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This talk is high-level, talking about what 
is done rather than the core algorithms. 
For a longer discussion on the core 
algorithms, see book.sciml.ai and other 
longer training sources (the new 
ModelingToolkitCourse notes!)



High Level Point:

SciML is the connection between modeling and ML

ModelingToolkit.jl is a modeling system built around 
symbolic-numeric methods.

Symbolic-Numeric-ML computing is our next step



Building an Ecosystem on Open Source Foundations



Julia Language and 
SciML



Julia is a high-level language that is faster than R and Python

expressive

Computer Language Benchmarks Game: all-language summary (May 10, 2022)
Tweeted by the Chapel folks: https://twitter.com/ChapelLanguage/status/1484581096604016647



The Julia Community Is Growing!

YTD YTD

YTD YTD YTD



      SciML: Common Interface for Julia Equation Solvers

● LinearSolve.jl

● NonlinearSolve.jl

● DifferentialEquations.jl

● Integrals.jl

● Optimization.jl

 

 

 

 

 



Differential Equation Solvers: Speed
Benchmarks

● 50x faster than SciPy
● 50x faster than MATLAB
● 100x faster than deSolve in R

Citations
https://github.com/SciML/SciMLBenchmarks.jl

Rackauckas, Christopher, and Qing Nie. "Differentialequations.jl–a performant and feature-rich ecosystem for 
solving differential equations in julia." Journal of Open Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated 
algorithm development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Non-Stiff ODE: Rigid Body System Stiff ODE: HIRES Chemical Reaction Network

https://github.com/SciML/SciMLBenchmarks.jl


New Parallelized GPU ODE Parallelism: 20x-100x Faster than 
Jax and PyTorch

GPU ODE Parallelism: 20-100x Faster than Jax 
and PyTorch

Matches CUDA but works on AMD, Intel and Apple GPUs



Symbolic-Numerics 
in Scientific 
Machine Learning



Data + Physics = Scientific Machine Learning



What is Scientific Machine Learning (SciML)?

Scientific Computing ↔ Machine Learning

Machine Learning

● Neural Nets
● Bayesian 

Modeling
● Automatic 

Differentiation

Scientific Computing Scientific Machine Learning

● Model Building
● Robust Solvers
● Control Systems

● Differentiable Simulators 
● Surrogates and ROM
● Inverse Problems & Calibration
● Automatic Equation Discovery
● Applicable to Small Data 

and more …. 
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Julia Computing 

JuliaSim Model Discovery: Autocompleting Models with SciML



Accurate Model Extrapolation Mixing in Physical Knowledge

Automated discovery of geodesic equations from LIGO 
black hole data: run the code yourself!

https://docs.sciml.ai/Overview/stable/showcase/blackhole/

Keith, B., Khadse, A., & Field, S. E. (2021). Learning orbital 
dynamics of binary black hole systems from gravitational wave 
measurements. Physical Review Research, 3(4), 043101.

For more examples, see Scientific Machine 
Learning Through Symbolic Numerics, 

JuliaCon 2023 Keynote



Universal Differential Equations Predict Chemical Processes

UDEs in advection-diffusion transform the learning problem to 
low dimensional spaces where small data is sufficient



Universal Differential Equations Predict Chemical Processes

Santana, V. V., Costa, E., Rebello, C. M., Ribeiro, A. M., Rackauckas, C., & 
Nogueira, I. B. (2023). Efficient hybrid modeling and sorption model discovery 
for non-linear advection-diffusion-sorption systems: A systematic scientific 
machine learning approach. Chemical Engineering Science

Recovers equations with the same 
2nd order Taylor expansion

For more success stories, see Accurate and 
Efficient Physics-Informed Learning Through 

Differentiable Simulation



UDEs Effectively Recover Nonlinearities of Epidemic Models

Use SciML knowledge to constrain the 
interaction graph, but learn the 

nonlinearities!



Scientific Machine Learning vs. Pure MLPhysically-Informed Machine Learning

Using knowledge of the physical forms as 
part of the design of the neural networks.

New Architecture: DigitalEcho

Smoother, more accurate results

ln(x) ex

Scientific Machine Learning vs. Pure ML

https://docs.google.com/file/d/1ohlgF8d0gGtRweNDvOqHKbTX2i9b37pe/preview


Two Questions to Link Acausal Modeling to ML:

1. How can one create ML pieces that approximate 
components? (Surrogates)

2. How can one create components which embed 
ML? (ModelingToolkit/JuliaSimCompiler)



Introducing: ModelingToolkit



ModelingToolkit.jl = Component Based Modeling

Acausal Modeling Benefits:
- Natural & analogous to real life schematics
- Easier to edit and adapt compared to 

Block-Diagram modeling
- Efficient: both in human and computational time
- Libraries and Subsystems: Don’t Repeat Yourself

Mechanical Example

Electrical Example
Images Courtesy of: Dr. Mike Tiller (mbe.modelica.university)



Causal vs Acausal Modeling

Show it, don’t tell it!

Let’s use some elementary circuit examples to 
demonstrate the difference.



Kirchhoff's Voltage Law

RC Circuit: Causal

Device 

equations

Kirchhoff's Current Law



RC Circuit: Causal



RC Circuit: Causal

systems = @named begin

    Vc_int = Integrator()

    adder = Add(k1 = 1, k2 = -1)

    c_gain = Gain(1 / (R * C))

    voltage_source = Step(start_time = 2, height = 1)

end

causal_rc_eqs = [connect(voltage_source.output, adder.input1)

                 connect(adder.output, c_gain.input)

    connect(c_gain.output, Vc_int.input)

                 connect(Vc_int.output, adder.input2)]

@named casual_rc = ODESystem(causal_rc_eqs, t; systems)



systems = @named begin
    resistor = Resistor(; R)
    capacitor = Capacitor(; C)
    inductor = Inductor(; L)
    source = Voltage()
    ground = Ground()
end

rlc_eqs = [connect(source.p, resistor.p)
           connect(resistor.n, inductor.p)
           connect(inductor.n, capacitor.p)
           connect(capacitor.n, source.n, ground.g)]

@named acasual_rlc = ODESystem(rlc_eqs, t; systems)

Human time: ~1 min

RLC Circuit: Acausal (Component Based Modeling)



How Acausal Modeling Works: Connections
Acausal Connections

Connecting nodes generates 
equations:

- Across variables are equal
- Through variables sum to zero



RC Circuit: Acausal

Flow variables connect by adding to 0

Standard variables connect via equality



RC Circuit: Acausal

Structural simplification finds the 
small set of equations to solve

Eliminated variables are 
algebraically constructed



How Acausal Modeling Works: Example



ModelingToolkit’s 
Symbolic-Numeric 
Manipulations



, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm 
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Symbolics.jl

MTK

DiffEq

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated 
algorithm development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.



ModelingToolkit: Acausal Component-Based Modeling
Heavily Inspired By Modelica

● Fully open source modeling language

● Comes with the “standard” transformations 

required for component-based modeling (tearing, 

Pantelides algorithm, etc.)

● Fully open source standard library based on the 

Modelica Standard Library

○ Currently incomplete and taking 

contributions!

● Allows users to customize and write their own 

symbolic model transformations and alternative 

front ends



Example of Tearing Nonlinear Systems



Example of Tearing Nonlinear Systems

It automatically reduced your 5 equation system to 1!



Example of Tearing Nonlinear Systems

Only solves one equation numerically

But can generate the other variables



Soon: Exact ODE Reduction



JuliaSim



Building an Ecosystem on Open Source Foundations

JuliaSim enhances and 
extends ModelingToolkit 
for industrial users

Transform 
ModelingToolkit models 
into digital twins with 
easy calibration to data.

Documentation at:
help.juliahub.com



JuliaSim: Accelerate Modeling with Component Libraries

4 more libraries in the 
roadmap:

● Media
● Fluid
● Aerial Vehicles
● Process Modeling

This roadmap is not 
fixed and is looking for 
input from you!



10/11/2022
Brad Carman

Catapult 
Project



Model History: >1,000x over Simulink, and Beyond

2014

• I joined Instron

• Built Implicit Newton/Euler 
Equation Based model in pure 
Matlab with inverse and subset 
model generator using 
Symbolic Toolbox

• Increased model accuracy with 
elimination of assumptions and 
increased complexity

• Worked well, but…

• Slow

• Hard to update and 
maintain

2000

• Inverse Model: Transfer 
functions

• Forward Model: Simulink

2017

• Attempted to move to 
SimScape

• Successfully transitioned 
model with improved speed, 
but required many 
workarounds and hacks

• Never released…

2020

• Moved to Julia

• Developed EmbeddedJulia 
library, 
ModelingToolkitComponents.jl 
and successfully transitioned 
model to JuliaSim

Matlab2CSharp and SimScape Manager

2.5kHz 10kHz

>1000x performance improvements
over Simulink!



Catapult Light Design using JuliaSim

Goal: Eliminate Expensive Multi-Mode System, Design Low Cost 
Single Mode “Catapult Light” System

Strategy: optimize controller and hardware to provide acceptable 
performance.  

How: use simulation to optimize controller configuration and tuning, real 
life testing is prohibitive in cost and time.  Simulation required for 1 data 
point is:

- 25 runs for iterative command calculation
- 25 runs for simulated iterations
- 5 runs for repeat shots
- x10 signals = total of 550 model runs

Equivalent to ~2 days of real life testing

Current Matlab simulation time (1 data point): 10 minutes
Required Data Points for Iterative Design Optimization: 1000+ 
🡪 166+ Days of Matlab Simulation Time
🡪 8 Hours JuliaSim Time 



Accelerated Simulation of HVAC Systems
● Model of vapor compression cycle model
● Contains 8,000 stiff differential algebraic 

equations
● Reference Dymola model took 35.3 

seconds to simulate.
● JuliaSim version took 5.8 seconds.
● Speed of factor of nearly 6x.



Accelerated Simulation of HVAC Systems
Next step, create surrogate model:

● Concerned with 20 specific signals inside the HVAC system
● Surrogate was up to 95x faster than JuliaSim version
● Total speed up Dymola→Surrogate: 570x

Training set size Reservoir size Prediction time Speedup over baseline

100 1000 0.06 s 95x

1000 2000 0.56 s 10x



JuliaSim:
Surrogate Components



JuliaSim Surrogates
You bring physics, we bring machine learning. 
Together we achieve fast simulation.

MODULES

Accelerate large 
simulations with 
ML-surrogates

Connect surrogate 
models in Modeling 
Toolkit

Accelerate large simulations 
without retraining

SYSTEMS 
MODEL

MULTIPHYS
ICS MODEL

NEURAL 
NETWORK

100x FASTER 
SIMULATION

EMBED 
SURROGATES

Total speedup 570x



■ 2D electrochemical model of a single battery

○ 300 equations, 5 ms solve time

■ Battery pack: repeat the model 200 times

○ Very long simulation time

○ Most tools cannot scale 

physically-accurate

models to full packs

JuliaSim Batteries overview
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Universal Differential Equations Generate More Accurate Models 
of Battery Degradation

Researchers at CMU Used Universal Differential 
Equations to Improve Models of Battery 
Degradation to Suggest Better Batter Materials

UBDM = Universal Battery Degradation Model



Digital Echo on Live Battery Models

https://docs.google.com/file/d/1WyblPkyXBqahBdClMfHfQcrJZU907RV-/preview


Introducing: JuliaSimCompiler
Scaling Symbolic-Numerics for ML



Introducing JuliaSimCompiler

JuliaSimCompiler: Better scaling of ModelingToolkit models

Acausal model compilers automatically simplify and improve model code.

But can they achieve top performance on large-scale models?



sys = structural_simplify(complete_motor)

JuliaSimCompiler: Accelerated ModelingToolkit

2 lines of code to turn on, enables enormous scalability improvements

Solves a major scaling problem in acasual systems

Conclusion: ModelingToolkit is a widely used open modeling platform, and with 
JuliaSim it’s also the most scalable.

using JuliaSimCompiler

complete_motor_ir = IRSystem(complete_motor)

sys_ir = structural_simplify(complete_motor_ir)

MTK

JuliaSimCompiler



Loop Rerolling

systems = @named begin

    sine = Sine(frequency = 10)

    source = Voltage()

    resistors[1:n] = Resistor()

    capacitors[1:n] = Capacitor()

    ground = Ground()

end;



Loop Rerolling

resistors_1₊v(t) ~ resistors_1₊p₊v(t) - resistors_1₊n₊v(t)
0 ~ resistors_1₊p₊i(t) + resistors_1₊n₊i(t)
resistors_1₊i(t) ~ resistors_1₊p₊i(t)
resistors_1₊v(t) ~ resistors_1₊R*resistors_1₊i(t)
resistors_2₊v(t) ~ -resistors_2₊n₊v(t) + resistors_2₊p₊v(t)
0 ~ resistors_2₊p₊i(t) + resistors_2₊n₊i(t)
resistors_2₊i(t) ~ resistors_2₊p₊i(t)
resistors_2₊v(t) ~ resistors_2₊R*resistors_2₊i(t)

Variable classes:
{{resistors_1₊v, resistors_2₊v, …},
 {resistors_1₊p₊v, resistors_2₊p₊v}, …}
Equation classes:
{0 = f₁(x, y, z) = x - (y - z),
 0 = f₂(x, y) = x + y, …}



Loop Rerolling

for var"%33" = 1:97
    var"%34" = var"%33" - var"%32"
    var"%35" = var"%29" + var"%34"
    var"%36" = Base.getindex(var"###in 1###", var"%35")
    var"%37" = var"%30" + var"%34"
    var"%38" = Base.getindex(var"###in 1###", var"%37")
    var"%39" = var"%31" + var"%34"
    var"%40" = Base.getindex(var"###in 1###", var"%39")
    var"%41" = var"%24" * var"%38"
    var"%42" = var"%41" + var"%36"
    var"%43" = var"%40" + var"%42"
    var"%44" = var"%31" + var"%33"
    var"%45" = Base.setindex!(var"###out###", var"%43", var"%44")
end



Loop Rerolling on JuliaSimBattery (Single-Particle Model (SPM), Lithium Nickel 
Manganese Cobalt Oxide (NMC))



Inlined Linear Solver Optimization

Algebraic variables: λ, θˍtt 😱
But they are linear! 😏🚀



Inlined Linear Solver Optimization



Inlined Linear Solver Optimization: Multibody

https://docs.google.com/file/d/1j9zEIERh1YQ0sGv6s3TClK2RSp7HBlqr/preview
https://docs.google.com/file/d/1l-Pm66sltibk8YXUBN5Ztmya6yAT8mX5/preview


Thanks!

December, 2023



Some Speical 
Things in 
ModelingToolkit



ModelingToolkit: Taking Acausal Component-Based Modeling Beyond DAEs

● Sets up a stochastic delay differential equation (SDDE) with driving white noise

● Solved using (implicit) high-order adaptive SDDE solvers

● Can be used to model difficult components like sensors



ModelingToolkit Feature Highlight: Sophisticated Stochastic Modeling

Chemical Reaction Systems as 
Stochastic Models



ModelingToolkit Feature Highlight: Sophisticated Stochastic Modeling

Transform the stochastic model into an 
approximating deterministic model:



ModelingToolkit Feature Highlight: Sophisticated Stochastic Modeling

You can write out the moments…

This sounds like a problem for a 
symbolic modeling tool to figure 
out for you…

Transform the stochastic model into an 
approximating deterministic model

Of means and moments



ModelingToolkit Feature Highlight: Sophisticated Stochastic Modeling

Solution for the means and variances 
computed via an ODE!



ModelingToolkit PDEs: Method Of Lines Finite Difference



ModelingToolkit PDEs: Physics-Informed Neural Networks

Easy and Customizable PINN PDE Solving with NeuralPDE.jl, JuliaCon 2021



ModelingToolkit PDEs: Extensible PDE Interface

Coming soon:

Finite Volume methods
Spectral methods
Finite element methods
…

Attempting to unify the difference PDE 
discretization methods into a one 
interface compatible with 
component-based modeling!



JuliaSim at a Glance



The Julia implementation is 6x faster than Dymola for the full 
cycle simulation.

● Dymola reference model: 35.3 s 
● Julia (as close to) equivalent model: 5.8 s
● Could be due to details such as the linear solvers, the refrigerant 

property libraries, etc. More benchmarking to come.

Using CTESNs as surrogates improves simulation times 
between 10x-95x over the Julia baseline. Acceleration depends 
on the size of the reservoir in the CTESN. The surrogate 
approximates 20 of the observables.

Error is < 5% in all cases.

8,000 ODE Highly stiff 
vapor-compression cycle 
model 

Total speedup over Dymola: 60-570x

Training set size Reservoir size Prediction time Speedup over baseline

100 1000 0.06 s 95x

1000 2000 0.56 s 10x

ARPA-E
 Accelerated Simulation of Building Energy Efficiency



https://docs.google.com/file/d/1A1RwT2mfjRDnrh6vEOgv8r-QFPsRNXP1/preview

