

Low-Fidelity Parametric Modelling Approach for Early Design Phase

Prof. Asko Ellman asko.ellman@tuni.fi

Tampere University Faculty of Engineering and Natural Sciences FINLAND

Introduction

Satisfying all the customer requirements is not always possible. Therefore, design process needs to be agile and iterative. Design and its requirements needs to be effectively iterated.

Model-based product design using computer simulation and functional prototypes has become a standard design practice in most companies in mechanical engineering.

However, it is a general observation in several engineering design projects that simulation-driven approach takes a lot of time and that design-supporting information is not easy to achieve, especially in an early design phase when the most important decisions are made

Issues with simulation-driven approach

Issues in simulation-driven approach as being due to two main reasons:

- Firstly, simulation software is not targeted to general problem solving. Instead, it is targeted to efficient construction of simulation models.
- Secondly, those simulations usually generate only responses between input and output. This information is usually not sufficiently rich for efficient decision making at early stages.

Low-fidelity modelling

Low-fidelity models can be part of a solution for time constraint in the early design phase.

Low-fidelity prototypes are raw representations of our ideas and concepts. They help us to learn and validate those concepts in early-phase design processes.

Model fidelity refers to the degree to which a model or simulation reproduces the state and behavior of a real world object, feature or condition. Fidelity is therefore a measure of the realism of a model or simulation.

Simulation fidelity has also been described in the past as "degree of similarity".

Low-fidelity modelling

In Low-fidelity approach the exact models derived from physics or geometry are simplified to their key features.

Their drawback is typically a low modelling accuracy but the key benefit is the fast capability to provide design information

Axiomatic design

Axiomatic design proposes a mapping between design parameters **DP** and system characteristics **CH**. This can be summarized in a matrix representation:

[CH] = [A][DP]

where **A** is a design matrix, **CH** is an array of system characteristics and **DP** is an array of design parameters. Matrix **A** is creating a mapping between design parameters and system characteristics.

Axiomatic design

A serious limitation is linearity of the matrix equation because most of the system model equations in mechanical engineering are nonlinear. This drawback is resolved by using non-linear model equations to be linearized at an operation point. Therefore, matrix **A** is defined at this point.

Another issue with this approach is that it is not always possible to define an explicit function between a system characteristic and a design parameter. In such cases, a heuristic modelling approach needs to be used.

EAD-tool

Engineering Design Analysis Tool

Fuctionalities:

- Direct analysis
- Multi-target optimization
- Sensitivity analysis of design parameters
- Correlation of system chracteristics

Low-fidelity model that connects system characteristics to design parameters

User Interface of EDA-tool

Major Design Parameters

Name	Units	Value	Lower limit	Upper limit
с	m	1,92	1,00	2,00
beta	deg	5,76	5,00	30,00
alfa	deg	65,00	30,00	65,00
h1	m	5,00	5,00	5,00
h2	m	0,50	0,50	0,50
ЬЬ	m	0,18	0,15	0,40
hb	m	0,23	0,15	0,40
хЬ	mm	3,00	3,00	10,00

System Charactersitics

Name	Units	Value	Targ. Value	Aim (sign)	Weight
L1	m	2,99	2,50	-1	20,00
L2	m	2,22	2,50	-1	1,00
M_crane	kg	100,00	100,00	-1	10,00
00	mm	4,27	20,00	-1	1,00
dt	MPa	100,58	100,00	-1	10,00
Fo	kN	50,00	50,00	-1	1,00
a	m	1,50	1,00	-1	0,00
Ь	m	0,46	1,00	-1	0,00

Stop Model Puomimalli.m Optimization Sensitivity Matrix of Design Parameter System Charact. Correlation

Contr

Case 1: Motion platform

		Low-fide	lity model	High-fide	lity model
	Measured value	Actual value	Relative	Actual value	Relative
			error		error
a _v	$3.6 \text{ m}^2/\text{s}$	4,37 m ² /s	21 %	3.75 m ² /s	4 %
a _x	$9.0 \text{ m}^2/\text{s}$	$12,2 \text{ m}^2/\text{s}$	25 %	9,45 m ² /s	6 %
ω _{max}	16 °	15,7°	2 %	16,3°	2 %

	Low-fidelity model	High-fidelity model
Number of model equations	14	30 eqs. + 58 SimMech. blocks
Number of model parameters	10	270
Time required for creation the model [h]	7	120
Time required for analyzing the model [h]	1	16
Expertise needed in modeling	Low	High

Case 2: A hydraulic crane

System characteristics

Length of beam 1 (L1)	\leq 3.0 m
Length of beam 2 (L2)	\leq 3.0 m
Mass of the crane (M_crane)	$\leq 100 \text{ kg}$
Deflection of beam 2 (v _{MAX})	\leq 20.0 mm
Bending stress in beam 2 (Stress)	$\leq 100 \text{ MPa}$
Cylinder force (Fcyl)	\leq 50 kN

Case of a hydraulic crane

 L_2 $\alpha + \pi/2$ h_1 a L_1

Design parameters

Max lifting height (h1)	5,0 m
Min lifting height (h2)	0,5 m
Max length of cylinder (c)	1,0-2,0 m
Angle α in max lifting state	30 – 60 deg
Angle β in max lifting state	5 – 30 deg
Width of beam (bb)	0,15 – 0,40 m
Height of beam (hb)	0,15 - 0,40 m
Sheet thickness (xb)	3 - 10 mm

Low-fidelity model

Connects design parameters to system characteristics.

12 simple equations that are based on:

- Geometry of the crane
- Statics
- Elastic bending of beam
- Total mass of the crane

Studied in upper and lower position of the crane

$$A: \qquad a = c \frac{\cos(\alpha + \beta)}{\cos(\alpha)}$$

$$I = \frac{B H^3 - (B - 2x)(H - 2x)^3}{12} \qquad L_2 = \frac{h_1 - h_2}{\sin(\alpha) + \left(\frac{a^2 + b^2 - (c/2)^2}{2ab}\right)}$$

$$v = \frac{m_L g (L_2 - b)^3}{3EI} + \frac{m_B g (L_2 - b)^3}{8EI}$$

$$m_{\rm for} = \rho_{\rm sr} \left[B H - (B - 2 x)(H - 2 x) \right] (L_1 + L_2)$$

Multi-target optimization

Name	Units	Value	Lower limit	Upper limit
c	m	1,92	1,00	2,00
beta	deg	5,76	5,00	30,00
alfa	deg	65,00	30,00	65,00
h1	m	5,00	5,00	5,00
h2	m	0,50	0,50	0,50
ьь	m	0,18	0,15	0,40
hb	m	0,23	0,15	0,40
жb	mm	3,00	3,00	10,00

System Charactersitics

Name	Units	Value	Targ. Value	Aim (sign)	Weight
L1	m	2,99	2,50	-1	20,00
L2	m	2,22	2,50	-1	1,00
M_crane	kg	100,00	100,00	-1	10,00
00	mm	4,27	20,00	-1	1,00
dt	MPa	100,58	100,00	-1	10,00
Fo	kN	50,00	50,00	-1	1,00
a	m	1,50	1,00	-1	0,00
ь	m	0,46	1,00	-1	0,00

Yellow fields in UI for controlling:

- Lower and upper limits for design parameters
- Target values and priorization for system characteristics

Using Excel own algoritm for optimization

Parameter sensitivity analysis

			c	beta	310	17	~~	-20	410	4
			m	deg	deg	m	m	m	m	mm
		Actual value	1,88	7,99	60,00	5,00	0,50	0,15	0,28	3,00
a	m	1,41	0,47	-0,16	-0,37	0,00	0,00	0,00	0,00	0,00
b	m	0,52	0,26	0,26	0,48	0,00	0,00	0,00	0,00	0,00
L1	m	2,83	0,00	-0,18	-0,46	0,33	0,03	0,00	0,00	0,00
L2	m	2,50	0,00	0,22	0,36	0,38	-0,04	0,00	0,00	0,00
Fc	kN	50,00	-0,35	-0,06	-0,16	0,39	-0,04	0,00	0,00	0,00
M_crane	kg	106,07	0,00	0,01	-0,06	0,31	0,00	0,11	0,20	0,30
B.stress	Mpa	100,00	-0,04	0,09	0,14	0,23	-0,02	-0,10	-0,22	-0,15
Deflection	mm	4,34	-0,06	0,12	0,18	0,31	-0,03	-0,05	-0,18	-0,07
			1,18	1,12	2,19	1,95	0,16	0,25	0,61	0,53

Element of Jacobian matrix

 $k_{ij} = \frac{\partial y_i}{\partial x_j}$ Dimensionless element of Jacobian matrix

(*)System Design Parameter Priorities

$$y_0 + \Delta y = f(x_0) + J \Delta x$$
 $\Delta y = J \Delta x$

 $k_{ij}^{0} = \frac{x_{s,j}}{y_{s,i}} \frac{\partial y_{s,i}}{\partial x_{s,j}}$

System characteristic correlation

Name	Units	Value	Lower limit	Upper limit
c	m	1,92	1,00	2,00
beta	deg	5,76	5,00	30,00
alfa	deg	65,00	30,00	65,00
h1	m	5,00	5,00	5,00
h2	m	0,50	0,50	0,50
ьь	m	0,18	0,15	0,40
hb	m	0,23	0,15	0,40
жЬ	mm	3,00	3,00	10,00

Major Design Parameters

System Charactersitics

Name	Units	Value	Targ. Value	Aim (sign)	Weight
L1	m	2,99	2,50	-1	20,00
L2	m	2,22	2,50	-1	1,00
M_crane	kg	100,00	100,00	-1	10,00
00	mm	4,27	20,00	-1	1,00
dt	MPa	100,58	100,00	-1	10,00
Fo	kN	50,00	50,00	-1	1,00
а	m	1,50	1,00	-1	0,00
ь	m	0,46	1,00	-1	0,00

Green fields in UI for controlling:

- Desired direction of a system characteristic
- $-1 = low value is desired (\phi)$
- 1 = high value is desired (φ)

$$C_{AF,ik} = \varphi_i \varphi_k \frac{\frac{1}{n} \sum_{j=1}^n k_{ij}^0 k_{kj}^0}{S_i S_k}$$

$$s_i = \sqrt{\frac{1}{n} \sum_{j=1}^n (k_{ij}^0)^2}$$

System characteristic correlation

			2	, ~	. / .			***	ane Bat	65 Defie
			m	m	m	m	kN	kg	Mpa	mm
		Actual value	1,41	0,52	2,83	2,50	50,00	106,07	100,00	4,34
a	m	1,41	1,00	-0,25	0,54	-0,47	-0,28	0,06	-0,34	-0,43
ь	m	0,52		1,00	-0,74	0,66	-0,56	-0,08	0,31	0,40
L1	m	2,83			1,00	-0,23	0,65	0,43	-0,01	-0,01
L2	m	2,50				1,00	0,25	0,36	0,68	0,86
Fc	kN	50,00					1,00	0,47	0,35	0,44
M_crane	kg	106,07						1,00	-0,19	0,12
B.stress	Mpa	100,00							1,00	0,94
Deflection	mm	4,34								1,00

System characteristics correlation matrix yields explicit information on trade-offs between system characteristics. This increases the understanding of design space

CONCLUSIONS

Low-fidelity models:

- offer fast solution to study system characteristics with an approximative (20 %) accuracy.
- can be used for requirement inspection in early system design phase.

Low-fidelity models with EDA-tool:

• enable designer to quickly study and optimize design parameters and understand nature of the system based on parameter sensitivity matrix and system characteristics correlation matrix.

REFERENCES

- A. Ellman, P. Krus, and V. Jouppila. Comparison of low- and high-fidelity approach in model based design in the case of a portable motion platform. International Conference on Engineering Design (ICED 2013), pages 227–236, 2013.
- A. Ellman, S. Pajunen, I. Laine, and E. Coatanea. Engineering design analysis tool for early design phase with low-fidelity models a case of hydraulic crane. ASME Computers and Information in Engineering Conference (IDECT/CIE 2017), 0 p., 2017.