Numerically Robust FMI Co-simulation using Transmission Line Modelling with OMSimulator

Robert Braun, Linköping University Robert Hällqvist, Saab AB Dag Fritzson, AB SKF

OMSimulator

- Key result from OpenCPS project
- Open Source (GitHub)
- Maintained by OSMC
- Features
 - Causal and acausal modelling
 - FMI import (ME/CS)
 - SSP support

OMSimulator Overview

Socket Communication

- Busy-waiting synchronization
- External tool API:
 - getEffort: At any time during communiation step
 - setFlow: Whenever new output is produced

Background

Decoupling will delay certain variables:

Subsystem 1:
$$\begin{cases} \ddot{x}_1(t)M_1 + \dot{x}_1(t)B_1 = F_1(t) - F(t) \\ F(t) = k(x_2(t - T) - x_1(t)) \end{cases}$$

Subsystem 2: $\{\ddot{x}_2(t)M_2 + \dot{x}_2(t)B_2 = F(t - T) - F_1(t)$

Hence, values from previous iteration must be used.

- \Rightarrow Reduced accuracy
- \Rightarrow Risk for instability

Background

~50 years ago, two research groups came up with the same idea:

"In reality, information propagation speed is always limited by speed of sound (or light)" - (Auslander, 1968) (Johns & O'Brian, 1971)

- Examples:
 - Hydraulic pipes
 - Mechanical springs,
 - Electrical transmission lines

Transmission Line Modelling (TLM)

Every physical element has a natural time delay: Δt Δt Δt Δt

Physically motivated decoupling

 \rightarrow <u>numerical stability</u>

Asynchronous communication

 \rightarrow independent time steps

Transmission Line Modelling (TLM)

Transmission Line Modelling (TLM)

TLM equations:

$$F_{1}(t) = F(t - \Delta t) + Z_{c}v_{1}(t) + Z_{c}v_{2}(t - \Delta t)$$

$$F_{2}(t) = F(t - \Delta t) + Z_{c}v_{2}(t) + Z_{c}v_{2}(t - \Delta t)$$

Capacitance (stiffness): Inductance (inertia):

$$C = Z_c / \Delta t \qquad \qquad L = Z_c \Delta t$$

Two-mass example again

Spring equation is replaced by the TLM equations:

$$\begin{cases} \ddot{x}_1(t)M_1 + \dot{x}_1(t)B_1 = F_1(t) - F_{s2}(t) \\ F_{s1}(t) = Z_C \dot{x}_1(t) + F_{s2}(t-T) + Z_C \dot{x}_2(t-T) \\ F_{s2}(t) = Z_C \dot{x}_2(t) + F_{s1}(t-T) + Z_C \dot{x}_1(t-T) \\ \ddot{x}_2(t)M_2 + \dot{x}_2(t)B_2 = F_{s2}(t) - F_1(t) \end{cases}$$

Two-mass example again

Splitting up the system now yields:

System 1:
$$\begin{cases} \ddot{x}_{1}(t)M_{1} + \dot{x}_{1}(t)B_{1} = F_{1}(t) - F(t) \\ F_{s1}(t) = Z_{C}\dot{x}_{1}(t) + F_{s2}(t - T) + Z_{C}\dot{x}_{2}(t - T) \\ F_{s2}(t) = Z_{C}\dot{x}_{2}(t) + F_{s1}(t - T) + Z_{C}\dot{x}_{1}(t - T) \\ \ddot{x}_{2}(t)M_{2} + \dot{x}_{2}(t)B_{2} = F_{s2}(t) - F_{2}(t) \end{cases}$$

No numerical time delays!

Functional Mockup Interface (FMI)

Communication Patterns

Demonstrator Model

- Bearing in context for accurate boundary conditions
- System model typically supplied by customer/supplier
- Demonstrator model: Hydraulic crane

Demonstrator Model

Demonstrator Model

Stability Analysis: Zero-order Hold

- Not stable after reducing step-size 1000 times!
- Compatible with all exporting tools

Stability Analysis: Input Derivatives

- Almost stable without reducing step-size
- Not supported by all exporting tools

Stability Analysis: Fine-grained Interpolation

- Stable without reducing step-size
- Requires custom FMUs

FMI Change Proposal (submitted)

Callbacks for intermediate inputs/outputs

- Send output variables to master whenever produced
- Request input variables at any point during step

Simulation Results (OMSimulator)

Simulation Results (BEAST)

Robert Braun

www.liu.se

