
Tutorial
FMI for Composite Modelling, Co-Simulation and Model Exchange

Lennart Ochel, Robert Braun
13th M0DPR0D Workshop, February 5-6, 2019

II
U

LINKOPING
e UNIVERSITY

Outline

•
•
•
•
•

Installing OpenModelica

•
–
–
–

•
–

–

•
–

–

https://openmodelica.org/download/download-windows
https://openmodelica.org/download/download-linux
https://openmodelica.org/download/download-mac
https://www.openmodelica.org/doc/OpenModelicaUsersGuide/latest/
https://www.openmodelica.org/doc/OMSimulator/html/
https://trac.openmodelica.org/OpenModelica/newticket
https://github.com/OpenModelica/OMSimulator/issues/new/choose

5 Copyright © Open Source Modelica Consortium

• Need to SOLVE large integrated modeling and simulation
engineering problems

• Hundreds of simulation tools, different model formats
• Exchange dynamic models between different tools and define

tool coupling for dynamic system simulation environments.
• Two main approaches:

• 1. Export models from some tools,
import into other tools for simulation

• 2. Co-simulation of models in different tools
• Implementation Package Format: Functional Mockup Unit

(FMU)
• Solution: Functional Mockup Interface (FMI) standard

www.fmi-standard.org

FMI – Motivation 1

6 Copyright © Open Source Modelica Consortium

• Problems / Needs
• Component development by supplier
• Integration by product integrators (OEMs)
• Many different simulation tools and formats

FMI – Motivation 2

?

supplier1 supplier2 supplier3 supplier4 supplier5

OEM

supplier1

tool 1

supplier2 supplier3 supplier4 supplier5

tool 2 tool 3 tool 4 tool 5

FMI OEM

!supplier1

supplier2

supplier3

OEM

• Solution
– Reuse of supplier models by Product

integrator companies (OEMs):
• Binary (DLL) (model import) and/or
• Tool coupling (co-simulation)

– Protection of model IP (Intellectual
Property) of supplier since binary
models

• Added Value
– Early validation of design
– Increased process efficiency and

quality

7 Copyright © Open Source Modelica Consortium

• FMI development was started by ITEA2 MODELISAR project. FMI is a
Modelica Association Project now.

• Version 1.0
• FMI for Model Exchange (released Jan 26,2010)
• FMI for Co-Simulation (released Oct 12,2010)

• Version 2.0
• FMI for Model Exchange and Co-Simulation (released July 25,2014)

• > 120 tools supporting it (https://www.fmi-standard.org/tools)

Functional Mock-up Interface (FMI) – Overview

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling

https://www.fmi-standard.org/tools

8 Copyright © Open Source Modelica Consortium

Exported Model in
(Functional Mockup Unit) FMU Form

A model is distributed in one zip-file that contains
several files:
XML file of static model information
C code or shared library with model equations

converted into causal form
Further data, documentation, maps, icon

9 Copyright © Open Source Modelica Consortium

Functional Mockup Units

• Import and export of input/output blocks –
Functional Mock-Up Units – FMUs

• described by
• differential-, algebraic-, discrete equations,
• with time-, state, and step-events

• An FMU can be large (e.g. 100 000 variables)
• An FMU can be used in an embedded system (small

overhead)
• FMUs can be connected together

10 Copyright © Open Source Modelica Consortium

Model Distribution as a zip-file (.fmu file)

A model is distributed as one zip-file with extension ".fmu“, containing:

• XML model description file
All model information that is not needed during integration of model,
e.g., signal names and attributes. Advantage:
• No overhead for model execution.
• Tools can read this information (= complicated data structure)

with their prefered language (C++, C#, Java, ...)

• Model equations defined by a small set of C-functions. In zip-file:
• C source code and/or
• Binary code (DLL) for one or more platforms (Windows, Linux, ...)

• Resources
• Documentation (html files)
• Model icon (bitmap file)
• Maps and tables (read by model during initialization)

11 Copyright © Open Source Modelica Consortium

FMI for Model-Exchange

12 Copyright © Open Source Modelica Consortium

FMI for Model Exchange Export

Functional Mock-up Interface for Model Exchange and Co-Simulation, Section 3

13 Copyright © Open Source Modelica Consortium

FMI for Model Exchange Export

• Export: Subsystem model is exported from its simulation tool
• Preparation as FMU-archive containing

– model description (xml-file)
– executable dll-file containing model equations
– optionally C source code

Sub-system 1

User Interface

Simulation Tool 1

Solver Tool 1

Sub-system 1

.fmu

14 Copyright © Open Source Modelica Consortium

FMI for Model Exchange Import

• Import: Subsystem model is imported into simulation system for system
simulation

• Reading FMU-archive
– model information from xml-file
– connecting subsystem variables
– executable model equations (dll)
– running system simulation

User Interface

Sub-system 2

Simulation Tool 2

Solver Tool 2

Sub-system
1

.fmu

15 Copyright © Open Source Modelica Consortium

Handling of Algebraic Loops

• <ModelStructure> defined in the fmu.
• Dependency information is needed e.g which outputs

depends directly on inputs

16 Copyright © Open Source Modelica Consortium

Handling of Algebraic Loops

• Iterative method
• In each iteration 𝑢4 is provided by the solver and the residue

is computed and is provided back to the solver. Based on the
residue a new value of 𝑢4 is provided. The iteration is
terminated when the residue is close to zero.

17 Copyright © Open Source Modelica Consortium

FMI for Co-Simulation

18 Copyright © Open Source Modelica Consortium

FMI for Co-Simulation

Functional Mock-up Interface for Model Exchange and Co-Simulation, Section 4

19 Copyright © Open Source Modelica Consortium

FMI for Co-Simulation

• Its been designed both for coupling with subsystem
models, which have been exported by their simulators
together with its solvers as runnable code

• And for coupling of simulation tools

20 Copyright © Open Source Modelica Consortium

FMI for Co-Simulation

• Distributed Co-Simulation Scenario
• Data exchange is handled by some network communication technology.
• Communication layer not part of the FMI standard.
• Master is responsible for the communication layer implementation.

21 Copyright © Open Source Modelica Consortium

• Export: Subsystem description is exported from its simulation tool
• Preparation as FMU-archive containing

• model description (xml-file), describes also solver/tool capabilities
• reference to executable dll-file as, wrapper which provides a tool

specific implementation of the co-simulation slave interface

FMI for Co-Simulation Export FMU with Solver

Sub-system 1

User Interface

Simulation Tool 1: Slave

Solver Tool 1
.fmu

Wrapper Tool 1

Solver

22 Copyright © Open Source Modelica Consortium

FMI for Co-Simulation Import Stand-alone

• Import: Subsystem description is imported into simulation system
for system simulation
• Reading FMU-archive

• model information from xml-file
• connecting subsystem variables

User Interface

Sub-system 2

Simulation Tool 2: Master

Solver Tool 2

.fmu

Wrapper Tool 1

Solver

23 Copyright © Open Source Modelica Consortium

• Run simulation on same host
• Master subsystem is connected with wrapper dll via co-simulation interface
• Subsystem 2 is called via wrapper of tool 2 as if it would have been directly

imported into master simulation tool

FMI for Co-Simulation Tool coupling

Host 1

User Interface

Sub-system 1

Simulation Tool 1: Master

Solver Tool 1

Sub-system
2

User Interface

Simulation Tool 2

Solver Tool 2

Wrapper Tool 2

24 Copyright © Open Source Modelica Consortium

FMI for Co-Simulation distributed tool coupling

• Run simulation on different hosts
• Master subsystem is con-

nected via a generic adapter
with a communication tool

• Adapter provides co-simulation slave interface
• Communication tool uses

wrapper dlls of slave tools

Host 2Host 1

User Interface

Sub-system
1

Simulation Tool 1: Master

Solver Tool 1 Communication Layer Tool

Generic Master Adapter

Sub-
system 2

User Interface

Simulation Tool 2

Solver Tool 2

Wrapper Tool 2

FMU Export

OpenModelica/OMEdit

II
U

LINKOPING
e UNIVERSITY

FMU Export

•

FMU Export

•
•
•

•

–

•

•
–
–

ME-
FMU

Table

SC-System

•
–
–

CS-FMU TableME-
FMU

Table

SC-System

WC-System

•
Δ𝑡

CS-FMU Table
External Model

ME-
FMU

Table

SC-System

WC-System

TLM-System

•
–

•
•

–
–

•
–
–

•
•
•

•
–

•
–

•
–

•

𝑚𝑐

𝑚𝑤

𝑧 𝑡

𝜂𝑤 𝑡

𝜂𝑐 𝑡

𝑡

Dual Mass Oscillator

𝑚1 𝑚2

•

•
•

•
•

• DualMassOscillator.mo

• DualMassOscillator.ReferenceSystem

• s1_start s2_start

• DualMassOscillator.ReferenceSystem

–

•
Blocks.Interfaces

Electrical.Analog.Sensors

•

FMU1 FMU2

•
•
•
•

Inverted Pendulum

•

•
•

•

• InvertedPendulum.mo

•

• Exercise

nvertedPendulum.fmu Controller.fmu

• Start->cmd.exe

> set PATH=c:\python64\;c:\%OPENMODELICAHOME%\bin;%PATH%

> OMSimulatorPython DemoInvertedPendulum.py

• OptimizeInvertedPendulum.py

•

•
OptimizeInvertedPendulum.py

> set PATH=c:\python64\;c:\OMSimulator\bin;%PATH%
> OMSimulatorPython OptimizeInvertedPendulum.py

•

•

www.liu.se

2/5/2019

1

Transmission Line Method (TLM) for
Numerically Stable Co-simulation

Robert Braun

Linköping University

Introduction

• TLM

– Wave propagation in physical systems

– Physically motivated time delays

• Examples of use:

– Atlas Copco: Simulation of wave propagation in rock drills

– SKF: Co-simulation of bearing models

– Hopsan: Wave propagation in fluid power systems

– Hopsan/Modelica: Parallel simulation

2/5/2019

2

Background

Simulation models consist of equation systems, solved at
every time step. Example:

൞

ሷ𝑥1 𝑡 𝑀1 + ሶ𝑥1 𝑡 𝐵1 = 𝐹1 𝑡 − 𝐹𝑠 𝑡

𝐹𝑠 𝑡 = 𝑘𝑠 𝑥2 𝑡 − 𝑥1 𝑡

ሷ𝑥2 𝑡 𝑀2 + ሶ𝑥2 𝑡 𝐵2 = 𝐹𝑠 𝑡 − 𝐹2 𝑡

Important to solve all variables at same time 𝑡 !

𝑘𝑠

𝐹1(𝑡) 𝐹2(𝑡)𝐹𝑠(𝑡)𝐹𝑠(𝑡) 𝑀2, 𝐵2𝑀1, 𝐵1

Background

• Often desired to split up equation system

– Parallell simulation on multi-core processors

– Co-simulation between different simulation tools

– Linear relationship between simulation time and
model size

2/5/2019

3

Background

Decoupling will delay certain variables:

Subsystem 1: ൝
ሷ𝑥1 𝑡 𝑀1 + ሶ𝑥1 𝑡 𝐵1 = 𝐹1 𝑡 − 𝐹 𝑡

𝐹 𝑡 = 𝑘 𝑥2 𝑡 − 𝑇 − 𝑥1 𝑡

Subsystem 2: ሼ ሷ𝑥2 𝑡 𝑀2 + ሶ𝑥2 𝑡 𝐵2 = 𝐹 𝑡 − 𝑇 − 𝐹1 𝑡

Hence, values from previous iteration must be used.

⇒ Reduced accuracy

⇒ Risk for instability

Background

~50 years ago, two research groups came up with
the same idea:

”In reality, information propagation speed is
always limited by speed of sound (or light)”

- (Auslander, 1968) (Johns & O’Brian, 1971)

• Examples:
– Hydraulic pipes
– Mechanical springs,
– Electrical transmission lines

2/5/2019

4

Transmission Line Modelling - TLM
”Physically Motivated Decoupling”

Type
equation
here.

Type
equation
here.

Type
equation
here.

Type
equation
here.

Δ𝑇

Δ𝑇

Δ𝑇Δ𝑇

Bad delay! Good delay!

No TLM: TLM:

Real
system:

Model:

Decoupled
model:

Every physical element has a natural time delay:

Physically motivated decoupling

→ numerical stability

Asynchronous communication

→ independent time steps

Δ𝑡

Transmission Line Modelling (TLM)

8Robert Braun 2019-02-05

2/5/2019

5

Transmission Line Modelling (TLM)

9Robert Braun 2019-02-05

𝑛 → ∞

Model 1 Model 2

𝑘

Model 1 Model 2𝑚 𝑛 =1
𝑘/2𝑘/2

Model 1 Model 2𝑚/2 𝑚/2 𝑛 =2
𝑘/3 𝑘/3 𝑘/3

Model 1 Model 2𝑚/3 𝑚/3 𝑚/3 𝑛=3
𝑘/4 𝑘/4 𝑘/4 𝑘/4

Transmission Line Modelling (TLM)

TLM equations:
𝐹1 𝑡 = 𝐹 𝑡 − Δ𝑡 + 𝑍𝑐𝑣1 𝑡 + 𝑍𝑐𝑣2(𝑡 − Δ𝑡)
𝐹2 𝑡 = 𝐹 𝑡 − Δ𝑡 + 𝑍𝑐𝑣2 𝑡 + 𝑍𝑐𝑣2(𝑡 − Δ𝑡)

Capacitance (stiffness): Inductance (inertia):

𝐶 = 𝑍𝑐/Δ𝑡 𝐿 = 𝑍𝑐Δ𝑡

2019-02-05 10Robert Braun

𝐹1 𝑡 , 𝑣1 𝑡 𝐹2 𝑡 , 𝑣2 𝑡𝐸, 𝑎

𝐿

𝐴

2/5/2019

6

Two-mass example again

Spring equation is replaced by the TLM equations:

ሷ𝑥1 𝑡 𝑀1 + ሶ𝑥1 𝑡 𝐵1 = 𝐹1 𝑡 − 𝐹𝑠2 𝑡

𝐹𝑠1 𝑡 = 𝑍𝐶 ሶ𝑥1 𝑡 + 𝐹𝑠2 𝑡 − 𝑇 + 𝑍𝐶 ሶ𝑥2 𝑡 − 𝑇

𝐹𝑠2 𝑡 = 𝑍𝐶 ሶ𝑥2 𝑡 + 𝐹𝑠1 𝑡 − 𝑇 + 𝑍𝐶 ሶ𝑥1 𝑡 − 𝑇

ሷ𝑥2 𝑡 𝑀2 + ሶ𝑥2 𝑡 𝐵2 = 𝐹𝑠2 𝑡 − 𝐹1 𝑡

Two-mass example again

Splitting up the system now yields:

System 1: ቊ
ሷ𝑥1 𝑡 𝑀1 + ሶ𝑥1 𝑡 𝐵1 = 𝐹1 𝑡 − 𝐹 𝑡

𝐹𝑠1 𝑡 = 𝑍𝐶 ሶ𝑥1 𝑡 + 𝐹𝑠2 t − T + 𝑍𝐶 ሶ𝑥2 𝑡 − 𝑇

System 2: ቊ
𝐹𝑠2 𝑡 = 𝑍𝐶 ሶ𝑥2 𝑡 + 𝐹𝑠1 𝑡 − 𝑇 + 𝑍𝐶 ሶ𝑥1 𝑡 − 𝑇

ሷ𝑥2 𝑡 𝑀2 + ሶ𝑥2 𝑡 𝐵2 = 𝐹𝑠2 𝑡 − 𝐹2 𝑡

No numerical time delays!

2/5/2019

7

Co-simulation framework

13

OMSimulator

Tool 1

FMU ME

Wrapper

TLMPlugin

TLMPlugin

TCP/IP

FMU CS

OMSimulator Overview

OpenModelica

SystemModeller

Dymola

Hopsan

Adams

Ansys Fluent

OMSimulator

Simulink
tcp/ip

tcp/ip

tcp/ip

tcp/ip

tcp/ip

tcp/ip

tcp/ip

FMU for
co-simulation

FMU for
model exchange

FMU (CS/ME)
tcp/ip

2019-02-05 14Robert Braun

2/5/2019

8

Execution models

• Top-down:

• Bottom-up:

Master Slave

Input

Output

”Slave, here is your input!”

”Slave, give me your output!”

”Slave, take a step!”

Master Slave

Input

Output

”Master, give me my input!”

”Master, here is my output!”

”I do something!”

Data exchange

• Synchronous communication

• Asynchronous communication

...

...

Communication points

 Variable step-size

can be used!

 Simple to implement

 Requires no interpolation

2/5/2019

9

Data exchange

• setMotion() – only at communication points

• getForce() – any time during step

 Implicit and multi-step solvers can be used!

Tool 1 Tool 2

Interpolation tableInterpolation table

setMotion(v,t)

getForce(f,t) getForce(f,t)

Data exchange

• Requirement: Δ𝑡𝑚𝑜𝑑𝑒𝑙 ≤ 0.5Δ𝑡𝑇𝐿𝑀

18

Δ𝑡𝑇𝐿𝑀 Δ𝑡𝑇𝐿𝑀Data not available!

Communication interval

Model 1

Model 2

2/5/2019

10

Data exchange

• Requirement: Δ𝑡𝑚𝑜𝑑𝑒𝑙 ≤ 0.5Δ𝑡𝑇𝐿𝑀

19

Δ𝑡 ≤ 0.5 𝑚𝑠 Δ𝑡 ≤ 0.5 𝑚𝑠 Δ𝑡 ≤ 5 𝑚𝑠
Δ𝑡𝑇𝐿𝑀 = 1 𝑚𝑠 Δ𝑡𝑇𝐿𝑀 = 10 𝑚𝑠

Functional Mockup Interface (FMI)

• Standardized interface for tool coupling

my_model.dll

my_model.fmu

modelDescription.xml

Slave Host

getReal()
setReal()
doStep()
…

2/5/2019

11

www.liu.se

Robert Braun

Exercises:

• Hydraulic system and ”motor”

– Two FMU for co-simulation (win64)

– Lua-script

	modprod19_tutorial2_Ochelt-Braun_FMI_CompositeModeling
	modprod19_tutorial2_Braun_TLM

