Scientific Machine
Learning: How to
integrate structure and
models into learning,
what can go wrong, and
what to do about it.

Chris Rackauckas

VP of Modeling and Simulation,
Julia Computing

Research Affiliate, Co-Pl of Julia Lab,
Massachusetts Institute of
Technology, CSAIL

Director of Scientific Research,
Pumas-Al

Outline: SciML requires more than just sticking automatic
differentiation on a simulator.

Part 1: Understanding derivatives and their potential issues.
Part 2: How simulators must be modified to improve the
fitting process.

Part 3: Alternatives to direct simulation fitting which may be
more robust in some contexts

Part 4: How the performance of simulators and deep learning
differ

Prologue: Why do Differentiable
Simulation with SciML?

Universal (Approximator) Differential Equations

||||||||

%\
n
|

D

<
|

Let’s dive in a bit!

Neural ODE: Learn the whole model

@ Tue Exposed

@ Tue Infected

@ Tue Recovered
Estmated Exposed
s Estimated Infected
e Estimated Recovered
mmmm Trajining Data End

I

u’=NN(u) trained on 21 days of data

1500

Can fit, but not enough information to
accurately extrapolate

T

1000

500 - Does not have the correct asymptotic

behavior

Universal ODE

Estimated vs Expected Exposure Term

@ Tue Exposure
Estmated Exposure

1500

T

1000

Exposure:
Unknown

Infection rates: known
From disease quantities

and

Percentage of cases
known to be severe,
can be estimated

20

Neural ODE Extrapolation

@ Tue Exposed

@ TueInfected

@ Tue Recovered
s Estimated Exposed
w— Estimated Infected
[stimated Recovered
mm— Training Data End

Universal ODE Extrapolation

1500

@ Tue Exposed

@ TueInfected

@ Tue Recoversd
s Estimated Exposed
w— Estimated Infected
e Estimated Recovered
s Training Data End

1000

500

60

Universal ODE -> Internal Sparse Regression

Sparse Identification on only the missing term:
| * 0.10234428543435758 + S/N * | ¥ 0.11371750552005416 + (S/N) ~ 2 * | * 0.12635459799855597

Sparsity improves generalizability!

@ Tue Exposed

@ The Infected

@ Tue Recovered
Estmated Exposed

I

1500

wmmmn Estimated Infected
m—— Estmated Recovered
= Training Data End

1000

500

For further investigation: t

Acquesta, Erin, Teresa Portone, Raj Dandekar, Chris Rackauckas, Rileigh Bandy, and Jose
Huerta. Model-Form Epistemic Uncertainty Quantification for Modeling with Differential
Equations: Application to Epidemiology. No. SAND2022-12823. Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States), 2022.

Universal (Approximator) Differential Equations

— UDE Approximation
8 I | @ Measurements

[|— UDE Approximation
| |— True Interaction

Measurement Data

Known and Unknown Relations
r=oar+ U (0,z,y)
y=—by+Us(0,2,y)

Train Model 0 = ming L (0)

Recover Unknowns

= = min||U(0, X) — OZ||2 + A||IZ]4

0= S1ryY
- oy

Build fully symbolic Model
Tr=ar+&xy

y=—bhy+ Sy

10
> |
X 0=
= _10}
-20
o 1 2 3 4 5 6
t
100.0
S
glo‘o'5
L
(N 1~=10
N 10
1071
o 1 2 3 4 5 6

UODEs show accurate extrapolation and generalization

Upon denoting x = (¢, x, p.€), we propose the follow-
Run the code yourself! ing family of UDEs to describe the two-body relativistic

dynamics:

https://github.com/Astroinformatics/ (1 + e cos(x))?

ScientificMachineLearning/blob/main/ =T (1 + Fi(cos(x),p,e€)), (5a)

neuralode_gw.ipynb - (H(‘_\(_.OS(\))Q(I + Falcos00,p.¢)) -
X = N2 2(cos(x),p.€)), ob
p = Fi3(p,e), (5¢)
¢ = Fulp,e), (5d)

Example using binary black hold] | | ‘ |

. . . . a Spp— TI'IlC \VRVCfOI'Ill
dynamICS W|th LIGO graV|tat|Ona| — = Learned waveform
wave data . MUUUM o Training data
MM

Keith, Brendan, Akshay Khadse, and Scott E. ; ﬂ“m Wlm N /\

Field. "Learning orbital dynamics of binary

black hole systems from gravitational wave .

measurements." Physical Review Research 3, - i 1 - |
no. 4 (2021): 043101 0 5-10° 1-10° 1.5-10° 2-10° 2.5 -10° 3-10°

Time

Universal Differential Equations Predict Chemical Processes

Langmuir isotherm - LDF

oc 1—¢ oc 1 Oc?
= — ANN * 0) — 10 | |
ot* £ (997, 9) ox* i Pe 0x*2’ .
8 . T B R A B
q* — ANN(q’q*,H)’ — Train data [est dat: o
8t ;l_‘l TR RPRIRGEEREI,
Oc(z* =1,Vt) o
ox* , =0, o i :
de(z* = 0,Vt o Ot |
(gy AL = Pe(c — Cinlet), - | | |
N T N 0540 80 120 160 200 240 280 320 360 400
C(.Q? < (0’ 1)’ t =) = Co; time [min]
Q(w* € (07 1)7t* —) — q*(CO)a
q* — f(c,p), /——// Neu;gitwork

Uptake rate

Isotherm node R N
Santana, V. V., Costa, E., Rebello, C. M., Ribeiro, A. Ci 'O q ’@0‘/’/70‘5\20 R 0q;
M., Rackauckas, C., & Nogueira, |. B. (2023). Efficient ' YN />§’\\ C v
hybrid modeling and sorption model discovery for non- ai ’Q\\‘\O‘ —/f,”Q’ Ot
linear advection-diffusion-sorption systems: A AR ///
systematic scientific machine learning approach. arXiv \O/

preprint arXiv:2303.13555.

Figure 2: Schematic representation of the proposed hybrid model.

99-JuliaHub

Universal Differential Equations Predict Chemical Processes

Table 5: Symbolic regression learned polynomials.

Isotherm Kinetic True kinetics Learned kinetics
Langmuir LDF 0.22¢" — 022 —0.535 — 0.225¢ + 0.234(¢") Recovers equations with the same
Langmuir improved LDF 0.22(¢* + 0.2789¢*e2" — q) —0.554 — 0.234q + 0.281(q*) on rder Tavlor expansion
Langmuir = Vermeulen’s 0.22‘1*220_‘12 —0.6098 + 0.0122¢ t 0.263¢" d orde yiorexpansio
0g —0.00526¢¢

Sips LDF 0.22¢* — 0.22¢q 0.198q¢* — 0.200q

Sips improved LDF 0.22(¢* + 0.2789¢* e+ — q) 0.277¢* — 0.241q

Sips Vermeulen’s 0.229, 57 —0.003557¢*2 — 0.216g + 0.395¢* — o

Q True uptake rate
5 Taylor expansion point

0.22(¢* + 0.2789¢*e 2"

— q)(49.23,49.22) ~ 1.834 + 0.275¢* — 0.238q + O(||z?||)

Uptake rate (mg/L/min)

0 25 50 75 100
sample ID

99-JuliaHub

WILLIAMS
RACING

Scientific Machine Learning Digital Twins: More Realistic Results than Pure ML

Legend

julia @ python
Physically-Informed Machine Learning
1.497 m
e ’ 1.066 m In(x) ox
155 = 1.498 m
: 2 5. % Oz s
o &= —7r oo e
Percent of Lap / U U o e o o
aCarSOG - Julia aCarSOG - Python ® [== — @
o o

Py /M Lo Using knowledge of the physical forms as part of
\o \3 the design of the neural networks.

N
B — Smoother, more accurate results
2 . o 0.0 0.5 1.0 1.5 20 £
e i i For more information, see the case study
. 0.0 0.5 1.0 1.5 2.0 E:;Zg OIO 0.5 1.0 35 2.0 0.0 0.5 1.0 1.5 2.0 On the JUIiaHUb WEbSite
o0

ee ‘ulia Computing Confidential 29-JuliaHub

.l'](f)

10

9]

-i.l(t:]

0

1
(o)

-10

Figure 12: Comparison of time history of the response for displacement z,(#) and velocity =

SciML Shows how to build

Earthquake-Safe Buildings

measured data (Phase 1)
- fphy (initial model)
=== fphy + NN1
A f
n y ! "
A AR R A A
[} 3 it (L W WY | W -
ry gy B Sy]] A T\ A A
j"-:" AHBNAARARAAANAAADAAR
1 1 1) y ! B | 1 40% 1y] AWal | W G .
YA A R R AR R R R R A RN RN ANRAVAVAVASAYATAY
SV g x‘ L g 1 g v g g 3.0 045 24 240 54 54 %0
\ Y 1 1 I &y %4 1 A3 o0 \ 1 y
i\ 1 vioNa :,' L Y oRa Y U Y YUYV VW \
L o 31 bty kd Sy by owr oy v o MWW W W ’
[V T T A R S A A T A VA A
v ‘l \y ! u 1 W v
A U \ ~
training extrapolation
1 I 1 1 Il 1 1
12 14 16 18 20 22 24
Time t [sec.]
;b
nooR oo oh A
nohoo@ o W B o A
. HoB onoBMmE A I} R VR TR N
ALY A :i A N aANAA AN A
N E AR AN AN NI RN i AN AVEN AN :"\
B iR AT AT IR IR A AR ATATATATATATATA
IRERE "’n ‘,l i =1 3 1 L ST i1 A4 LV
R ';p' HI Lionr oA ‘.: T I VA Y T A
- Vo \,-{’ gg i "r':' WY VW v ¥
¥ \ 1
. o
' :: K
training ; extrapolation
I ' ' L A ' L
12 14 16 18 20 22 24

Time t [sec.]

for the NSD experiment (Phase 1).

Steel slabs

Gravity Frame (GF)

MF colunmms (red)
MF-East

MF beans

GF rockers

Beam columm jomt

GF loadeells
GF columns (Blue)

MF loadeells

NSDs (black)

Shake table

Figure 10: The structural system equipped with a negative stiffness device in between the first
floor and the shake table.

Structural identification with physics-informed neural ordinary
differential equations

Lai, Zhilu, Mylonas, Charilaos, Nagarajaiah, Satish, Chatzi,
Eleni

For a detailed walkthrough of UDEs
and applications watch on Youtube:

Chris Rackauckas: Accurate and
Efficient Physics-Informed Learning
Through Differentiable Simulation

Bayesian UODEs: Knowledge-Enhanced Model Discovery with UQ

Lotka Volterra Neural ODE Lotka Volterra Neural ODE
100
@ Data: Varl ® Data
R It n P b b . I .t @ Data: Var2 6 ~—— Training: Best fit prediction
Training: Best fit prediction Forecasting: Best fit prediction
eS u] ro a I I y 75 b Forecasting: Best fit prediction
Training Data End -

of Missing

50 (:
Mechanisms S
25
0F
A Number of Dominant terms Error Mean % -2 .
Active terms AIC score sampled 1 2 3 p 0 ? Varl ! ¢
001 9 u%, u%, U U2 0.765 404 100
u%u%, u%ug, u%ul
U1 Uz, const function lotka volterra!(du, u, p, t)
0.1 9 u?, u3, uiug 0.764 35 100 X, Y = U
u%”%’ U%Ug,u%ul Cl, B) 6; V
U1 Uz, CcONst
du[l] = d
15 w2, ul, u 0.764 21.6 100 ulll = dx
U%UQ,U]_UQ du[2] dy
2 2 3o, Uy Uy 0.634 7.2 100
3 1 UL U2 0.7 4.1 100
5 1 5 24)) Dandekar, R., Dixit, V., Tarek, M., Garcia-Valadez, A., & Rackauckas, C. (2020). Bayesian Neural
U2 49 B 00 Ordinary Differential Equations. Languages for Inference (LAFI) 2021 - POPL 2021

Universal Differential-Algebraic Equations:

Encoding Physical CoRSiEEs

Utilize known chemical kinetics

yll — _004y1 + NNl(yla Y2, y3)
yé — 004y1 + NN2 (yla Y2, y3)
I =y1+y2+y3
With known conservation laws
Mu' = f(u) + NN (u)

Convert to a mass-matrix DAE
(singular mass matrix) and fit

0.8
0.6
0.4
0.2+
L L L L 1
1p 100p 0.01 1 100 10k
0.000035f+
0.000030F t
0.000025F
0.000020
0.000015f+
0.000010f
0.000005F
L L L L
1p 100p 0.01 1 100 10k
0.8 t
0.6
0.4
0.2
I I L 1
1p 100p 0.01 1 100 10k

t

Learn highly stiff equations: Hessian condition number 103

QSIR Predicts Quarantine Measure Evolution

e - 1.0 — 1.0 -
S (t) :> I(t) [::> ® Quarantine strength ® Quarantine strength
e ' R(t) = = Government Lockdown imposed = = Government Lockdown imposed
Q(t) 0.8[== = Inflection point in learnt Q(t) 0.8 = = Inflection point in learnt Q(t)
g
T(t) = 0.6f I 5 0.6 '
o Il > 11 e
oaf M 0.4} Il
| I I 1
Il I
! i I |
. Data: Infected 0.2] 02 |
25X 10° e Prediction " 11 (I
. | - e =R
soxtsbh Eat;’j ’;ew"e'ed %09 20 a0 60 80 %V 20 20 60 80
TR Days post 500 infected Days post 500 infected
1.5x105}
Spain Italy
1.0x105}
5.0x104¢t . . on
0 The QSIR Learns A Simplified SIR

; \ 9! With Quarantine, and Quarantine
Days post 500 infected S\ Predictions are Within Days of
Italy Reported Changes

QSIR Counterfactuals: How Many Unnecessary Deaths in the Southern US?

Table 2. Infected count reduction by 14 July, 2020, if states had not reopened early, as estimated by our model.

State % decreaserange Mean % decrease Case reductionrange Mean case reduction
(5% - 95% quantiles)
Verified QSI R now Iet!s 1. Arizona 35—~ 62 19 14000 — 79000 63000
2. Florida 20 - 75 19 57000 — 218000 144000
= 3. Louisiana 37~ 50 11 31000 — 41000 36000
n
US aSk questlons " What 4. Nevada 32 - 68 51 10000 — 20000 15000
-f d -d y h 9 5. Oklahoma 16 — 69 58 10000 — 15000 13000
I Q(t) I n t C ange H 6. South Carolina 83 — 86 84 50000 — 52000 51000
7. Tennessee 11 - 53 17 27000 — 36000 31000
8. Texas 11 - 51 16 115000 — 143000 129000
9. Utah 35 - 47 11 11000 — 14000 12000
i.v
5x104+ B Data: Infected ° AFtuall Quarantine Strength: R:openmg _ Sx10%F Infected Data: Reopening
—— Prediction o8l @® Simulated Quarantine SFrengt : No reopening B Infected Prediction: No reopening
Data: R d . --=- Stay-at-home order expires
4x104+] ata: Recovere 4x104+
—— Prediction
3x104} __0.6f I 3x10%}
-
> |
2x104} 0.4} : 2x104}
|
1x104f m“/ 0 I 1x104f A
) __w_.m""u||||||||lilﬂ’" . -
Ok . . ’ . (0] 3 : . -
Q) i~ &) Q 1 Q) O “ o
. h - - - A
v 9 A S 0.95 25 5 75 100 v ? S
Days post 500 infected Days post 500 infected Days post 500 infected

(g) South Carolina (h) (i)

The UDE formulation fairly generally
allows for imposing prior known
structure

u(z + Az,y) — 2u(z,y) tulz — Az,y) | ulz,y+ Ay) — 2u(@y) +u(z -2,y — Ay)

Ax? Ay?
1)1,/1]0/0
oj1/1f1[0] [4 0 10
olol111!1 s equivalent to the stencil 1 -4 1
x1] "x0] "x1
0|0(1|1|0 O 10
0/1|11|0|0 u(x + Az) — 2u(x) + u(z — Ax) ., ,
I Convolved Az? =u'(2) +0(Ae)
Mage Feature

AU = Ugy + Uy,

Automatically Learning PDEs from Data: Universal PDEs for Fisher-KPP

Truth: Fisher-KPP Equations

pr =rp(l —p) + Dpza,

Truth: Universal Differential EQuation

pt = NNo(p) + D CNN(p),

Automatically recover that the dynamical system
has a diffusion operator and a quadratic reaction
term!

A Data p B Prediction

D 1 97

4 4

3 3

2 2

1 1

0 00

0.0 0.5 1.0 0.0 0.5 1.0
.r Ir
C CNN Weights D Reaction Term
0.1 \._ 03
0.0 4=
0.2 1
0.1 1
0.2 1
0.1 1
0.3 4 — W) [wg — 1
— W1 + Wy + w3
0.4 1 T T T 0.0 = T T
0 1500 3000 0.0 0.5 1.0

Epochs p

Bayesian Universal Differential Equations for PDEs

Fisher KPP equation: ps = p(1 — p) + Doy

Data
20
—— = A
= o 18 |-
1 ® |
. o 16 - °® |
Mean Posterior Prediction o
o I
o 14|
4 ?
Q o O
0 Q 1t
= I
Mean Error Error 10 I
0.1
. 8 - I
Aer Number of Dominant terms % of
6 I : | . . Active terms samples
0.00 025 050 075 1.00 0.0 107 107 1071 \ 107 10°° 10° 05 2 0, p? 73
X .])
05 3 p, p%, p3 27

99-JuliaHub

UDEs Effectively Recover Nonlinearities of Epidemic Models

The baseline case:

dsS(t) 7sr S(t) 1()
= — N

dt

dI(t) 7sr S(¢)I(t) rrrl(t) — T1pl(t)

at N
dR(t

) il ()
LD(¢
¢ df() _ rinl(t).

Replacement of all terms with neural networks:

dS(t)
dt
di(t)
dt
dR(t)
dt
dD(t)
dt

— —NNg;

= NNs; — NNig — NNip
= NNigr

== LNT f\‘r ID

Use SciML knowledge to constrain

the interaction graph, but learn the
nonlinearities!

Actual SINDY SINDY Minimum
Equations Active terms Equations AICC

NNgr 085S1 1: SI 0.74 S 1 14
NNig 0.11 1: 1 0.097 I 19
NNip 0.051 1: 1 0.049 1 21

Table 4: SIRD: SINDY Recovered terms

Bayesian Chemical Reaction Neural Network

B-CRNN learns reaction networks from time course data
and quantifies uncertainty in learned network

a)concgrterasteifo':soata b)/ Bayesian Chemical Reaction Neural Network "\ C)/ Recovered Reaction(s) \
. Cn[AI >, o A
AN /‘,/
— L - R
. aA+bB - cC
< AN b € /

Figure 2. Overview of the B-CRNN which uses time course concentration data (a) to train a

constrained neural network (b) that uses a preconditioned SGLD optimizer to reconstruct the
reaction network and estimate the uncertainty in the learned stoichiometry and reaction rates (c).

99-JuliaHub

Bayesian Chemical Reaction Neural Network

B-CRNN can extrapolate beyond training

B-CRNN describes uncertainty in learned region, purely data-driven ML cannot

] @® Data
reaction rates ” — cnooe
— LSTM
== Training Boundary
1
350 250 08 1
300 i I
250 — ki:Recovered Rate: Reaction 1 200 — ky:Recovered Rate: Reaction 2 _ :
200 === True reaction rate 150 -==- True reaction rate < o4 1
150 . !
100 _/Ir/\ lgg /’\]
50 1
0 l 0 l 02 1
0.095 0.100 0.105 0.110 0.19 0.20 0.21 0.22 :
350 oo '
300 100 _
— k3:Recovered Rate: Reaction 3 — ky:Recovered Rate: Reaction 4 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
250 Y 75 t(s) t(s) t(s)
200 -~ True reaction rate === True reaction rate

150 50
100 | 2% |
50 1 |
0

0120 0125 0130 0135 0140 0145 0.150 0 0.27 0.28 0.29 0.30 0.31

[D]

[E]

Figure 3. Posterior distribution of learned reaction rates for the
four reactions included in table 1. Vertical dashed lines are true
rates.

0 10 20 30 40 0 10 20 30 40

t(s) t(s)

99-JuliaHub

What’s something that’s not quite “just
an ODE” where the UDE technique can
give an equation discovery method?

DeepNLME: Integrate neural networks into traditional NLME modeling

DeepNLME is SciML-enhanced modeling for clinical trials

DeepNLME is SciML-enhanced modeling for clinical trials

Mixed-effects modeling

Plasmatic
concentration
Response

Time Concentration
k PK/ P
plE

Response

Time

Response

L Fixed effects
R
PK PD Random effects

Residual variability
e Observations

3

B¢ Mean/typical prediction

Interindividual variability

Time

Trends in Pharmacological Sciences

« Automate the discovery of predictive
covariates and their relationship to
dynamics

» Automatically discover dynamical
models and assess the fit

* Incorporate big data sources, such as
genomics and images, as predictive
covariates

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

30al: Learn to predict patient behavior (dynamics) from simple data (covariates)

g _ wt Math: Find (6,) such that E[n] =0
G Sex,, \ Requires special fitting procedures (Pumas)
Covariates Ka g 6 e tik1 7

t. SET; .
gi — CL — 62(%>07594 6777,,27
V i 03 67773,3 , i
Structural Model (pre) \
D
W = —Ka[Depot],
Intution: # (the random effects) are a fudge factor d[Central] CL
g = Ka|Depot| — 7[Central].

Find O (the fixed effect, or average effect) such that you
can predict new patient dynamics as good as possible Dynamics

The Impact of Pumas (PharmacUtical Modeling And Simulation)

1 We have been using Pumas software for our Built on SciML
pharmacometric needs to support our
development decisions and regulatory
submissions.

Pumas software has surpassed our expectations on its accuracy and ease of use. We are
encouraged by its capability of supporting different types of pharmacometric analyses within one
software. Pumas has emerged as our "go-to" tool for most of our analyses in recent
months. We also work with Pumas-Al on drug development consulting. We are impressed by the
quality and breadth of the experience of Pumas-Al scientists in collaborating with us on modeling
and simulation projects across our pipeline spanning investigational therapeutics and vaccines at
various stages of clinical development

Husain A. PhD (2020)

Director, Head of Clinical Pharmacology and Pharmacometrics,
Moderna Therapeutics, Inc

modernar

messenger therapeutics

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

30al: Learn to predict patient behavior (dynamics) from simple data (covariates)

g {wt] Math: Find (6,) such that E[n] =0
;=
Sex; \,
Covariates = Ka I 91 e'li1fik,1 |
g; = |CL| = |8y TSI,
V i 63 6777, 3 , _
Structural Model (pre) “
% = —Ka[Depot],
Intution: # (the random effects) are a fudge factor d[Central] CL
pr = Ka[Depot] — 7[Central].

Find O (the fixed effect, or average effect) such that you
can predict new patient dynamics as good as possible Dynamics

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

30al: Learn to predict patient behavior (dynamics) from simple data (covariates)

Math: Find (0,) such that E[n] =0

2= |sez, o,

Covariates Ka s 2 o
g9;=|CL| =| f: =
Structural Model (pre) \

d|Depot
% = —Ka[Depot],

Idea: Parameterize the model such that the models d[Central] TR

can be neural networks, where the weights of the = Ka[Depot] — <

neural networks are fixed effects! at
Dynamics

Indirect learning of unknown functions!

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Typical values Patient data Random effects
i %
0 € RS
. i n ~ MvNormal ({2
Individual parameters
Ka; =0, - "' + ¢ - Age; + o082
CL1 :92 . e'h2 -
1.0_ ‘/; :03 . e77i,il + Co - ‘1'(37q/)f(1$ + : %
) -
£
O .
}:_,; , Dynamics
o d|Depot
d[Depot] = —Ka[Depot],
dt y
d|Central P2\
—[entrall = Ka[Depot] —) ;i-g
dt . <
Error model

Outcome ~ Normal (C entral, v Central - (7)

Therefore, any solver you can
differentiate can do UDE things

Improving Coverage of Automatic Differentiation over Solvers

LinearSolve.jl: Unified Linear Solver Interface Optimization.jl: Unified Optimization Interface
A(p)x = b minimize f (u, p)
NonlinearSolve.jl: Unified Nonlinear Solver Interface SUbjCCttOg(U, p) < O,h(l/l, p) =0
f(u, p) =0 Integrals.jl: Unified Quadrature Interface
ub
DifferentialEquations.jl: Unified Interface for all Jf(t,p)dt
Differential Equations 1" = f(u, p, t) ib
du = f(ua J 22 t)dt + g(”a J 2 t)dI/Vt Unified Partial Differential Equation Interface
L
() —
- u =u,, + f(u)

utt — uxx + f(u)

The SciML Common Interface for Julia Equation Solvers
https://scimlbase.sciml.ai/dev/

Differential Equations Go Beyond ODEs

Discrete equations (function maps, discrete stochastic (Gillespie/
Markov) simulations)

*Ordinary differential equations (ODEs)

*Split and Partitioned ODEs (Symplectic integrators, IMEX
Methods)

*Stochastic ordinary differential equations (SODEs or SDESs)
*Stochastic differential-algebraic equations (SDAES)
*Random differential equations (RODEs or RDEs)
*Differential algebraic equations (DAES)

*Delay differential equations (DDES)

*Neutral, retarded, and algebraic delay differential equations
(NDDEs, RDDEs, and DDAES)

*Stochastic delay differential equations (SDDESs)
*Experimental support for stochastic neutral, retarded, and

algebraic delay differential equations (SNDDEs, SRDDEs, and But if yOu keep adding

SDDAEsS) i

*Mixed discrete and continuous equations (Hybrid Equations, solver ChOIceS,
Jump Diffusions) ;

*(Stochastic) partial differential equations ((S)PDEs) (with both then you re okay?

finite difference and finite element methods)

Unified Interfaces to Partial Differential Tooling

using ModelingToolkit
import ModelingToolkit: Interval, infimum, supremum

A

@parameters x y
@variables u(..)
Dxx = Differential(x)”"2

Dyy = Differential(y)”2

Dxx(u(x,y)) + Dyy(u(x,y)) ~ -sin(pi*x)*sin(pi*y)

[u(e,y) ~ @.fe, u(l,y) ~ -sin(pi*1)*sin(pi*y),

u(x,0) ~ 0.fo, u(x,1) ~ -sin(pi*x)*sin(pi*1)]

domains = [x € Interval(0.0,1.0),

y € Interval(0.0,1.0)]
pde_system = PDESystem(eq,bcs,domains,[x,y],[u])

Lots of Auto-Discretizers:

Physics-Informed NNs: NeuralPDE.jl

Finite Difference / WENO: MethodOfLines.|l
Neural Operators: NeuralOperators.jl

Finite Volume: Trixi.J|

Finite Element: Gridap.|l
Pseudospectral: ApproxFun.|l
High Dimension: HighDIimPDE.j|

New SciML Docs: Comprehensive Documentation of Differentiable
Simulation

HOME MODELING v SOLVERS ~ ANALYSIS ¥ MACHINE LEARNING ¥ DEVELOPER TOOLS ~

EQUATION SOLVERS INVERSE PROBLEMS / PDE SOLVERS THIRD-PARTY PDE SOLVERS
LinearSolve ESTIMATION MethodOfLines Trixi
NonlinearSolve SciMLSensitivity NeuralPDE Gridap
DifferentialEquations DiffEgParamEstim NeuralOperators ApproxFun
Integrals DiffEqBayes FEniCS VoronoiFVM
Optimization HighDimPDE

JumpProcesses DiffEqOperators

° Where to Start? Scientific Machine Learning (SciML) = Scientific Computing + Machine Learning

Getting Started

Where to Start?

Getting Started with Julia's SciML

Want to get started running some code? Check out the Getting Started tutorials.
What is SciML? Check out our Overview.

Want to see some cool end-to-end examples? Check out the Extended Tutorials.

New User Tutorials

Comparison With Other Tools

Version v0.2

Curious about our performance claims? Check out the SciML Open Benchmarks.

SciML Interface Coverage is Growing: Bringing AD to All Solvers by Default

LinearSolve.jl NonlinearSolve.jl

1. SuiteSparse.jl (KLU, UMFPACK) 1. NLsolve.jl (KLU, UMFPACK)
2. RecursiveFactorization.|l| 2. SteadyStateDiffEq.|l

3. Base.LinearAlgebra 3. MINPACK

4. FastLapacklinterface.jl 4. SUNDIALS (KINSOL)

5. Pardiso.jl 5. New methods

6. CUDA.jl (automated GPU offloading)

7. lterativeSolvers.jl .

8. Krylov.jl More keep being added (PETSc,
9. KrylovKit.jl SpeedMapping.jl, etc.)

More keep being added (PETSc, Magma,
HSL, Hypre, Elemental, CuSolverRF, ...)

SciML Interface Coverage is Growing: Bringing AD to All Solvers by Default

Integrals.jl

QuadGK_j|

Cuba.jl

Cubature.j|

Hcubature.||
MonteCarlolntegration.jl

el A

Optimization.jl

Overview of the Optimizers

Package

BlackBoxOptim
CMAEvolutionaryStrategy
Evolutionary

Flux

GCMAES
MathOptinterface
MultistartOptimization
Metaheuristics
NOMAD

NLopt

Nonconvex

Optim

QuadDIRECT

Local
Gradient-
Based

X

8 X X

8 X

B 8 X X X

X B8

Local
Hessian-
Based

X X X X 8 X X X X X

X 8 B8

Local
Derivative-
Free

Bl X X X B8 X X X X X

X B8

Local
Constrained

B X X X X X

X X X

Global
Unconstrained

(< I < I < I < BN < IR < IR < IR < IR < BN QRN < BN < I < |

Global
Constrainec

X
X

Does doing such methods require
differentiation of the simulator?

High fidelity surrogates of ocean columns for climate models

Free ocean convection, t = 0038970 s (0.45 days)

T(°C)

20.0

3D simulations are
high resolution but too
expensive.

19.8

19.6

Can we learn faster
models?

19.4

19.2

19.0

Neural Networks Infused into Known Partial Differential Equations

Derive a 1D approximation
to the 3D model

ot - Oz \ 9)

W/ T/

Incorporate the “convective
adjustment”

0 if 0,7 >0
100 m?/s if 8,T <0

—50 -50
m
—
2 -100 | -100 |
()
E
N
S -150 | ~150 |
o
O]
(a)
—200 t —-200 }
Oceananigans Oceananigans
neural network NDE
_250 -I i 1 1 1 1 _250 MI 1 1 1 1 1 1
Heat flux wT (m/s °C) Temperature T (°C)

loss(T, wT) = |[NN(T) — wT|?

Only okay, but why?

Good Engineering Principles: Integral Control!

Depth z (meters)

-200 |

-250

=100 |

=150 |

—

—50x10° 0 50x10°1.0x10°15x107°2.0x10™

Haat flirv \wT (ml/c o)

— K

or
0z

Temperature T (°C)

Free cogvection (Q = 84 W/m?, train): 0.0(l)o_qlays

-50 10—2
| .
(@]
—
o 3
-100 | »
5 10
()
_
@©
2
?
=150 | c 1074
©
()]
LES =
Convective adjustment
—200 r — Neural DE 1675
Embedded
—KPP
— TKE mass flux
>0 (. 10 : . .
19.65 19.70 19.75 19.80 19.85 19.90 19.95 0 2 4 6 8

Time (davs)

loss(Twn, T) = | Tan(z, t) — T(z, t)|?

But how do you fit a neural

network inside of a simulator?

Part 1: Differentiation of Solvers

u’ = f(z,t) forwards, then
—f (z, —t) backwards!

u’

Machine Learning Neural Ordinary Differential Equations

Timeseries is not
stored, therefore
~~e O(1) in memory!

State

Adjoint State

dagug(t)

The adjoint equation is an ODE!

da(t) _ T af(z(t)v tv 0)
dt ~alt) 0z

How do you get z(t)? One suggestion:
Reverse the ODE

Ofaug

=~ [a®) 9lz,0,1

ag(t)

dt a:(t)]

But... really?

Differentiating Ordinary Differential Equations: The Trick

We with to solve for some cost function G(u, p) evaluated throughout the differential equation, i.e.:

T

Glup) = Glulw) = [glult,p)at
to
To derive this adjoint, introduce the Lagrange multiplier A to form:
T
I0) = G) ~ [X~ fupt)i
to

Since ' = f(u,p,t), this is the mathematician's trick of adding zero, so then we have that

o G dI " ro
S = dp dp — dp [0 (gp+gu3)dt_[0 A (8 fus fp)dt

Differentiating Ordinary Differential Equations: Integration By Parts

for s being the sensitivity, s = g—; . After applying integration by parts to A*s’, we get that:

/tT)* (s'fusfp)dt—/tT)*s'dt/tT)* (fus — fp) dt

T T
— \)*(t)s(t)\z; —/t A" sdt —/t N (fus — fp) dt

To see where we ended up, let's re-arrange the full expression now:

dG T * T r x/ g X
d—p — (gp -+ gus)dt T |)‘ (t)s(t) te A" sdt — A (qu B fp) dt
to to to

T - T
. / (g + " £,)dt + X (8)s(t)|F — / N+ X' fy — ga) sdt

Differentiating Ordinary Differential Equations: The Final Form

T

r T
W :/t (gp+)*fp)dt+|)*(t)s(t)|t0—/t (N X f, — g.) sdt

That was just a re-arrangement. Now, let's require that

df” dg\~
,—__ —_— —_—
A= du A (du)

A(T) =0

This means that the boundary term of the integration by parts is zero, and also one of those integral terms are
perfectly zero. Thus, if \ satisfies that equation, then we get:

dG .., .dG ’ .
b A (to)%(to) +/to (gp + A" fp) dt

Differentiating Ordinary Differential Equations: Summary

1. Solve u = f(u,p,1)

> Solve N — %) (dg)

dG dG r .
3. Solve o :A*(tO)%(t°)+/to (g, + A* f,) dt

Differentiating Ordinary Differential Equations: Step 2 Details

2. Solve \v= _ﬂ 2\ @
du du®

)
A [
)\(T):O\ How do you get u(t) while solving backwards?

3 options!

f(z,t) forwards, then
—f (z, —t) backwards!

1. Y
2. Store u(t) while solving forwards (dense output)

3 Ghedkpointing __—————————
Forward pass

l(() k] k2 k3

I Il 1 1 1 1 1 1 | 1 1 1 Il —_—— -
I 1 I T 1 I I 1 T I I I T

to t b tye ..

e

I &
\/\/\ Backward pass

How the gradient (adjoint) is calculated also matters!

This term is traditionally computed via differentiation and then multiplied to lambda
Reverse-mode embedded implementation: push-forward f(u) pullback lambda
Computational cost O(n) -> O(1) f evaluations and automatically uses optimized
backpropagation!
Six choices for this computation:
\ Numerical
o - Forward-mode
d - Reverse-mode traced compiled graph
g (ReverseDiffVJP(true))
 — Fast method for scalarized

M*N 4 A

d d nonlinear equations
u u « Requires CPU and no branching
(generally used in SciML)
* Reverse-mode static
>\ (T) p— O | Fastest method when applicable

Reverse-mode traced
« Fast but not GPU compatible
. = - - . « Reverse-mode vector source-to-source
Adjoint Differential Equation . Boet for embedded necral
networks

Differentiating Ordinary Differential Equations: Step 3 Details

dG dG 1
% ’f,
3. Solve P A (tO)_l (to) + /to (gp +)\T)fp) dt

How do you calculate the integral?
1. Store A(t) while solving backwards (dense output)

2.u'=—-A"f,+ g,where u(T) =0

What'’s the trade-off between these ideas?

Cool. Can this go wrong?

“Adjoints by reversing” also is
unconditionally unstable on some
problems!

Advection Equation:

du al(du)
= 4 =0
ot dx

Approximating the derivative in X has two choices: forwards or
backwards

a(uj=u;_q)

Ax

u('u“l—u(",l,?

oru; = —
Ax

If you discretize in the wrong direction you get unconditional
instability

You need to understand the engineering principles and the
numerical simulation properties of domain to make ML stable on
it.

Ui,

Piecewise constant

U;

Initial data

Ui

Problems With Naive Adjoint Approaches On Stiff Equations

How do you get u(t) while solving backwards?

Error grows exponentially... 3 options!
u’ = f(z,t) forwards, then
u'(t) = Au(t), plot the error in the reverse 1. W = Zf(z —t) backwards! Unstable

solve:
2. Store u(t) while solving forwards (dense output) High memory

3. Checkpointing ; More Compute
20 Forward pass

e N, ko k ky k3

| ! ! ! ! |] ! ! ! | ! ! — -
| 1 T 1 T T 1 T T T T T 1

te

100 F

Error

10 ‘ bhbeeo bl 0 A s

‘ B
\/\/\ Backward pass
0 \

100

Each choices has an engineering trade-off!

16710 | ‘

—1100 —“50 6 SIO 1(1)0

A
Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural
ordinary differential equations." Chaos (2021).

Problems With Naive Adjoint Approaches On Stiff Equations

Error grows exponentially...

u'(t) = Au(t), plot the error in the reverse Compute cost is cubic with parameter size when stiff

solve:
Size of reverse ODE system is:

1030

2states + parameters
10%° 4 \ Linear solves inside of stiff ODE solvers, ~cubic

Thus, adjoint cost:

10*°

Error

3
O((states + parameters))

10

10—10

_ !

-100 =50 0 50 100

A
Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural
ordinary differential equations." Chaos (2021).

But automatic differentiation

How does it work, and does it fix the
problem?

Symbolic Differentiation on Code

Does Zygote differentiate symbolically?

Specific Domains Machine Learning = question | zygote ' differentiation

julia

';&?=§ using Symbolics
4) @variables x
function f(x)
out = one(x)
for i in 1:5
out »= x7i
end
out
end
sin(f(x)) # sin(x715)

Evaluation with symbolic variables completely removes the “non-mathematical” computational
expressions, and then we symbolically differentiate in this language:

Symbolics.derivative(sin(f(x)),x) # 15(xA14)xcos(x*15)

Automatic Differentiation as Differentiation in the Language of Code

function f(x)
out = x
for i in 1:5
out %= sin(out)
end
out
end
sin(f(x)) # sin(x*sin(x)#sin(x*sin(x))#sin(x*sin(x)#*sin(x*sin(x)))*sin(x#*sin

Symbolics.derivative(sin(f(x)),x) # (sin(x)*sin(x*sin(x))*sin(x*sin(x)#sin(x

Automatic Differentiation as Differentiation in the Language of Code

On that same example, this looks like:

function f(x)
out = x
for i in 1:5
sin(out) => chain rule sin' = cos
tmp = (sin(out[1]), out[2] * cos(out[1]))
out = out * tmp => product rule
out = (out[1] * tmp[1], out[1] * tmp[2] + out[2] * tmp[1])
end
out
end
function outer(x)
sin(x) => chain rule sin' = cos
outl, out2 = f(x)
sin(outl), out2 % cos(outl)
end
dsinfx(x) = outer((x,1))[2]

f((1,1)) # (0.01753717849708632, 0.36676042682811677)
dsinfx (1) # 0.3667040292067162

More Details on
the Algorithm,
see the SciML

Book:

book.sciml.ai

Chapter 10

What does automatic differentiation of
an ODE solver give you?

Are there cases where that Is
mathematically correct but numerically
incorrect?

Wrong gradient for some sensealgs

LBIOERE anhi opened this issue on Jun 8, 2020 - 3 comments - Fixed by

‘ anhi commented on Jun 8, 2020 Assignees

No one—assit

We are currently experimenting with time dependent parameters, but the gradients often seem to come out wrong. For

instance, this here is an artificially simple example for clarity:
Labels

using DiffEqSensitivity, OrdinaryDiffEq, Zygote NETDTEL

function get_param(breakpoints, values, t)
for (i, ti) in enumerate(breakpoints)
if t <= ti None yet
return values[il]
end
end Milestone

Projects

No milestone
return values[end]

end

Developmen

function fiip(du, u, p, t)

a = get_param([1., 2., 3.1, pl[1:4], t) Successfully
issue.
dull] = dx = a * ull] - ul1l] * u[2] ~
dul2] = dy = -a * u[2] + ul1] * ul2] N
e PumasaAl
f~ make dua
p=1I[1., 1., 1., 1.]; u@ = [1.0;1.0] SciML/Dif
prob = ODEProblem(fiip, u@, (0.0, 4.0), p);
Zygote.gradient(p—>sum(concrete_solve(prob, Tsit5(), u®@, p, sensealg = ForwardDiffSensitivity(), saveat = 0.1)] Notifications

Zygote.gradient(p—>sum(concrete_solve(prob, Tsit5(), u®, p, sensealg = ForwardSensitivity(), saveat = 0.1)), p]

Indeed, AD on its own gives the incorrect answer... but why?

Zygote.gradient(p—>sum(concrete_solve(prob, Tsit5(), u@, p, sensealg = ForwardDiffSensitivity(), saveat = 0.1, internalnorm = (u,t) —> sum
(abs2,u/length(u)), abstol=1le-12, reltol=1le-12)), p
) | ([29.755582164326086, 10.206643764088689, 53.37700890093473, 3.5509327396481583],)

Zygote.gradient(p—>sum(concrete_solve(prob, Tsit5(), u®, p, sensealg = ForwardSensitivity(), saveat = 0.1, abstol=1le-12, reltol=1le-12)), p
) ([37.607133325673956, 35.92458894240918, 19.601050929858797, 3.64430485142697071,)

e

Zygote.gradient(p—>sum(concrete_solve(prob, Tsit5(), u®, p, sensealg = ForwardDiffSensitivity(), saveat = 0.1, abstol=1le-12, reltol=1le-12)),
p) | ([37.607133316972764, 35.92458895352116, 19.601050925013986, 3.644304853859423],)

How adaptivity works

Approximate the
error at the new
Error is totimestepeject!

Approximate the

Prélsopeserfew
tintésrgiep h

Any more cases where AD is incorrect?

Differentiation of Chaotic Systems: Shadow Adjoints

~ —49899 (ForwardDiff)
p=28

~ 472 (Calculus)
p=28

il -

= k W WV |

’ 30 35 ‘.2? 45 50 0 0 10 20 IO 30 a0
) # Jim 2 (ah

50

chaotic systems: trajectories diverge to o(1) error
shadowing lemma guarantees that the solution lies on

the attractor

40
30
N

20

10

=20

-10
T

Float64
Float32

0 10 20 -20 Yy

e Shadowing methods in DiffEqSensitivity.jl

p=28

p=28

~ 1.028 (LSS/AdjointLSS)

~ 0.997 (NILSS)

but

https://frankschae.github.io/post/shadowing/

Conclusion Part 1:

Be careful about how you compute
derivatives of equation solvers

Improving Coverage of Automatic Differentiation over Solvers

LinearSolve.jl: Unified Linear Solver Interface Optimization.jl: Unified Optimization Interface
A(p)x = b minimize f(u, p)
NonlinearSolve.jl: Unified Nonlinear Solver Interface Slle@Ct to g(bl, p) < O, h(u, p) =0
f(u, p) =0 Integrals.jl: Unified Quadrature Interface
ub
DifferentialEquations.jl: Unified Interface for all Jf(t,p)dt
Differential Equations 1" = f(u, p, t) ib
du = f(ua J 22 t)dt + g(”a J 2 t)dI/Vt Unified Partial Differential Equation Interface
]
o u, =u, + f(u)

utt — uxx + f(u)

The SciML Common Interface for Julia Equation Solvers
https://scimlbase.sciml.ai/dev/

New SciML Docs: Comprehensive Documentation of Differentiable
Simulation

HOME MODELING ¥ SOLVERS ~ ANALYSIS ¥ MACHINE LEARNING ¥ DEVELOPER TOOLS ~

EQUATION SOLVERS THIRD-PARTY EQUATION SOLVERS INVERSE PROBLEMS / ESTIMATION
LinearSolve LowRankIntegrators SciMLSensitivity
NonlinearSolve Fractional DiffEq DiffEqParamEstim
DifferentialEquations ManifoldDiffEq DiffEqBayes
Integrals
Optimization

JumpProcesses

PDE SOLVERS THIRD-PARTY PDE SOLVERS ADVANCED SOLVER APIS
MethodOfLines Trixi OrdinaryDiffEq
NeuralPDE Gridap DiffEqGPU
NeuralOperators ApproxFun
FENICS VoronoiFVM
HighDimPDE

DiffEqOperators

° i v
Detailed Overview of the SciML Want to chat with someone? Check out our chat room and forums.

Software Ecosystem « Want to see our code? Check out the SciML Github organization.

= And for diving into the details, use the bar on the top to navigate to the submodule of interest!

Version = v0.2

Part 2:

Methods which improve the fitting
process

LUl VIEW JUNIU OTISLUUIL THIU FAURGYTS ISP

n Project testjl lih Plots
b v K& DitteqHux

3 > [.github

0.001154 @ data
v Roas
B docs @ prediction
-
—4 v [l src - %0 o
> I as

v [l examples

v
[

I = function eODEfunc(du, u, p, t) T
ol L [-0.1 2.e -0.1]

) ‘true_A)

.
[

[}

v

(i) (i)

m

= with uType and tType
=| pde_constrained.md tmp_prob = remake
= 2 sical_constraints.m Array(solve(tmp_ s))
= i - '
=] second neural.t B3 REPL

M [m

vy
v
i

Fitting by running the simulator and
doing gradient-based optimization

mH
5

: i = single shooting

I

D
D

Single shooting is not numerically
robust. Other loss functions are
required in practice!

Some Alternative Loss Functions: Multiple Shooting and Collocation

Data
Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13
Group 14
Group 15

OOO@O.@.OO+@OQO.

o

o
@ ¢]

Multiple Shooting Methods

Turan, E. M., & Jaschke, J. (2021). Multiple shooting with neural differential
equations. arXiv preprint arXiv:2109.06786.

Loss
A e
g SO?LT:%?Y: Observation of F Observed solution U Estimated solution Ug
Predicted derivative U™ Estimated derivative U'q
1
o
§ Neural network f Cqmpgre /_\
S derivatives
- 0o U U
Ve Loss 4 } B B
J T T >
Time
Observed solution U X Predicted solution U* : Time
Loss »
Loss 4 - minimisation N
minimisation 2 17
/—\ S Py § Py
> Ue| [U! >
NN, | Pu NN el =2 1 Pu
K_MW d(u, U") Loss » (p): d(U',, U*)
NN
¢ o NN p(Ue)
buidope Y | X v U
X
R U
u* > T >
Time Time
. .

Roesch, Elisabeth, Christopher Rackauckas, and Michael PH Stumpf. "Collocation based training of
neural ordinary differential equations." Statistical Applications in Genetics and Molecular Biology (2021).

Prediction Error Method (PEM)

function simulator(du, u, p, t) # Pendulum dynamics Loss landscape

g = 9.82 # Gravitational constant p—
L = p isa Number ? p : p[1] # Length of the pendulum

gL=g /L

0 = u[1]

de = u[2]

du[1] = d6

du[2] = -gL * sin(®)

MSE loss

function predictor(du, u, p, t)

g = 9.82

L, K, y = p # pendulum length, observer gain and measurements Y

gL=g /L Iy _ 10

& = u[1] Pendulum length

de = u[2]

yt = y(t) Use a modified simulator which is always filtered
e=yt -6 towards the data points

du[1] = d6 + K % e

duf2] = -gL * sin(6) https://docs.sciml.ai/SciMLSensitivity/dev/examples/ode/
prediction_error_method/

Simple Tricks: Growing the Time Interval

o e Doing the optimization in a single
” pass may not be robust,
Successively grow the interval
0 8 \1 ¢ ® 8 1 oo
¢ S Prediction g c 2200

Let’s go back to this example

Upon denoting x = (¢, x, p.€), we propose the follow-
Run the code yourself! ing family of UDEs to describe the two-body relativistic

dynamics:

https://github.com/Astroinformatics/ (1 + e cos(x))?

ScientificMachineLearning/blob/main/ =T (1 + Fi(cos(x),p,e€)), (5a)

neuralode_gw.ipynb - (H(‘_\(_.OS(\))Q(I + Falcos00,p.¢)) -
X = N2 2(cos(x),p.€)), ob
p = Fi3(p,e), (5¢)
¢ = Fulp,e), (5d)

Example using binary black hold] | | ‘ |

. . . . a Spp— TI'IlC \VRVCfOI'Ill
dynamICS W|th LIGO graV|tat|Ona| — = Learned waveform
wave data . MUUUM o Training data
MM

Keith, Brendan, Akshay Khadse, and Scott E. ; ﬂ“m Wlm N /\

Field. "Learning orbital dynamics of binary

black hole systems from gravitational wave .

measurements." Physical Review Research 3, - i 1 - |
no. 4 (2021): 043101 0 5-10° 1-10° 1.5-10° 2-10° 2.5 -10° 3-10°

Time

Let’s go back to this example

NN_params = NN_params .x @ + Float64(le-4) x randn(StableRNG(2031), eltype(NN_params), size(NN_params))

The neural network is a residual, so start the training as a small perturbation!

200 F
Upon denoting x = (¢, x, p,€), we propose the follow- 2
ing family of UDEs to describe the two-body relativistic 7 £ “\\\\
dynamics: 100 k ’;WN“ \‘\\i\
‘, i TN
ST PR 73 SRS
= 1+ F / XA ANNORASYA N
o= L Femne), G s R
A ‘ i o PN \ '
_ (1t ecos()? * I KRR BRSO
(= (1 + FPaleos().p.0). (5D) RO 25y
Mp NS R e A T
p = Fs(p,e), (5¢) \~§‘ﬁi“‘:‘,}§}i$§i:%”:“;"‘ ‘,
R i 100 1 \\mﬂ:‘r‘;&;ﬁ:%'-t"t /
e = Fu(p,e), (5d) X e W - :‘{’IIII’}///'/
trut i o 4
— — = prediction
200 | Newtoni | I | |

—-200 -100 0 100 200

Conclusion Part 2:

Don’t use single shooting. Modify the
simulation process to improve the
fitting.

Sidebar: A note on Neural Network
Architectures in ODEs

ODE Solvers don’t always go forwards!

Approximate the
error at the new
Error is totimestepeject!

Approximate the
olatiahtatht+h

Prélsopeserfew
tinfssgsgiep h

If you’re using an adaptive
ODE solver, you cannot
assume that the next step
will be forward in time from
the previous one.

|.e., neural networks with
state (RNN, GRU, etc.) do
not give a well-defined ODE
solution and will fail in
adaptivity!

Be Aware of Vanishing Gradients

10 UL L ¢ * Many loss functions have gradients which go to zero
B Activation Function | o*" when loss functions get extreme.
Bl Derivative * ODEs naturally amplify values (exponentially!) as time
gets larger
* Consequence: gradients can become zero, making
IS S training become ineffective
Wll': l 1 l T 1 l l L '--I... B)
N2 5 { = RelU Soft lus (:E) — l 10 (1 _|_ eﬁw)
] Softplus(8 = 0.5) P B — ﬂ g

SOlUtIOnS 44— Softplus(f = 1)

- Softplus(f =5)

* Never train for long intervals (successive interval
growth, multiple shooting)

* Use loss functions which don’t saturate (but try and '
keep them smooth (?)) 0]

Part 3:

Methods which ignore such derivative
iIssues that could be interesting to
explore

Challenge: train a surrogate to accelerate an arbitrary highly stiff system

Y Y- Ys
10"
W, |wy ‘Wy
W, W, W
fi . Lk LR
10° |
Wi Wi Wi
- X4 X, X
10° - — :
107 | Recurrent neural network? No!
1. It’s an explicit method! (Euler’s)
0 100 200 300 400 2. Uniform steps will not capture the spikes!

Stiffness causes a problem even
with many SciML approaches like
Physics-Informed Neural Networks

(PINNSs)

Neural networks have difficulties matching highly ill-

conditioned systems
Optimization techniques like gradient descent are explicit

processes attempting to solving a stiff model
Stiffness in the model can translate to stiffness in the

optimization process as it tries to find a manifold
Timescale separations of 10° and more are common in real

applications

We need to utilized all of the advanced
numerical knowledge for handling stiff systems

to work in tandem with ML!

Understanding and mitigating gradient pathologies in physics-informed neural networks

Sifan Wang, Yujun Teng, Paris Perdikaris

eigenvalue
— — —_
()
D

100

104
- £r - ﬁr
Lo, 103 Lo,
102 \
§ 101
109 i
107! M—‘__‘\
0 1000 2000 3000 4000 5000 1o 0 10,000 20,000 30,000 40,000
index iterations
’. ‘l...". ..". ’“ » ..Q.‘.'“‘w..
105_ ¢ 14 ¥
,'
Q i
ND 104 1 ,'
> H
o]
3
bE 10 ::
é
102 _
0 10,000 20,000 30,000 40,000

--o- Stiff (a1 =1, a,=4)
Non-stiff (a; =1, a,=1)

Idea: Avoid Gradients and Use an Implicit Fit

Adapting: continuous-time echo state networks
Build a random non-stiff ODE and find a
projection to the stiff ODE

Some precedence: echo state networks
Fix a random process and find a projection
to fit the system

A W : ’
" x W, Ex g t= a((;lr +WWxx)()
redict x(t) = r(t
’Q r\’\) out
9 i Turns into a linear solve
9 9 Solve the linear system via SVD
9 (to manage the growth factor)
Input Output
S Get W,,,; at many parameters of the system
B Predict behavior at new parameters via:
uln] X[n] Yin] x(t) = Woue ()T (t)
M W, Wour Using a Radial Basis Function constructed

from the W,,,; training data

Input Reservoir Output

Continuous-Time Echo State Networks

Handle the stiff equations where current methods fail

Prediction vs ground truth Robertson’s Equations

1.00 . o °

Classic stiff ODE
Used to test and break integrators
Volatile early transient

0.75

@- prediction (species 1)
ground truth (species 1)

@- prediction (species 2)
ground truth (species 2) . L N 4

©- prediction (species 3) Yy — —()()-11/1 + 10 Yz Y3

ground truth (species 3)

0.50

el

yo = 0.04y; — 104,1/2 cyz — 3+ 10" y.‘_f

0.25

Uy = 3 - 1()7,1/5

$ —3 8 8
7.5%104 1.0%x10°

0.00

Continuous-Time Echo State Networks

Handle the stiff equations where current methods fail

P i T [
i Robertson’s Equations
Classic stiff ODE
o e Used to test and break integrators
Volatile early transient
0.8k 1 (t))) _4
ol \ o y1 = —0.04y1 +107y2 - y3
0.2 1 1 1 1 . . - - ‘ ~7 92
Log-Sca|e Fast 1 1004 0.01 1 100 10k Yo — ()()—J:I/l — 1()4(/2 Y3 — 3 . 1()‘ I/E
Changes! 0-000030F : e
g 0.000025/- R Yz = 3-10° '1/5
NO aUtO-CatalySt’ 0:0000051; 1010;1 0,101 i 1c110 lé)k
no dynamics /

1.00 | =

0.50 |

0.25

0.00

5%107°

4x1075 |

3x1073

2x107°%

1x1073

Continuous-Time Echo State Networks

Handle the stiff equations where current methods fail

—— ground truth

—-= LSTM
@ ESN prediction points

PINN

0.6

05}

0.4

Absolute error

—— ESN with interpolation
---- CTESN
ld A 16 2 160 1(‘)72 7 1;)4
Time (sec) D

Predicting species 2 concentration
0.000100
0.000075
0.000050
0.000025 |
0.000000

10°

Time (sec)

1074 1072

Only CTESNs Capture the Hard
Dvnamics

Time (sec)

Absolute error

10°
Time (sec)

Execution time (sec)

125

,_.
g
=3

7.5

5.0

25

0.0

Scaling performance of model vs surrogate

@- stiff model
- surrogate

o
o
P o ’
//‘l
S~
v
.«‘/
o
-
o
e — - * * * * " * T
20 40 60 80 100

Number of rooms N

After training, 100x faster
than direct simulation!

ReservoirComputing.jl

- Lorenz System Coordinates
Reservolir STy
Computing.jl= |

Z o
>

-20

output_layer = train(esn, target_data) 40
output = esn(Generative(predict_len), output_layer) .

i,\:; 25

10

max(A)*t

Part 4: Performance

A Deep Dive into how Performance is
Different Between Deep Learning and
Differentiable Simulation

When/Why should this be preferred
over other techniques like physics-
informed neural networks (PINNs) and

neural operator techniques
(DeepONets)?

Why Use Physics-Informed Neural Networks?

Problem
- . M"
Harmonic oscillator

Neural network
Training step: 10

o A W

Exact solution
e Neural network prediction
Training data

Physics-informed neural network
Training step: 150

Exact solution

== Neural network prediction
Training data
Physics loss training locations

MSE = MvSE{u,BC,[C} - MS'ER]

Mix data and physics loss

Outperforms standard machine learning

Keeping Neural Networks Small Keeps Speed For Inverse Problems

DeepXDE (TensorFlow Physics-Informed NN)

Problem: parameter estimation Best model at step 57000:
of Lorenz equation from data train loss: 5.91e-03
Ontin (0,3) test loss: 5.86e-03
xy.2) test metric: []
60

'"train' took 362.351454 s

40) DiffEqFlux.jl (Julia UDESs)
opt = Opt(:LN_BOBYQA, 3)
o lower_bounds! (opt,[9.0,20.0,2.0])
" upper_bounds! (opt,[11.0,30.0,3.0])
min_objective! (opt, obj_short.cost_function2)
" xtol_rel! (opt,le-12)

maxeval! (opt, 10000)
atime (minf,minx,ret) = NLopt.optimize(opt,LocIniPar)

- ©.032699 seconds (148.87 k allocations: 14.175 MiB)
10 20 -4 (2.7636309213683456e-18, [10.0, 28.0, 2.66], :XTOL_REACHED)

Note on Neural Networks “Outperforming” Classical Solvers

Long-time integration of parametric evolution equations with physics-informed DeepONets
Sifan Wang, Paris Perdikaris

Ordinary and partial differential equations (ODEs/PDEs) play a paramount role in analyzing and simulating complex dynamic processes across all corners of science and engineering. In
recent years machine learning tools are aspiring to introduce new effective ways of simulating PDEs, however existing approaches are not able to reliably return stable and accurate
predictions across long temporal horizons. We aim to address this challenge by introducing an effective framework for learning infinite-dimensional operators that map random initial
conditions to associated PDE solutions within a short time interval. Such latent operators can be parametrized by deep neural networks that are trained in an entirely self-supervised
manner without requiring any paired input-output observations. Global long-time predictions across a range of initial conditions can be then obtained by iteratively evaluating the trained
model using each prediction as the initial condition for the next evaluation step. This introduces a new approach to temporal domain decomposition that is shown to be effective in
performing accurate long-time simulations for a wide range of parametric ODE and PDE systems, from wave propagation, to reaction-diffusion dynamics and stiff chemical kinetics, all at a

fraction of the computational cost needed by classical numerical solvers.

Note on Neural Networks “Outperforming” Classical Solvers

. A

- ®= = Numerical solver /

DeepONet

PR
y
/
/
w
/
ol
/
/
/
/
/
w
107 10° 10

ODEs solved

Oh no, we’re doomed!

using ModelingToolkit, OrdinaryDiffEq, StaticArrays

. @variables t y,(t) y2(t) ys(t)
Walt d second? gparameters ki ka ks
D = Differential(t)
eqs = [D(y1) ~ -ka*ya+ks*y2*ys
D(y2) ~ ki*yi-ka*y>72-k3*y,*y3
D(ys) ~ ka2*y2"2]

Numerical solver 5ys = ODESystem(eqs, t)
) prob = ODEProblem{false}(sys,SA[y.=>1f0,y,=>0f0,y3;=>0f0], (0f0,50010),
DeepONet SA[k,=>4f-2,k,=>3f7,ks=>1f4],jac=true)
N = 1000
Julia: Laptop CPU yis = rand(Float32,N)
DeepONet: Tesla V100 GPU y2s = 1f-4 .* rand(Float32,N)

ysS = rand(Float32,N)

function prob func(prob,i,repeat)
remake(prob,p=SA[yas[i],y2s[1],y3s[1]])

Julia’s numerical

SO o solve(monteprob,Rodass (), EnsembleThreads () , trajectories=1000)
7,000x solve(monteprob,Rodass (), EnsembleThreads () , traj

monteprob = EnsembleProblem(prob, prob func = prob func, safetycopy=false)

@time solve(monteprob,Rodas5(),EnsembleThreads(),trajectories=1000)

Wait a second?

) = ®= = Numerical solver //’
10~ " .
PeepORe! el Similar story on Fourier
B) i Neural Operator results!
2 v
’
O ’
5 10%; ~ How come so far off?
’
’
,” Julia’s numerical
w solver is faster by
100_ 7,000x
10? 10*
O Ived

If Differentiable Simulation techniques
are easily >1000x more efficient, then
why doesn’t everyone “see” that?

Code Optimization in Machine Learning vs Scientific Computing

Which Micro-optimizations matter for BLAS1? Which Micro-optimizations matter for BLAS3?
Sl : 10—1.5 -
Scientific codes
1074° ¢ — 10730 +
= O(n) and O(n"2) e |
E 10655 | — . - 10740
e o’ operations g
wee | ' - E oy
12-” » — P Z;)ét;rlzadcastturbo! 107°°
— | =9 - 10°69
10* 107 10° *
10752 mul! (OpenBLAS)
o 7 - r;nygemmturbo!
10 " gpu
.. Which Micro-optimizations matter for BLAS2? 16775 ' mult gpu
Mutation and | B I 10’ r\1|07 10°
Memory management: 10x . .
Big O(n"3) operations?
Manual SIMD: 5x | Just use a GPU
E 0t Don’t worry about overhead
100 | You're fine!
1070 F ;L?!"f’é’gé:;ﬂ;\s)
| | Simplest code is ~3x from optimized
10* 107 10°
N

What happens when you specialize computations?

Which Micro-optimizations matter for BLAS1?
Scientific codes SimpleChains.jl
5, O(n) and O(n"2)
operations Doing small network scientific
machine learning in Julia on CPU 5x
——- faster than PyTorch on GPU
o Which Micro-optimizations matter for BLAS2? (1OX JaX On CPU)
Mutation and Loés | - _—
Memory management: 10x . _
Manual SIMD: 5x o] Details in the release blog post
" s | Only for size ~100 layers and below!
- 1;‘ 12)7 = gpulé)3

SimpleChains + StaticArray Neural ODEs

sc = SimpleChain (
static(2),
Activation(x -> x.”73),
TurboDense{true} (tanh, static(50)),
TurboDense{true} (identity, static(2))
)

p nn = SimpleChains.init params (sc)

f(u,p,t) = sc(u,p)

his function is plugged into an ODE solver and the L2 loss is calculated from

1e numerical solution and the NeuralODE output.

prob nn = ODEProblem(f, u0, tspan)

function predict neuralode (p)
Array (solve (prob nn,
Tsit5 () ; p=p, saveat=tsteps, sensealg=QuadratureAdjoint (autojacvec=Zygote
VJP())))
end

About a 5x improvement

~1000x in a nonlinear mixed
effects context

Tutorial should be up in a few
days

Caveat: Requires

sufficiently small ODEs
(<20)

Let’s dive into some performance
optimizations and see what’s required
in practice on Burger’s Equation

SciML Open Source Software
Organization
sciml.ai

DifferentialEquations.jl: 2x-10x Sundials, Hairer, ...

DiffEgFlux.jl: adjoints outperforming Sundials and PETSc-TS
ModelingToolkit.jl: 15,000x Simulink

Catalyst.jl: >100x SimBiology, gillespy, Copasi

DataDrivenDiffEq.jl: >10x pySindy

NeuralPDE.jl: ~2x DeepXDE* (more optimizations to be done)
NeuralOperators.jl: ~3x original papers (more optimizations required)
ReservoirComputing.jl: 2x-10x pytorch-esn, ReservoirPy, PyRCN
SimpleChains.jl: 5x PyTorch GPU with CPU, 10x Jax (small only!)
DiffEQGPU.jl: Some wild GPU ODE solve speedups coming soon

And 100 more libraries to mention...

If you work in SciML and think optimized and maintained
implementations of your method would be valuable, please let us know
and we can add it to the queue.

Democratizing SciML via pedantic code optimization
Because we believe full-scale open benchmarks matter

