Tutorial

FMI for Composite Modelling, Co-Simulation and Model Exchange

Lennart Ochel, Robert Braun
13t MODPROD Workshop, February 5-6, 2019

LINKOPING
T e

Outline

« Installing OpenModelica (v1.13.2 or later])
* Introduction to FMI

« FMU Export

« Composite Modelling and Simulation

« EXxercises

II LINKOPING
L UNIVERSITY

Installing OpenModelica

« V1.13.2 or later (e.g. nightly build)

— Windows: https://openmodelica.org/download/download-windows

— LinuX: https://openmodelica.org/download/download-linux

— Mac0S: https://openmodelica.org/download/download-mac

« Documentation

— https://www.openmodelica.org/doc/OpenModelicaUsersGuide/latest/

— https://www.openmodelica.org/doc/OMSimulator/html/

 Tickets (feature request & bug report)

— https://trac.openmodelica.org/OpenModelica/newticket

— https://github.com/OpenModelica/OMSimulator/issues/new/choose

LINKOPING
II." UNIVERSITY

https://openmodelica.org/download/download-windows
https://openmodelica.org/download/download-linux
https://openmodelica.org/download/download-mac
https://www.openmodelica.org/doc/OpenModelicaUsersGuide/latest/
https://www.openmodelica.org/doc/OMSimulator/html/
https://trac.openmodelica.org/OpenModelica/newticket
https://github.com/OpenModelica/OMSimulator/issues/new/choose

Introduction to FMI

LINKOPING
II.“ UNIVERSITY

FMI — Motivation 1

* Need to SOLVE large integrated modeling and simulation
engineering problems

* Hundreds of simulation tools, different model formats

« Exchange dynamic models between different tools and define
tool coupling for dynamic system simulation environments.

« Two main approaches:

« 1. Export models from some tools,
import into other tools for simulation

« 2. Co-simulation of models in different tools
* Implementation Package Format: Functional Mockup Unit
(FMU)

« Solution: Functional Mockup Interface (FMI) standard
www.fmi-standard.org

VL4

Copyright © Open Source Modelica Consortium Moo ELrCA

FMI — Motivation 2

supplier1 suppller2 suppller3 supplierd suppller5
)
‘O

A

/

 Problems / Needs

« Component development by supplier @ \ A
* Integration by product integrators (OEMs) -

« Many different simulation tools and formats

*\l/
iy

i%;‘
« Solution
— Reuse of supplier models by Product supplier1 supplier2 supplier3 supplier4 supplier5
integrator companies (OEMSs):
« Binary (DLL) (model import) and/or - .
* Tool coupling (co-simulation) [tool 1] | tool 2 tool 5|
— Protection of model IP (Intellectual ?
Property) of supplier since binary | EMI | OEM
models
lier1t @ !
* Added Value S ﬁ%\ . g\ OEM
- :Early vaIi:ation of def?ign | \75 Qi&
— Increased process efficiency an { =
quality P y supplier2 @}; /@

supplier3

6 Copyright © Open Source Modelica Consortium MO [I‘E: LI'CA

Functional Mock-up Interface (FMI) — Overview

etc.
Engine Gearbox Thermal Automated Chassis components,
with ECU with ECU systems cargo door roadway, ECU (e.g. ESP)

functional mockup interface for model exchange and tool coupling
 FMI development was started by ITEA2 MODELISAR project. FMI is a
Modelica Association Project now.

 Version 1.0
* FMI for Model Exchange (released Jan 26,2010)
* FMI for Co-Simulation (released Oct 12,2010)

 Version 2.0
FMI for Model Exchange and Co-Simulation (released July 25,2014)

« >120 tools supporting it (https://www.fmi-standard.org/tools)

VL4

Copyright © Open Source Modelica Consortium Moo ELr

https://www.fmi-standard.org/tools

Exported Model in
(Functional Mockup Unit) FMU Form

A model is distributed in one zip-file that contains
several files:

» XML file of static model information

»C code or shared library with model equations
converted into causal form

» Further data, documentation, maps, icon

8

Copyright © Open Source Modelica Consortium MoDELiCA

Functional Mockup Units

* Import and export of input/output blocks —
Functional Mock-Up Units — FMUs

« described by
 differential-, algebraic-, discrete equations,
» with time-, state, and step-events

« An FMU can be large (e.g. 100 000 variables)
 An FMU can be used in an embedded system (small

A
overhead) u
N : Y1
. FMUS can be Connected together . —> lllllllllllllllll
., - —ly; 12
> — V2
B
A <u1_
| v, . TP

VL4

Copyright © Open Source Modelica Consortium Moo ELrCA

Model Distribution as a zip-file (.fmu file)

A model is distributed as one zip-file with extension ".fmu“, containing:

« XML model description file

All model information that is not needed during integration of model,
e.g., signal names and attributes. Advantage:

« No overhead for model execution.

* Tools can read this information (= complicated data structure)
with their prefered language (C++, C#, Java, ...)

 Model equations defined by a small set of C-functions. In zip-file:
« C source code and/or
* Binary code (DLL) for one or more platforms (Windows, Linux, ...)

 Resources
* Documentation (html files)
* Model icon (bitmap file)
« Maps and tables (read by model during initialization)

10 Copyright © Open Source Modelica Consortium MoDELiCA

FMI for Model-Exchange

11 Copyright © Open Source Modelica Consortium MO [I‘E: LICA

FMI for Model Exchange Export

Functional Mock-up Interface for Model Exchange and Co-Simulation, Section 3

12 Copyright © Open Source Modelica Consortium MO [I‘E: LICA

FMI for Model Exchange Export

« Export: Subsystem model is exported from its simulation tool
* Preparation as FMU-archive containing
— model description (xml-file)
— executable dll-file containing model equations
— optionally C source code

Simulation Tool 1

User Interface

S amEmmEm amEmEmEEEEE "
Solver Tool 1

13 Copyright © Open Source Modelica Consortium MO [I‘E: LI'CA

FMI for Model Exchange Import

* Import: Subsystem model is imported into simulation system for system
simulation

« Reading FMU-archive
— model information from xml-file
— connecting subsystem variables
— executable model equations (dll)
— running system simulation

Simulation Tool 2

Sub-system
. L
User Interface : :
afmu
7

14 Copyright © Open Source Modelica Consortium MoDELiCA

Handling of Algebraic Loops

« <ModelStructure> defined in the fmu.

« Dependency information is needed e.g which outputs
depends directly on inputs

15 Copyright © Open Source Modelica Consortium MoDELiCA

Handling of Algebraic Loops

* [terative method

* |n each iteration u4 is provided by the solver and the residue
is computed and is provided back to the solver. Based on the
residue a new value of u4 is provided. The iteration is
terminated when the residue is close to zero.

VL4

16 Copyright © Open Source Modelica Consortium MoDELiCA

FMI for Co-Simulation

17 Copyright © Open Source Modelica Consortium MO [I‘E: LI'CA

FMI for Co-Simulation

to, P, Vo | Tv

Co-Simulation Master ‘

time

discrete states (constant between events)
parameters of type Real, Integer, Boolean, String
inputs of type Real, Integer, Boolean, String

all exposed variables

continuous states (continuous between events) y
outputs of type Real, Integer, Boolean, String >
event indicators

N<xX<co3g~

Model

to

Solver

Co-Simulation Slave (FMU Instance)

Functional Mock-up Interface for Model Exchange and Co-Simulation, Section 4

18 Copyright © Open Source Modelica Consortium MoDELiCA

FMI for Co-Simulation

 |Its been designed both for coupling with subsystem
models, which have been exported by their simulators
together with its solvers as runnable code

« And for coupling of simulation tools

19 Copyright © Open Source Modelica Consortium MoDELiCA

FMI for Co-Simulation

 Distributed Co-Simulation Scenario
« Data exchange is handled by some network communication technology.

« Communication layer not part of the FMI standard.
» Master is responsible for the communication layer implementation.

20 Copyright © Open Source Modelica Consortium MoDELiCA

FMI for Co-Simulation Export FMU with Solver

« Export: Subsystem description is exported from its simulation tool
* Preparation as FMU-archive containing
« model description (xml-file), describes also solver/tool capabilities

 reference to executable dll-file as, wrapper which provides a tool
specific implementation of the co-simulation slave interface

Simulation Tool 1: Slave

User Interface

Sub-system 1

Wrapper Tool 1

Solver

Solver Tool 1

21 Copyright © Open Source Modelica Consortium MO [I‘E: LI'CA

FMI for Co-Simulation Import Stand-alone

* Import: Subsystem description is imported into simulation system
for system simulation

* Reading FMU-archive
* model information from xml-file
« connecting subsystem variables

Simulation Tool 2: Master

USGI' Interface : ----------------------- E

Sub-system 2

Solver Tool 2

22 Copyright © Open Source Modelica Consortium MO [I‘E: LI'CA

FMI for Co-Simulation Tool coupling

* Run simulation on same host
« Master subsystem is connected with wrapper dll via co-simulation interface

« Subsystem 2 is called via wrapper of tool 2 as if it would have been directly
imported into master simulation tool

Host 1

Simulation Tool 1: Master Simulation Tool 2

User Interface User Interface

Solver Tool 1

Sub-system
2

Wrapper Tool 2

Solver Tool 2

23 Copyright © Open Source Modelica Consortium MO [I‘E: LI'CA

FMI for Co-Simulation distributed tool coupling

* Run simulation on different hosts

» Master subsystem is con-
nected via a generic adapter
with a communication tool

» Adapter provides co-simulation slave interface

« Communication tool uses
wrapper dlls of slave tools

Host 1

Simulation Tool 1: Master

User Interface

Host 2

Simulation Tool 2

Sub-system
1

Generic Master Adapter

Solver Tool 1

Wrapper Tool 2

User Inter

syst

Sub-

Solver Tool 2

face

em 2

24 Copyright © Open Source Modelica Consortium

MOD

VAL

L]
ELICA

FMU Export

OpenModelica/OMEdit

LINKOPING
II.“ UNIVERSITY

FMU Export

« Check FMI setting in OMEdit (Tools->0ptions)

II LINKOPING
L UNIVERSITY

FMU Export

« Check the FMI settings
« Open/Create a Modelica model
« Select “Export FMU”

II LINKOPING
L UNIVERSITY

Composite Modelling and
Simulation

OMSimulator

LINKOPING
II.“ UNIVERSITY

Composite Model Structure (I}

 Strongly Connected
System

— direct communication
schema

 Detecting and handling
algebraic loops

* Integration methods
— EXxplicit euler
— Cvode

LINKOPING
II." UNIVERSITY

Composite Model Structure (I}

ME- Table
.

« Weakly connected system
— Communication at communication time points
— Extrapolation of inputs

LINKOPING
T e

Transmission-line Modelling

« Technique which considers physical property of
signals At

Py ~
~ 7

II LINKOPING
L UNIVERSITY

Composite Model Structure (ll1)

External Model .
\V/I= aple
EMU Table

« Transmission Line Modelling
— Physical signal connections

LINKOPING
T e

System Structure and Parameterization

« Status:1.0-RC1 (January 21, 2019)
« Tool independent standard for
— FMU-based model composition
— FMU parameterization

« Missing...
— Simulation information (solvers etc.)
— Buses, Tables

II LINKOPING
L UNIVERSITY

User Interface

OMSimulator
OMSimulatorLib

« Command-line interface
« Scripting interface
« Graphicalinterface

LINKOPING
II." UNIVERSITY

summary

« OMSimulator v2.0 is now available
— OpenModelica v1.13.2
 Strongly-Coupled System
— Direct communication schema
« Weakly-Coupled Systems
— Input extrapolation
« TLM-Systems

II LINKOPING
L UNIVERSITY

mc l nc(t)

Demo m, 1 O

Quarter Car Model

l A

LINKOPING
II.“ UNIVERSITY

Exercise

Dual Mass Oscillator

LINKOPING
UNIVERSITY

Dual Mass Oscillator

« Splitting the mechanical (reference) model into two
subsystems using force-displacement coupling

 Defining interfaces for the FMUs

 Creating a FMU-based composite model (CS/ME] in
OMEdit

« Set start values
« Simulate the composite model

II LINKOPING
L UNIVERSITY

Dual Mass Oscillator (1)

e OpenbualMassOscillator.mo in OMEdIt
« Simulate bualMassOscillator. ReferenceSystem

« Play with s1_start and s2_start to get the system into
motion

II LINKOPING
L UNIVERSITY

Dual Mass Oscillator (11)

« Break the model bualMassOscillator.ReferenceSystem
down into two FMUs

— Note: Duplicate this model and delete the not
needed components

 Define interfaces (inputs/outputs) by adding signal

ports from Blocks.Interfaces dnd sensors e.g. from
Electrical.Analog.Sensors

« EXxport the two models as FMUs

II LINKOPING
L UNIVERSITY

Dual Mass Oscillator (11)

FMU1 FMU2

II LINKOPING
L UNIVERSITY

Dual Mass Oscillator (111)

« Create a new OMSimulator model in OMEdit
 Import the FMUs just created

 |nstantiate, set start values, and simulate the model
* Do the same for both, ME-FMUs and CS-FMUs

II LINKOPING
L UNIVERSITY

Dual Mass Oscillator (111)

II LINKOPING
L UNIVERSITY

Exercise

Inverted Pendulum

LINKOPING
II.“ UNIVERSITY

Inverted Pendulum

« Create a physical model of an inverted pendulum on a
cart and export it as FMU

« Create a controller model and export it as FMU

« Create a Python script to connect and simulate both
FMUs

« Use the Python interface to optimize the parameters of
the controller

II LINKOPING
L UNIVERSITY

Inverted Pendulum (1)

« 0Open InvertedPendulum.mo in OMEdit
« EXxport the models as FMUs

II LINKOPING
L UNIVERSITY

Inverted Pendulum (I

« Copy the FMUs to the exercise folder:
InvertedPendulum.fmu AN Controller.fmu

« Openstart->cmd.exe aNd run the OMSimulator python
script
> set PATH=c:\python64\;c:\%0PENMODELICAHOME%\bin;%PATH?%
> OMSimulatorPython DemoInvertedPendulum.py

LINKOPING
II.“ UNIVERSITY

Inverted Pendulum (I

Now press R key to restart with controller

II LINKOPING
L UNIVERSITY

Inverted Pendulum (Il

« The Python script (OptimizeInvertedPendulum.py] is used to find
the best set of parameters for the PID controller. The optimization
minimizes the total distance that the cart is moving within 10s. The
idea is that the cart should not move if the pendulum is stable.

« The current PID controller is only looking at the angle of the
pendulum and therefore still moving with the optimal parameters
according to the optimization.

LINKOPING
II.“ UNIVERSITY

Inverted Pendulum (Il

« Optimize the Controller so that the cart moves as little as possible.
Open optimizeInvertedPendulum.py aNd play with the parameters,
then run

> set PATH=c:\python64\;c:\OMSimulator\bin;%PATH%
> OMSimulatorPython OptimizeInvertedPendulum.py
« Implement a better controller in Modelica for the inverted
pendulum and optimize it again.

* Oneidea: Combine two PID controllers (one for phi and one for
speed) by adding their outputs together. Therewith get a controller
that manage to keep the pendulum stable without the cart moving
sideways.

LINKOPING
II.“ UNIVERSITY

www.liu.se

LINKOPING
IIC" UNIVERSITY

Transmission Line Method (TLM) for
Numerically Stable Co-simulation

Robert Braun
Linkdping University

Introduction

« TLM
— Wave propagation in physical systems
— Physically motivated time delays

* Examples of use:

Atlas Copco: Simulation of wave propagation in rock drills

SKF: Co-simulation of bearing models

Hopsan: Wave propagation in fluid power systems

Hopsan/Modelica: Parallel simulation

LINKOPING
Il.u UNIVERSITY

2/5/2019

2/5/2019

Background

Simulation models consist of equation systems, solved at
every time step. Example:

ON Iy Fs(t)hMMFs(t) M8y | F2®

O O ks O O

¥1(O)My + %, (t)B; = F1(t) — Fs(¢t)

F(®) = ks(x2(£) — %, (1))
¥, ()M, + %,(t)B, = F(t) — F,(t)

Important to solve all variables at same time (t)!

II LINKOPING
L UNIVERSITY

Background

* Often desired to split up equation system
— Parallell simulation on multi-core processors
— Co-simulation between different simulation tools

— Linear relationship between simulation time and
model size

II LINKOPING
[UNIVERSITY

2/5/2019

Background
Decoupling will delay certain variables:

Subsystem 1: %1 (O)M;y + %, (t) By = F1(¢) — F(t)
' F(6) = k(x(t = T) = x,(0)

Subsystem 2: {xZ(t)Mz + xZ(t)BZ = F(t - T) - Fl(t)

Hence, values from previous iteration must be used.

= Reduced accuracy

= Risk for instability

II LINKOPING
L UNIVERSITY

Background

~50 years ago, two research groups came up with
the same idea:
“In reality, information propagation speed is

always limited by speed of sound (or light)”
- (Auslander, 1968) (Johns & O’Brian, 1971)

. . -
Examples: e
— Hydraulic pipes ,.
— Mechanical springs,
— Electrical transmission lines g

II LINKOPING
[UNIVERSITY

2/5/2019

Transmission Line Modelling - TLM
"Physically Motivated Decoupling”

No TLM: TLM:
AT
Real — N
system:
Model: AT
Decoupled AT AT
model: T T

Bad delay! Good delay!

II LINKOPING
L UNIVERSITY

Robert Braun 2019-02-05 8

Transmission Line Modelling (TLM)

Every physical element has a natural time delay:
, At
[

Physically motivated decoupling
— numerical stability
Asynchronous communication

— independent time steps

II LINKOPING
[UNIVERSITY

2/5/2019

Robert Braun 2019-02-05 9

Transmission Line Modelling (TLM)

k
k/2 k/2
O O
k/3 k/3 k/3
Model 1 m/2 m/2 Model 2 n=2
k/4 k/4 k/4 k/4
Model 1 m/3 MA/ m/3 1/1/]/ m/3 Model 2 n=3
O O

II LINKOPING
L UNIVERSITY

Robert Braun 2019-02-05 10

Transmission Line Modelling (TLM)

RIOREID) _’M'_ Fa(8), v ()

[L I

TLM equations:
Fi(t) =F(t—At) + Z.v,(t) + Z, v, (t — At)
F,(t) = F(t — At) + Z.v,(t) + Z,v,(t — At)

Capacitance (stiffness): Inductance (inertia):
C=7Z./At L= ZAt

II LINKOPING
[UNIVERSITY

2/5/2019

Two-mass example again

Spring equation is replaced by the TLM equations:

¥ (M + %, (t)By = F;(t) — Fs,(t)
Fs1(t) = Zcx1(t) + Fo (6 = T) + Zcx,(t —T)
Fo(t) = Zcxo(t) + F1 (6 —T) + Zcx,(t —T)
X (E)My + %5 (t) By = Fsp(t) — Fy(t)

LINKOPING
II." UNIVERSITY

Two-mass example again
Splitting up the system now yields:

X1 (O)My + %, (t)B; = F1(t) — F(t)
Foq(t) = Zcx1(t) + Fop(t = T) + Zexo (£ = T)
Foo(t) = Zcip(t) + Fsy (¢ = T) + Zex1 (6 —T)
X2 (t)My + X5 (t) B, = Fyp(t) — Fa(t)

System 1: {

System 2: {

No numerical time delays!

LINKOPING
II." UNIVERSITY

Co-simulation framework

13

FMU CS FMU ME
I TLMPIlugin I
TCP/IP
TLMPlugin
oo
Robert Braun 2019-02-05 14
OMSimulator Overview
tep/i
OpenModelica p/ip
tep/i
SystemModeller Al
teip FVU for
tep/ip OMSimulator
model exchange

tep/ip

5

tep/ip

5

II LINKOPING
L) UNIVERSITY

2/5/2019

Execution models

* Top-down:

“Slave, here is your input!”

Master

— ”Slave, take a step!”

——— ”Slave, give me your output!”

Input

Output

Slave

* Bottom-up:

“Master, give me my input!”

|

Input l
- T
Master 1 do something! Slave
“Master, here is my output!” —t—
Output
II LINKOPING
OWF UNIVERSITY

Data exchange

* Synchronous communication

O

@)

—————

e

O

Qx:mz;z O

oE=="=0

O

* Asynchronous communication
I I I

———————
———————
———————

S======u=

%ﬁ

Communication points

.. Simple to implement

.. Requires no interpolation

.. Variable step-size

can be used!

LINKOPING
UNIVERSITY

2/5/2019

2/5/2019

Data exchange

* setMotion() - only at communication points

» getForce() - any time during step

.. Implicit and multi-step solvers can be used!

setMotion(v,t)

getForce(f,t) getForce(f,t)

Interpolation table Interpolation table

II LINKOPING
L UNIVERSITY

18

Data exchange

* Requirement: At,, 401 < 0.5At7

Model 1 Aty Datanotavailable! Aty

N

Model 2 P = - > > ===

Communication interval

LINKOPING
II." UNIVERSITY

Data exchange

* Requirement: At,,pq01 < 0.5At 1

At < 0.5ms

AtTLM =1ms

At < 0.5ms

AtTLM =10ms

19

At <5ms

II LINKOPING
L UNIVERSITY

Functional Mockup Interface (FMI)

» Standardized interface for tool coupling

Slave

~

my_model.fmu

/]

B

my_model.dll =" |

modelDescription.xml <

Host

getReal()
setReal()
doStep()

II LINKOPING
[UNIVERSITY

2/5/2019

10

Robert Braun

www.liu.se

Exercises:

* Hydraulic system and "motor”
— Two FMU for co-simulation (win64)

— Lua-script

II LINKOPING
L) UNIVERSITY

2/5/2019

11

	modprod19_tutorial2_Ochelt-Braun_FMI_CompositeModeling
	modprod19_tutorial2_Braun_TLM

