International Standardization and its relevance for Model Based Development

Charlotta Johnsson Professor, Dept. of Automatic Control, Lund University Chair, ISO TC184/SC5

Model Based Development

The system model is at the center of the development process: from requirements dev., through design, to implementation, simulation and testing

Ref: Sara Sigfridsson, Lunds Universitet

International Standardization

... help businesses of any size and sector.

... reduce costs, increase productivity, and access new markets.

... is seen as an enabler.

... is pointed out as one of the most important enablers for realizing Smart X (X = Cities, Industry, energy, systems, etc).

.. assumes and requires collaboration between individuals, nations, and corporations.

"Standards make market access easier, in particular for SMEs. They can enhance brand recognition and give customers the guarantee that the technology is tested and reliable."

Jens Albens CEO, NanotronTechnologies Ltd, Germany

ME

- Model Based Development
 - No expert,
 - but solid background in Automatic Control
 - Hence, theoretically convinced
- International Standardization
 - Expert,
 - and experienced in national/international standardization work
 - Hence, practically convinced

What is a standard?

Regulations (Rules)

- Legal Mandatory
- Example: US FDA (Food and Drug Administration) rules

Standards

- Not mandatory
- Quality, Commercial, industrial or other
- Certification / Accreditation scheme
- Example : ISO, ISA, IEC

Guidelines / Guidances

- Not mandatory
- Represent current way of thinking
- Example GAMP, FDA Guidance documents

ISO 80000: Quantities and Units

ISO 80000 gives general information and definitions concerning quantities, system of quantities, units, and symbols

Examples: Meter (m), Kilogram (kg), Seconds (s), Amperer (A), kelvin (K), Mol (mol), candela (cd)

Standardization ...

UN and/or WTO has appointed three global standardisation organizations

National mirror organizations in the majority of the world's 195 independent countries

What is delivered? (Focus on Industrial Applications) IEC 61131 ISO 15704 ISO 16300 IEC 61512 ISO 15746 IEC 62264 ISO 20242 ISO 22549 ISO 22400 IEC 62449 ISO 18828 ISO 20140 IEC/ISO 62264 TR 16161 ISO 16400

	Standards (Smart) Industry		
		ISO/IEC JTC 1 SC7 / SC17 / SC27 / SC32 / SC37 /SC38 / SC40	Information technology
		ISO TC 10 SC 10	Technical product documentation
Stand		ISO TC 39 SC 10	Process plant documentation
relate (Sma Indu		ISO TC 184 SC1 / SC4 / SC5	Automation systems and integration
		ISO TC 211	Geographic information/Geomatics
		ISO TC 261	Additive manufacturing
		ISO TC 292	Security and resilienc
		ISO TC 299	Robotics

Smart industry

... fully-integrated, collaborative manufacturing systems that respond in real time to meet changing demands and conditions in the factory, in the supply network, and in customer needs

Ref: NIST-model

Smart Industry - Interpretation

Smart Manufacturing extends todays manufacturing. It is characterized by independent actors sharing standardized information. The actors can pro-actively and re-actively act upon the information. The actors collaborate dynamically in network structures. This collaboration occurs among and within lifecycles, on both strategical and operational levels, providing added value for organizations.

Note: examples of actors are companies, products, assets, processes and parts

Ref: Charlotta Johnsson, SC5 and Lund University

Example: Aerospace and defence industry

Ref: Kenny Swope, SC4 and Boeing

ISO TC184/SC4 Industrial Data

Chair: Kenny Swope, USA Secretary: Ryan Mayes, USA

ISO standards under development * under the direct responsibility of ISO/TC 184/SC 4 15 Participating members 15 Observing members

TC 184/ SC 4	Title	Convenor
AG0	Change management advisory group	Kenneth Swope
PPC	Policy & planning committee	Torbjörn Holm
QC	Quality committee	Hikmet Hussain
WG 2	Product characteristics and libraries	Nikolaus Ondracek
WG 3	Oil, gas, process, and power	Paul van Exel
JWG 8	Manufacturing process and management information TC 184/SC4 – TC 184/SC5	Anne-Françoise Cutting-Decelle
WG 11	Implementation methods and conformance	David Loffredo
WG 12	STEP product modeling and resources	Keith Hunten
WG 13	Industrial data quality	Tim King
WG 15	Digital manufacturing	Martin Hardwick
JWG 16	Formats for visualization and other derived forms of product data TC 184/SC4 – TC 171/SC 2 – JTC 1/SC 24	Soonhung Han
WG 21	SMRL validation team	Keith Hunten
WG 22	Reference data validation team	Nils Sandsmark
WG 23	Vocabulary validation team	Aminata Mbengue
JWG 24	Product Properties and classes and their identification	Hiroshi Murayama

Example: Manufacturing operations

Ref: Charlotta Johnsson, SC5 and Lund University

ISO TC184/SC5

Interoperability, integration, and architectures for enterprise systems and automation applications

Chair: Charlotta Johnsson, Sweden Secretary: Walter Zoller, USA

56 published ISO standards * under the direct responsibility of ISO/TC 184/SC 5 12

ISO standards under development * under the direct responsibility of ISO/TC 184/SC 5 14 Participating members 13 Observing members

Working Group	Title	Convenor
WG1	Modelling and Architecture	Richard Martin (USA)
WG4	Manufacturing software and its environment	Mitchiko Matsuda (Japan)
WG5	Open systems application frameworks	Hongye Su (China)
WG6	Application Service Interface	Robert Patzke (Germany)
WG9	Key performance indicators for manufacturing operations mgmt	Andreas Kirsch (Germany)
WG10	Evaluation of energy efficiency and other relevant factors of a manufacturing system with respect to its environmental influence.	Fumihiko Kimura (Japan)
WG12	Convergence of informatization and industrialization (CII)	Hongye Su (China)
WG13	Equipment Behaviour Catalogue for Virtual Prod.Systems	Naohisa Matsushita (Japan)
SG5	Model-based standards authoring Study Group	Dov Dori (Israel)
SG6	Mass Customization	Wang Xiaohu (China)
SG7	Interoperability of Simulation Models on Different Platforms	Lin Tingyu (China)
JWG5 (IEC)	Enterprise-Control System Integration	Dennis Brandi (USA)
JWG8 (SC4)	Manufacturing process and management information	Jochen Hartung (Germany)

How is the work done?

How to influence a standard?

Project 4S ...

For Swedish participants ... connects results from the Swedish Innovation projects for industrial digitalisation (e.g. Vinnova PiiA and Vinnova Prod2030), with ongoing international development work in ISO and IEC standardisation.

Can provide relevant research projects financial support (travels etc) so that their results can influence the international standardisation work.

Standards and Strategies for Smart Swedish Industry

International Standardization and its relevance for Model Based Development

Charlotta Johnsson

Professor, Dept. of Automatic Control, Lund University

Chair, ISO TC184/SC5

