// TwoPin is same as OnePort in
// Modelica.Electrical.Analog.Interfaces

positive pin
negative pin

partial class
(cannot be
instantiated) connector Pin

Voltage v;
flow Current i;

end Pin;

206 Copyright © Open Source Modelica Consortium

Electrical Components
model Resistor ”Ideal electrical resistor”
extends TwoPin;
parameter Real R;

equation
R*i = v;

end Resistor;

model Inductor ”Ideal electrical inductor”
extends TwoPin;
parameter Real L ”Inductance”;

equation
L*der(i) = v;

end Inductor;

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

model Capacitor ”Ideal electrical capacitor”
extends TwoPin;
parameter Real C ;

equation
i=C*der(v);

end Capacitor;

207 Copyright © Open Source Modelica Consortium

Electrical Components cont’

model Source
extends TwoPin;
parameter Real A,w;

equation
v = A*sin(w*time);

end Resistor;

p.i n.i

p.v n.v

v(t)

+

 p.i p.v

model Ground
Pin p;

equation
p.v = 0;

end Ground;

208 Copyright © Open Source Modelica Consortium

Resistor Circuit

R 2 R 1

R 3

n p p n

p n i3

i 2 i 1

v 1 v 2

v 3

R1.p.v = R2.p.v;
R1.p.v = R3.p.v;
R1.p.i + R2.p.i + R3.p.i = 0;

model ResistorCircuit
Resistor R1(R=100);
Resistor R2(R=200);
Resistor R3(R=300);

equation
connect(R1.p, R2.p);
connect(R1.p, R3.p);

end ResistorCircuit;

Corresponds to

209 Copyright © Open Source Modelica Consortium

• Modelica Standard Library (called Modelica) is a
standardized predefined package developed by
Modelica Association

• It can be used freely for both commercial and
noncommercial purposes under the conditions of
The Modelica License.

• Modelica libraries are available online including
documentation and source code from
http://www.modelica.org/library/library.html

Modelica Standard Library - Graphical Modeling

210 Copyright © Open Source Modelica Consortium

Modelica Standard Library cont’

• Blocks Library for basic input/output control blocks
• Constants Mathematical constants and constants of nature
• Electrical Library for electrical models
• Icons Icon definitions
• Fluid 1-dim Flow in networks of vessels, pipes, fluid machines, valves, etc.
• Math Mathematical functions
• Magnetic Magnetic – for magnetic applications
• Mechanics Library for mechanical systems
• Media Media models for liquids and gases
• SIunits Type definitions based on SI units according to ISO 31-1992
• Stategraph Hierarchical state machines (analogous to Statecharts)
• Thermal Components for thermal systems
• Utilities Utility functions especially for scripting

The Modelica Standard Library contains components from
various application areas, including the following sublibraries:

211 Copyright © Open Source Modelica Consortium

Modelica.Blocks

Continuous, discrete, and logical input/output blocks
to build block diagrams.

 Library
Continuous

Examples:

212 Copyright © Open Source Modelica Consortium

Modelica.Electrical

Electrical components for building analog, digital, and
multiphase circuits

Library

Analog

Library

MultiPhase

Library

Digital

V1

V2

I1

R1

R2

R3

R4

C1

C4

C5

C2

C3

Gnd1

Gnd9

Gnd3

Gnd2

Gnd6

Gnd7 Gnd8 Gnd5

Gnd4

Transistor1 Transistor2

Examples:

Library

Machines

213 Copyright © Open Source Modelica Consortium

Modelica.Mechanics

Package containing components for mechanical systems

Subpackages:
• Rotational 1-dimensional rotational mechanical components
• Translational 1-dimensional translational mechanical components
• MultiBody 3-dimensional mechanical components

214 Copyright © Open Source Modelica Consortium

Modelica.Stategraph

Hierarchical state machines (similar to Statecharts)

215 Copyright © Open Source Modelica Consortium

PNlib - An Advanced Petri Net Library
for Hybrid Process Modeling

216 Copyright © Open Source Modelica Consortium

Other Free Libraries
Up to date list at: https://www.modelica.org/libraries

• WasteWater Wastewater treatment plants, 2003
• ATPlus Building simulation and control (fuzzy control included), 2005
• MotorCycleDymanics Dynamics and control of motorcycles, 2009
• NeuralNetwork Neural network mathematical models, 2006
• VehicleDynamics Dynamics of vehicle chassis (obsolete), 2003
• SPICElib Some capabilities of electric circuit simulator PSPICE, 2003
• SystemDynamics System dynamics modeling a la J. Forrester, 2007
• BondLib Bond graph modeling of physical systems, 2007
• MultiBondLib Multi bond graph modeling of physical systems, 2007
• ModelicaDEVS DEVS discrete event modeling, 2006
• ExtendedPetriNets Petri net modeling, 2002
• External.Media Library External fluid property computation, 2008
• VirtualLabBuilder Implementation of virtual labs, 2007
• PowerSystems Power systems in transient and steady-state mode
• ...

217 Copyright © Open Source Modelica Consortium

• Powertrain
• SmartElectricDrives
• VehicleDynamics
• Hydraulics
• Pneumatics
• Engine Dynamics
• Environmental Control
• CombiPlant
• …
• (there are many more)

• Air Conditioning
• Electric Power
• Fuel Cell
• Heat Exchanger
• Hydro Power
• Liquid Cooling
• Thermal Power
• Vapor Cycle
• Battery
• Belts
• Engine
• …

Some Commercial Libraries
Up to date list at: https://www.modelica.org/libraries

218 Copyright © Open Source Modelica Consortium

Connecting Components from Multiple Domains

model Generator
Modelica.Mechanics.Rotational.Accelerate ac;
Modelica.Mechanics.Rotational.Inertia iner;
Modelica.Electrical.Analog.Basic.EMF emf(k=-1);
Modelica.Electrical.Analog.Basic.Inductor ind(L=0.1);
Modelica.Electrical.Analog.Basic.Resistor R1,R2;
Modelica.Electrical.Analog.Basic.Ground G;
Modelica.Electrical.Analog.Sensors.VoltageSensor vsens;
Modelica.Blocks.Sources.Exponentials ex(riseTime={2},riseTimeConst={1});

equation
connect(ac.flange_b, iner.flange_a); connect(iner.flange_b, emf.flange_b);
connect(emf.p, ind.p); connect(ind.n, R1.p); connect(emf.n, G.p);
connect(emf.n, R2.n); connect(R1.n, R2.p); connect(R2.p, vsens.n);
connect(R2.n, vsens.p); connect(ex.outPort, ac.inPort);

end Generator;

R1

R2

ind

emf

G

ex ac iner vsen

Electrical
domain

Mechanical
domain

Block
domain

1

2

• Block domain

• Mechanical domain

• Electrical domain

219 Copyright © Open Source Modelica Consortium

DCMotor Model Multi-Domain (Electro-Mechanical)

A DC motor can be thought of as an electrical circuit
which also contains an electromechanical component.

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
EMF emf(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, emf.n);
connect(emf.p, DC.n);
connect(DC.n,G.p);
connect(emf.flange,load.flange);

end DCMotor;

load

emf
DC

G

R L

220 Copyright © Open Source Modelica Consortium

Part V
Dynamic Optimization
Theory and Exercises

using
OpenModelica

221 Copyright © Open Source Modelica Consortium

Simulation

Built-in Dynamic Optimization - Motivation

Inputs
(known) Simulation Output

(result)

Optimization – Try to find the inputs that result in a desired output

Inputs
(result) Simulation Output

(desired)

222 Copyright © Open Source Modelica Consortium

Optimization of Dynamic Trajectories Using
Multiple-Shooting and Collocation

• Minimize a goal function subject to model
equation constraints, useful e.g. for NMPC

• Multiple Shooting/Collocation
• Solve sub-problem in each sub-interval

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

1 2 4 8 16

MULTIPLE_COLLOCATION

ipopt [scaled] jac_g [scaled]

Example speedup, 16 cores:

This approach uses a single
optimization run and is
different from classical parameter
sweep optimization typically using
a large number of simulations

223 Copyright © Open Source Modelica Consortium

Optimal Control Problem (OCP)

Cost
function min

௨ሺ௧ሻ
𝐽 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 ൌ 𝐸 𝑥 𝑡 , 𝑢 𝑡 , 𝑡

MayerെTerm
 න 𝐿 𝑥 𝑡 , 𝑢 𝑡 , 𝑡

LagrangeെTerm
𝑑𝑡

௧

௧బ
ሺ1ሻ

Subject to
Initial conditions 𝑥 𝑡 ൌ 𝑥 ሺ2ሻ
Nonlinear dynamic model 𝑥ሶ ൌ 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 ሺ3ሻ
Path constraints 𝑔ො 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 0 ሺ4ሻ
Terminal constraints 𝑟 𝑥 𝑡 ൌ 0 ሺ5ሻ

where
𝑥 𝑡 ൌ 𝑥ଵ 𝑡 , … , 𝑥ೣ ்is the state vector and
𝑢 𝑡 ൌ 𝑢ଵ 𝑡 , … , 𝑢ೠ 𝑡 ் is the control variable vector for
𝑡 ∈ ሾ𝑡, 𝑡ሿ respectively.

224 Copyright © Open Source Modelica Consortium

OCP Formulation in OpenModelica

The path constraints can be split into box
constraints

𝑥min 𝑥ሺ𝑡ሻ 𝑥max
𝑢min 𝑢ሺ𝑡ሻ 𝑢max

Variable attributes min and max are reused for describing
constraints, annotations are used for specifying the OCP

Annotation
Mayer-Term Real costM annotation(isMayer=true);

Lagrange-Term Real costL annotation(isLagrange=true);

Constraints Real x(max=0) annotation(isConstraint=true);

Final constraints Real y(min=0) annotation(isFinalConstraint=true);

225 Copyright © Open Source Modelica Consortium

Predator-Prey Example – The Forest Model

Dynamic model of a forest with foxes , rabbits , fox hunters
 and rabbit hunters (adapted from Vitalij Ruge, “Native Optimization

Features in OpenModelica”, part of the OpenModelica documentation)

𝑥ሶ ൌ 𝑔 · 𝑥 െ 𝑑 · 𝑥 · 𝑥 െ 𝑑 · 𝑢

𝑥ሶ ൌ 𝑔 · 𝑑 · 𝑥 · 𝑥 െ 𝑑 · 𝑥 െ 𝑑 · 𝑢

IC: 𝑥 𝑡 ൌ 700, 𝑥 𝑡 ൌ 10

where
𝑔 ൌ 4 · 10ିଶ, Natural growth rate

for rabbits
𝑑 ൌ 5 · 10ିଷ, Death rate of

rabbits due to hunters
𝑔 ൌ 1 · 10ିଵ, Efficiency in growing

foxes from rabbits
𝑑 ൌ 9 · 10ିଶ, Natural death rate

for foxes
𝑑 ൌ 5 · 10ିଷ, Death rate of rabbits

due to foxes
𝑑 ൌ 9 · 10ିଶ, Death rate of

foxes due to hunters

226 Copyright © Open Source Modelica Consortium

Predator-Prey Example – Modelica model

model Forest "Predator-prey model"
parameter Real g_r = 4e-2 "Natural growth rate for rabbits";
parameter Real g_fr = 1e-1 "Efficiency in growing foxes from rabbits";
parameter Real d_rf = 5e-3 "Death rate of rabbits due to foxes";
parameter Real d_rh = 5e-2 "Death rate of rabbits due to hunters";
parameter Real d_f = 9e-2 "Natural deathrate for foxes";
parameter Real d_fh = 9e-2 "Death rate of foxes due to hunters";
Real x_r(start=700,fixed=true) "Rabbits with start population of 700";
Real x_f(start=10,fixed=true) "Foxes with start population of 10";
input Real u_hr "Rabbit hunters";
input Real u_hf "Fox hunters";

equation
der(x_r) = g_r*x_r - d_rf*x_r*x_f - d_rh*u_hr;
der(x_f) = g_fr*d_rf*x_r*x_f - d_f*x_f - d_fh*u_hf;

end Forest;

Control
variables

227 Copyright © Open Source Modelica Consortium

Predator-Prey Example – Optimal Control Problem

Objective: Regulate the population in the forest to a desired
level (5 foxes, 500 rabbits) at the end of the simulation ()
𝐽ୟ୷ୣ୰ ൌ 0.1 · 𝑥 𝑡 െ 5 ଶ 0.01 · 𝑥 𝑡 െ 500 ଶ (desired population at 𝑡 ൌ 𝑡)

Constraints: 𝑢 0, 𝑢 0, x୰ 0, x 0

Modelica model:

model ForestOCP;
extends Forest(
u_hr(min=0, nominal=1e-4),u_hf(min=0, nominal=1e-4),
x_r(min=0),x_f(min=0));

Real J_Mayer =
0.1*(x_r- 5)^2 + 0.01*(x_r - 500)^2 annotation(isMayer=true);

end ForestOCP;

constraint
Cost function
Mayer-term

Important for scaling,
needs to be > 0 to make
optimizer converge!Extension of the

system model

228 Copyright © Open Source Modelica Consortium

Predator-Prey Example – Using OMNotebook

Start the optimization from OMNotebook using a time interval
 seconds

Option Example value Description
numberOfIntervals 50 collocation intervals
startTime, stopTime 0, 400 time horizon in seconds
tolerance 1e-8 solver/optimizer tolerance
simflags … see documentation for details

setCommandLineOptions("+gDynOpt");
optimize(ForestOCP, stopTime=400, tolerance=1e-8, numberOfIntervals=50,
simflags="-s optimization");

229 Copyright © Open Source Modelica Consortium

Predator-Prey Example – Using OMEdit

Simulation→Simulation SetupTools→Options→Simulation

+gDynOpt

optimization

230 Copyright © Open Source Modelica Consortium

Predator-Prey Example – Plots

Simulation of the forest model with
control variables 𝑢 ൌ 𝑢 ൌ 0

Simulation of the forest model
using the control variables
computed by the optimization.
Notice (not well visible in the
plot) that

𝑥 𝑡 ൌ 500, 𝑥 𝑡 ൌ 5

231 Copyright © Open Source Modelica Consortium

Exercise – Optimal Control

Load the OPCExample.onb ebook into OMNotebook and
modify the optimization problem in the following ways:
1. Constrain the maximal number of rabbit hunters and

fox hunters to five, respectively.
2. Change the Mayer-term of the cost function to a

Lagrange-term.
3. Penalize the number of employed hunters by a

suitable modification of the cost function and observe
how the solution changes for different modifications.

232 Copyright © Open Source Modelica Consortium

Part Vb
More

Graphical Modeling Exercises

using
OpenModelica

233 Copyright © Open Source Modelica Consortium

Graphical Modeling - Using Drag and Drop Composition

234 Copyright © Open Source Modelica Consortium

Graphical Modeling Animation – DCMotor

235 Copyright © Open Source Modelica Consortium

• A DC motor can be thought of as an electrical circuit which
also contains an electromechanical component
model DCMotor

Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
ElectroMechanicalElement EM(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, EM.n);
connect(EM.p, DC.n);
connect(DC.n,G.p);
connect(EM.flange,load.flange);

end DCMotor

load

EM
DC

G

R L

Multi-Domain (Electro-Mechanical) Modelica Model

236 Copyright © Open Source Modelica Consortium

Automatic transformation to ODE or DAE for simulation:

(load component not included)

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

237 Copyright © Open Source Modelica Consortium

Exercise 3.1

• Draw the DCMotor model using the graphic connection
editor using models from the following Modelica
libraries:
Mechanics.Rotational.Components,
Electrical.Analog.Basic,
Electrical.Analog.Sources

J

emf
u

G

R L • Simulate it for 15s and plot the
variables for the outgoing
rotational speed on the inertia
axis and the voltage on the
voltage source (denoted u in the
figure) in the same plot.

238 Copyright © Open Source Modelica Consortium

Exercise 3.2

• If there is enough time: Add a torsional spring to the
outgoing shaft and another inertia element. Simulate
again and see the results. Adjust some parameters to
make a rather stiff spring.

239 Copyright © Open Source Modelica Consortium

Exercise 3.3

• If there is enough time: Add a PI controller to the system
and try to control the rotational speed of the outgoing shaft.
Verify the result using a step signal for input. Tune the PI
controller by changing its parameters in OMEdit.

240 Copyright © Open Source Modelica Consortium

Exercise 3.4 – DrControl

• If there is enough time: Open the DrControl electronic book
about control theory with Modelica and do some exercises.
• Open File: C:OpenModelica1.9.3\share\omnotebook\drcontrol\DrControl.onb

241 Copyright © Open Source Modelica Consortium

Learn more…

• OpenModelica
• www.openmodelica.org

• Modelica Association
• www.modelica.org

• Books
• Principles of Object Oriented Modeling and Simulation with

Modelica 3.3: A Cyber-Physical Approach, Peter Fritzson
2015.

• Modeling and Simulation of Technical and Physical
Systems with Modelica. Peter Fritzson., 2011
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-
111801068X.html

• Introduction to Modelica, Michael Tiller

242 Copyright © Open Source Modelica Consortium

Summary

Hybrid
Modeling

Visual Acausal
Component

Modeling

Multi-Domain
Modeling

Typed
Declarative
Textual Language Thanks for listening!

