OPENCPS Overview Digital Twin Business Cases

MODPROD Linköping, 5 February 2019

Sune Horkeby OPENCPS National Coordinator

Short Overview

COLLABORATIVE R&D ON METHODS, STANDARDS & OPEN SOURCE TOOLS FOR EFFICIENT DEVELOPMENT OF CYBER-PHYSICAL SYSTEMS

- Duration: December 2015 to December 2018
- 4 countries: Sweden, France, Finland, Hungary
- Current status: 46 Person Years, 6.3 M€, 18 partners

Project Consortium & Industry Domains

Top 3 Key Innovation Areas

Overall aim: Increase **front loading** capability in development of cyber-physical systems by enabling **large-scale simulation**

- 1. FMI Master Simulation Tool including UML/Modelica Interoperability
- 2. State Machine and Real-Time Debugging & Validation
- 3. Efficient Multi-Core Simulation

Top 3 Key Innovation Areas

Overall aim: Increase **front loading** capability in development of cyber-physical systems by enabling **large-scale simulation**

- 1. FMI Master Simulation Tool including UML/Modelica Interoperability
- 2. State Machine and Real-Time Debugging & Validation
- 3. Efficient Multi-Core Simulation

Validation of project results in advanced industrial demonstrators!

Top 3 Key Innovation Areas: Saab perspective

Overall aim: Increase **front loading** capability in development of cyber-physical systems by enabling **large-scale simulation**

- Current SotA in M&S of Aircraft Vehicle Systems
 - Simulation of individual physical subsystems using detailed equation-based models
 - Simulation of complete aircraft using simplified models of physical systems
 - Need: Simulation of several connected subsystems using detailed models

Work Packages

- Strong focus on the core collaborative development effort:
 OpenCPS FMI Master Simulation Tool OMSimulator
 - Integrated Project Team including key developers and end-users
 - Prioritized backlog linked to end-user requirements, enabling iterative development and continuous monitoring
 - Github and automated testing
- Successful delivery of tool supporting industrial demonstrators

100	17 Pull requests @ 10 Projects 2 Ldt Insights
Polise	Nov 19, 2017 - Dec 14, 2018
Community	Contributions to master, excluding merge commits
Commits	50
Code frequency	47
ependency graph	20
twork	*
	December 2018 Pebruary March April Min
/ //	June July August September October November December
	Iochel
	TODDr48 184 commits 9450 += 3 205 == #2
	20
4	20
Decempe	r Feoruary Apro June August October Decem
Decemp	r Ronany Apis June August October Decemi December Petinary Apis June August October

Open Source & Dissemination Strategy

- Well established open source consortiums including several project partners, further developing & disseminating project results
 - Open Source Modelica Consortium (OSMC)
 - Papyrus Industrial Consortium & Eclipse foundation
 - Project results publicly available in latest versions of OpenModelica & Papyrus

Standardization activities

- OMG: Proposal on UML state-machine execution semantics accepted
- FMI & SSP: Ongoing coordination on improved support for discrete-time systems & Transmission Line Method (TLM) co-simulation, FMI Change Proposal submitted
- Modelica Association: Promote and standardize results related to Modelica language, e.g. code generation and V&V of Modelica models
- Partners engaged in dissemination of project results, >70 documented papers and presentations
 - In-house at industry partners
 - Workshops & conferences: Both in M&S communities and industrial application domains

TEA3

MODEL

Energy Demonstrators - Business case

Heat Recovery Steam Generator in the Joint Energy Demonstrator

Simulation of Complex Systems Energy Co-simulation

Goal

Simulate a combined cycle power station with huge detailed accurate models from different suppliers, provided as FMUs

Energy Demonstrator - results

The result improves by:

- Shortening communication interval
- Reducing the error tolerance

To have an accurate result requires very long execution times due to:

- a need to set low error tolerance and use a short communication interval
- Inaccurate: 24 minutes
- Accurate: 500 h (estimated from present results)

The result depends upon application

The HRSG connected to GT reveals good accuracy, deviations seen are caused by the deviation in GT power shown above

Improvements to the state-of-the-art

- Ability to use open source Modelica tool for the modelling and simulation of power plants (and energy systems at large).
- Ability to reuse verified Modelica models for data reconciliation (ability to identify faulty sensors and improve the quality of measurements by reducing uncertainties).

Cyber-Physical Simulation Application Model interact with physical instances

Cyber-Physical Simulation Application Model interact with physical instances

3. Solution:

New control feature to be implemented New control tested and adjusted before implementation

4. Result:

Positive response from customer Guide vane operation more smooth preventing tear out

5. Closing the Loop:

Agent implemented in supervision system Supervision system detects and warns at similar operation

Continuous load variation at site tears out guide vane

2. Detection: Complains from customer Mimic the behavior with model

Joint Energy Demonstrator OPENCPS - Summary Highlights

- The Demonstrators is an example of good collaboration between Universities and Industry.
- It's the first large scale multi-FMU test of complex energy systems
- The FMU technology enable wide spread use of advanced simulation at low cost
- Good behavior models based on algorithms is fundamental for e.g. Machine Learning and AI technology

