
Continuous model-based 
development and lightweight 
model consistency checking
Jan Carlson, Antonio Cicchetti,
Federico Ciccozzi, Robbert Jongeling

ModProd 2019-02-06

software



Background 

● Growing software (and system) complexity
● Also in domains where software traditionally played a smaller role
● Highlights the need for development at higher abstraction levels
● Use of models for documenting, communicating, analysing and

implementing software

● Need for shorter development cycles and faster feedback
● Addressed by Agile development processes
● Strive to avoid heavy upfront design
● Focus on working software over comprehensive documentation

● Agile Model-based Software Development
● Reconcile continuous development and modelling practices



Continuous Integration

● One of the agile software development practices
● Frequent (daily) integrations into a shared repository
● Automated builds
● Automated unit (and integration) tests

● Well-established practice at code level

Integrate

BuildTest



Model-based Continuous Integration

● Integration
● Model-aware version control
● Differencing and merging at model level

Integrate

BuildTest

Model
Versioning

Model
Diff/Merge



Model-based Continuous Integration

● Building
● Incremental code generation from models
● Model generation from code changes
● Inter-model synchronization (especially with multiple modelling tools)

Integrate

BuildTest

Model
Versioning

Model
Diff/Merge

Code 
Generation

Model 
Synch.

Model 
Discovery



Model-based Continuous Integration

● Testing
● Model testing & model-based regression testing of generated code
● Integration testing (especially with multiple modelling tools)

Integrate

BuildTest
Model V&V

Integration 
Testing

Model
Versioning

Model
Diff/Merge

Code 
Generation

Model 
Synch.

Model 
Discovery



Model-based Continuous Integration

● Automation
● Minimize the need for manual interaction in all steps

Integrate

BuildTest

Code 
Generation

Model 
Synch.

Model 
Discovery

Model V&V

Integration 
Testing

CI + MBD
Automation

Model
Versioning

Model
Diff/Merge



Impediments to Combine CI and MBD

● Tool review
● 8 tool (focusing on UML/SysML and Simulink)
● Reviewed with respect to the identified relevant aspects

● Results (presented at the COMMitMDE workshop @MODELS’18)
● Diff and merge at model level in most tools
● Versioning by integrated version control (e.g. svn or git)
● Management of generated code varies
● Support for automation and customization varies
● Main challenge when multiple tools are used together



Impediments to Combine CI and MBD

● Interview with practitioners (ongoing)
● 12 practitioners, from 3 companies of different modelling maturity
● Interviews addressing

● Current MBD + CI practices
● Views on further CI and/or more modelling
● Perceived impediments

● Preliminary result: Few impediments reported
● Modelling only at system level to document design decisions, no models 

used at software level
● Modelling only at software level, with complete MDD tool chain and code 

generation (no manual code)

● Remaining challenging scenario (?)
● Modelling at multiple levels, in multiple languages, with multiple tools



Lightweight model synchronization

● Inter-model (and inter-tool) consistency checking
● Automated – integrated with the Jenkins CI pipeline
● Lightweight – warn the user about potential inconsistencies
● Incremental – build the consistency mapping as the models evolve
● General approach, initially targeting Simulink+SysML



Thank you!

● Please contact us if you are interested in these topics or if you want 
to know more about our research!

● Jan Carlson <jan.carlson@mdh.se>
● Antonio Cicchetti <antonio.cicchetti@mdh.se>
● Federico Ciccozzi <federico.ciccozzi@mdh.se>
● Robbert Jongeling <robbert.jongeling@mdh.se>


