
Connecting Scientific Machine Learning
with Acausal Modeling

Chris Rackauckas, JuliaHub and MIT
Yingbo Ma, JuliaHub

This talk is high-level, talking about what
is done rather than the core algorithms.
For a longer discussion on the core
algorithms, see book.sciml.ai and other
longer training sources (the new
ModelingToolkitCourse notes!)

High Level Point:

SciML is the connection between modeling and ML

ModelingToolkit.jl is a modeling system built around
symbolic-numeric methods.

Symbolic-Numeric-ML computing is our next step

Building an Ecosystem on Open Source Foundations

Julia Language and
SciML

Julia is a high-level language that is faster than R and Python

expressive

Computer Language Benchmarks Game: all-language summary (May 10, 2022)
Tweeted by the Chapel folks: https://twitter.com/ChapelLanguage/status/1484581096604016647

The Julia Community Is Growing!

YTD YTD

YTD YTD YTD

 SciML: Common Interface for Julia Equation Solvers

● LinearSolve.jl

● NonlinearSolve.jl

● DifferentialEquations.jl

● Integrals.jl

● Optimization.jl

Differential Equation Solvers: Speed
Benchmarks

● 50x faster than SciPy
● 50x faster than MATLAB
● 100x faster than deSolve in R

Citations
https://github.com/SciML/SciMLBenchmarks.jl

Rackauckas, Christopher, and Qing Nie. "Differentialequations.jl–a performant and feature-rich ecosystem for
solving differential equations in julia." Journal of Open Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated
algorithm development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Non-Stiff ODE: Rigid Body System Stiff ODE: HIRES Chemical Reaction Network

https://github.com/SciML/SciMLBenchmarks.jl

New Parallelized GPU ODE Parallelism: 20x-100x Faster than
Jax and PyTorch

GPU ODE Parallelism: 20-100x Faster than Jax
and PyTorch

Matches CUDA but works on AMD, Intel and Apple GPUs

Symbolic-Numerics
in Scientific
Machine Learning

Data + Physics = Scientific Machine Learning

What is Scientific Machine Learning (SciML)?

Scientific Computing ↔ Machine Learning

Machine Learning

● Neural Nets
● Bayesian

Modeling
● Automatic

Differentiation

Scientific Computing Scientific Machine Learning

● Model Building
● Robust Solvers
● Control Systems

● Differentiable Simulators
● Surrogates and ROM
● Inverse Problems & Calibration
● Automatic Equation Discovery
● Applicable to Small Data

and more ….

13

Julia Computing

JuliaSim Model Discovery: Autocompleting Models with SciML

Accurate Model Extrapolation Mixing in Physical Knowledge

Automated discovery of geodesic equations from LIGO
black hole data: run the code yourself!

https://docs.sciml.ai/Overview/stable/showcase/blackhole/

Keith, B., Khadse, A., & Field, S. E. (2021). Learning orbital
dynamics of binary black hole systems from gravitational wave
measurements. Physical Review Research, 3(4), 043101.

For more examples, see Scientific Machine
Learning Through Symbolic Numerics,

JuliaCon 2023 Keynote

Universal Differential Equations Predict Chemical Processes

UDEs in advection-diffusion transform the learning problem to
low dimensional spaces where small data is sufficient

Universal Differential Equations Predict Chemical Processes

Santana, V. V., Costa, E., Rebello, C. M., Ribeiro, A. M., Rackauckas, C., &
Nogueira, I. B. (2023). Efficient hybrid modeling and sorption model discovery
for non-linear advection-diffusion-sorption systems: A systematic scientific
machine learning approach. Chemical Engineering Science

Recovers equations with the same
2nd order Taylor expansion

For more success stories, see Accurate and
Efficient Physics-Informed Learning Through

Differentiable Simulation

UDEs Effectively Recover Nonlinearities of Epidemic Models

Use SciML knowledge to constrain the
interaction graph, but learn the

nonlinearities!

Scientific Machine Learning vs. Pure MLPhysically-Informed Machine Learning

Using knowledge of the physical forms as
part of the design of the neural networks.

New Architecture: DigitalEcho

Smoother, more accurate results

ln(x) ex

Scientific Machine Learning vs. Pure ML

https://docs.google.com/file/d/1ohlgF8d0gGtRweNDvOqHKbTX2i9b37pe/preview

Two Questions to Link Acausal Modeling to ML:

1. How can one create ML pieces that approximate
components? (Surrogates)

2. How can one create components which embed
ML? (ModelingToolkit/JuliaSimCompiler)

Introducing: ModelingToolkit

ModelingToolkit.jl = Component Based Modeling

Acausal Modeling Benefits:
- Natural & analogous to real life schematics
- Easier to edit and adapt compared to

Block-Diagram modeling
- Efficient: both in human and computational time
- Libraries and Subsystems: Don’t Repeat Yourself

Mechanical Example

Electrical Example
Images Courtesy of: Dr. Mike Tiller (mbe.modelica.university)

Causal vs Acausal Modeling

Show it, don’t tell it!

Let’s use some elementary circuit examples to
demonstrate the difference.

Kirchhoff's Voltage Law

RC Circuit: Causal

Device

equations

Kirchhoff's Current Law

RC Circuit: Causal

RC Circuit: Causal

systems = @named begin

 Vc_int = Integrator()

 adder = Add(k1 = 1, k2 = -1)

 c_gain = Gain(1 / (R * C))

 voltage_source = Step(start_time = 2, height = 1)

end

causal_rc_eqs = [connect(voltage_source.output, adder.input1)

 connect(adder.output, c_gain.input)

 connect(c_gain.output, Vc_int.input)

 connect(Vc_int.output, adder.input2)]

@named casual_rc = ODESystem(causal_rc_eqs, t; systems)

systems = @named begin
 resistor = Resistor(; R)
 capacitor = Capacitor(; C)
 inductor = Inductor(; L)
 source = Voltage()
 ground = Ground()
end

rlc_eqs = [connect(source.p, resistor.p)
 connect(resistor.n, inductor.p)
 connect(inductor.n, capacitor.p)
 connect(capacitor.n, source.n, ground.g)]

@named acasual_rlc = ODESystem(rlc_eqs, t; systems)

Human time: ~1 min

RLC Circuit: Acausal (Component Based Modeling)

How Acausal Modeling Works: Connections
Acausal Connections

Connecting nodes generates
equations:

- Across variables are equal
- Through variables sum to zero

RC Circuit: Acausal

Flow variables connect by adding to 0

Standard variables connect via equality

RC Circuit: Acausal

Structural simplification finds the
small set of equations to solve

Eliminated variables are
algebraically constructed

How Acausal Modeling Works: Example

ModelingToolkit’s
Symbolic-Numeric
Manipulations

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Symbolics.jl

MTK

DiffEq

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated
algorithm development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

ModelingToolkit: Acausal Component-Based Modeling
Heavily Inspired By Modelica

● Fully open source modeling language

● Comes with the “standard” transformations

required for component-based modeling (tearing,

Pantelides algorithm, etc.)

● Fully open source standard library based on the

Modelica Standard Library

○ Currently incomplete and taking

contributions!

● Allows users to customize and write their own

symbolic model transformations and alternative

front ends

Example of Tearing Nonlinear Systems

Example of Tearing Nonlinear Systems

It automatically reduced your 5 equation system to 1!

Example of Tearing Nonlinear Systems

Only solves one equation numerically

But can generate the other variables

Soon: Exact ODE Reduction

JuliaSim

Building an Ecosystem on Open Source Foundations

JuliaSim enhances and
extends ModelingToolkit
for industrial users

Transform
ModelingToolkit models
into digital twins with
easy calibration to data.

Documentation at:
help.juliahub.com

JuliaSim: Accelerate Modeling with Component Libraries

4 more libraries in the
roadmap:

● Media
● Fluid
● Aerial Vehicles
● Process Modeling

This roadmap is not
fixed and is looking for
input from you!

10/11/2022
Brad Carman

Catapult
Project

Model History: >1,000x over Simulink, and Beyond

2014

• I joined Instron

• Built Implicit Newton/Euler
Equation Based model in pure
Matlab with inverse and subset
model generator using
Symbolic Toolbox

• Increased model accuracy with
elimination of assumptions and
increased complexity

• Worked well, but…

• Slow

• Hard to update and
maintain

2000

• Inverse Model: Transfer
functions

• Forward Model: Simulink

2017

• Attempted to move to
SimScape

• Successfully transitioned
model with improved speed,
but required many
workarounds and hacks

• Never released…

2020

• Moved to Julia

• Developed EmbeddedJulia
library,
ModelingToolkitComponents.jl
and successfully transitioned
model to JuliaSim

Matlab2CSharp and SimScape Manager

2.5kHz 10kHz

>1000x performance improvements
over Simulink!

Catapult Light Design using JuliaSim

Goal: Eliminate Expensive Multi-Mode System, Design Low Cost
Single Mode “Catapult Light” System

Strategy: optimize controller and hardware to provide acceptable
performance.

How: use simulation to optimize controller configuration and tuning, real
life testing is prohibitive in cost and time. Simulation required for 1 data
point is:

- 25 runs for iterative command calculation
- 25 runs for simulated iterations
- 5 runs for repeat shots
- x10 signals = total of 550 model runs

Equivalent to ~2 days of real life testing

Current Matlab simulation time (1 data point): 10 minutes
Required Data Points for Iterative Design Optimization: 1000+
🡪 166+ Days of Matlab Simulation Time
🡪 8 Hours JuliaSim Time

Accelerated Simulation of HVAC Systems
● Model of vapor compression cycle model
● Contains 8,000 stiff differential algebraic

equations
● Reference Dymola model took 35.3

seconds to simulate.
● JuliaSim version took 5.8 seconds.
● Speed of factor of nearly 6x.

Accelerated Simulation of HVAC Systems
Next step, create surrogate model:

● Concerned with 20 specific signals inside the HVAC system
● Surrogate was up to 95x faster than JuliaSim version
● Total speed up Dymola→Surrogate: 570x

Training set size Reservoir size Prediction time Speedup over baseline

100 1000 0.06 s 95x

1000 2000 0.56 s 10x

JuliaSim:
Surrogate Components

JuliaSim Surrogates
You bring physics, we bring machine learning.
Together we achieve fast simulation.

MODULES

Accelerate large
simulations with
ML-surrogates

Connect surrogate
models in Modeling
Toolkit

Accelerate large simulations
without retraining

SYSTEMS
MODEL

MULTIPHYS
ICS MODEL

NEURAL
NETWORK

100x FASTER
SIMULATION

EMBED
SURROGATES

Total speedup 570x

■ 2D electrochemical model of a single battery

○ 300 equations, 5 ms solve time

■ Battery pack: repeat the model 200 times

○ Very long simulation time

○ Most tools cannot scale

physically-accurate

models to full packs

JuliaSim Batteries overview

49

Universal Differential Equations Generate More Accurate Models
of Battery Degradation

Researchers at CMU Used Universal Differential
Equations to Improve Models of Battery
Degradation to Suggest Better Batter Materials

UBDM = Universal Battery Degradation Model

Digital Echo on Live Battery Models

https://docs.google.com/file/d/1WyblPkyXBqahBdClMfHfQcrJZU907RV-/preview

Introducing: JuliaSimCompiler
Scaling Symbolic-Numerics for ML

Introducing JuliaSimCompiler

JuliaSimCompiler: Better scaling of ModelingToolkit models

Acausal model compilers automatically simplify and improve model code.

But can they achieve top performance on large-scale models?

sys = structural_simplify(complete_motor)

JuliaSimCompiler: Accelerated ModelingToolkit

2 lines of code to turn on, enables enormous scalability improvements

Solves a major scaling problem in acasual systems

Conclusion: ModelingToolkit is a widely used open modeling platform, and with
JuliaSim it’s also the most scalable.

using JuliaSimCompiler

complete_motor_ir = IRSystem(complete_motor)

sys_ir = structural_simplify(complete_motor_ir)

MTK

JuliaSimCompiler

Loop Rerolling

systems = @named begin

 sine = Sine(frequency = 10)

 source = Voltage()

 resistors[1:n] = Resistor()

 capacitors[1:n] = Capacitor()

 ground = Ground()

end;

Loop Rerolling

resistors_1₊v(t) ~ resistors_1₊p₊v(t) - resistors_1₊n₊v(t)
0 ~ resistors_1₊p₊i(t) + resistors_1₊n₊i(t)
resistors_1₊i(t) ~ resistors_1₊p₊i(t)
resistors_1₊v(t) ~ resistors_1₊R*resistors_1₊i(t)
resistors_2₊v(t) ~ -resistors_2₊n₊v(t) + resistors_2₊p₊v(t)
0 ~ resistors_2₊p₊i(t) + resistors_2₊n₊i(t)
resistors_2₊i(t) ~ resistors_2₊p₊i(t)
resistors_2₊v(t) ~ resistors_2₊R*resistors_2₊i(t)

Variable classes:
{{resistors_1₊v, resistors_2₊v, …},
 {resistors_1₊p₊v, resistors_2₊p₊v}, …}
Equation classes:
{0 = f₁(x, y, z) = x - (y - z),
 0 = f₂(x, y) = x + y, …}

Loop Rerolling

for var"%33" = 1:97
 var"%34" = var"%33" - var"%32"
 var"%35" = var"%29" + var"%34"
 var"%36" = Base.getindex(var"###in 1###", var"%35")
 var"%37" = var"%30" + var"%34"
 var"%38" = Base.getindex(var"###in 1###", var"%37")
 var"%39" = var"%31" + var"%34"
 var"%40" = Base.getindex(var"###in 1###", var"%39")
 var"%41" = var"%24" * var"%38"
 var"%42" = var"%41" + var"%36"
 var"%43" = var"%40" + var"%42"
 var"%44" = var"%31" + var"%33"
 var"%45" = Base.setindex!(var"###out###", var"%43", var"%44")
end

Loop Rerolling on JuliaSimBattery (Single-Particle Model (SPM), Lithium Nickel
Manganese Cobalt Oxide (NMC))

Inlined Linear Solver Optimization

Algebraic variables: λ, θˍtt 😱
But they are linear! 😏🚀

Inlined Linear Solver Optimization

Inlined Linear Solver Optimization: Multibody

https://docs.google.com/file/d/1j9zEIERh1YQ0sGv6s3TClK2RSp7HBlqr/preview
https://docs.google.com/file/d/1l-Pm66sltibk8YXUBN5Ztmya6yAT8mX5/preview

Thanks!

December, 2023

Some Speical
Things in
ModelingToolkit

ModelingToolkit: Taking Acausal Component-Based Modeling Beyond DAEs

● Sets up a stochastic delay differential equation (SDDE) with driving white noise

● Solved using (implicit) high-order adaptive SDDE solvers

● Can be used to model difficult components like sensors

ModelingToolkit Feature Highlight: Sophisticated Stochastic Modeling

Chemical Reaction Systems as
Stochastic Models

ModelingToolkit Feature Highlight: Sophisticated Stochastic Modeling

Transform the stochastic model into an
approximating deterministic model:

ModelingToolkit Feature Highlight: Sophisticated Stochastic Modeling

You can write out the moments…

This sounds like a problem for a
symbolic modeling tool to figure
out for you…

Transform the stochastic model into an
approximating deterministic model

Of means and moments

ModelingToolkit Feature Highlight: Sophisticated Stochastic Modeling

Solution for the means and variances
computed via an ODE!

ModelingToolkit PDEs: Method Of Lines Finite Difference

ModelingToolkit PDEs: Physics-Informed Neural Networks

Easy and Customizable PINN PDE Solving with NeuralPDE.jl, JuliaCon 2021

ModelingToolkit PDEs: Extensible PDE Interface

Coming soon:

Finite Volume methods
Spectral methods
Finite element methods
…

Attempting to unify the difference PDE
discretization methods into a one
interface compatible with
component-based modeling!

JuliaSim at a Glance

The Julia implementation is 6x faster than Dymola for the full
cycle simulation.

● Dymola reference model: 35.3 s
● Julia (as close to) equivalent model: 5.8 s
● Could be due to details such as the linear solvers, the refrigerant

property libraries, etc. More benchmarking to come.

Using CTESNs as surrogates improves simulation times
between 10x-95x over the Julia baseline. Acceleration depends
on the size of the reservoir in the CTESN. The surrogate
approximates 20 of the observables.

Error is < 5% in all cases.

8,000 ODE Highly stiff
vapor-compression cycle
model

Total speedup over Dymola: 60-570x

Training set size Reservoir size Prediction time Speedup over baseline

100 1000 0.06 s 95x

1000 2000 0.56 s 10x

ARPA-E
 Accelerated Simulation of Building Energy Efficiency

https://docs.google.com/file/d/1A1RwT2mfjRDnrh6vEOgv8r-QFPsRNXP1/preview

