

Al Engineering A Research Agenda Jan Bosch

Director Software Center www.software-center.se Professor of Software Engineering Chalmers University of Technology Gothenburg, Sweden.

Why Digitalization Will Kill Your Company Too

Jan Bosch

Director Software Center www.software-center.se Professor of Software Engineering Chalmers University of Technology Gothenburg, Sweden.

How many companies that were on the Fortune 500 list in 2000 are still on the list in 2014?

Disruption Is The New Normal

- Jim Collins (Built to last): Companies last, on average, 30 15 10 years on the Fortune 500 list. And that time period is decreasing
- Main cause: Companies fail to innovate and to build new core capabilities

Digitalization Is The New Disruptor!

Openand State <td

- Differentiation through mechanics and electronics is increasingly difficult
- To avoid commoditization, new solutions and services are required
- Digitalization of products, data from the field and changed business models can provide differentiation

Hypothesis: growing revenue through new, *continuous* business models based on a *digitalized* product portfolio is the most promising strategy to increase differentiation and avoid commoditization

Software Center

• Using email?

- Have a website?
- Use social media?
- Video conferencing?
- Chatbots?

What Makes A Digital Company?

- Data-driven decision making
- Relentless experimentation (e.g. A/B testing)
- Short feedback cycles
- Decision making pushed down in organization
- Strategic data collection
- Unified data warehouse
- Pervasive use of AI and automation
- New job descriptions

Technology Evolution

Systems Engineering 2.0

- 1. Build it in **software** unless you really, really can't
- 2. Build it in **hardware** and keep it flexible (FPGAs instead of ASICS) unless you really, really can't
- 3. Build it in **mechanics** if you HAVE to and keep it modular, easily replaceable and simple

Systems Engineering 2.0

From:

- Systems built to last
- Opinions-based decision making (experience)
- Deeply integrated architectures
- Hierarchical organizational model
- Satisfying the requirements
- Static certification

To:

- Systems built to evolve
- Data-driven decision making
- Modularized architectures
- Ecosystem of partners
- Constant experimentation and innovation
- Dynamic, continuous certification

Three Key Take-Aways

- Digitalization is disrupting industry and society to an extent that we have only seen the early beginnings of
- Digital companies need to be world class in: Software (continuous deployment) to continuously deliver value
 Data to increase the quality of decision making
 Artificial Intelligence to provide superior solutions to almost everything
- Using AI requires AI Engineering and many companies fail to incorporate this

Overview

- Vem är jag? Wie ben ik? Who am I?
- Towards a Digital Business Operating System
- Al Engineering
- Some ongoing research
- Conclusion

Software Center

Mission: To significantly improve the *digitalization* capability of the European Software-Intensive industry

A New Collaboration Model

- Software Center aims to develop a strategic partnership with partner companies to significantly accelerate their adoption of digitalization practices
- Research is performed in 6-month sprints
- Long term goal; short term value
- System-level, holistic perspective, including business, architecture, ways of working and organizational aspects

How are we doing?

- Stairway to Heaven
- CIVIT model
- CAFFEA model
- HYPEX model
- Metrics-based visualization
- Etc.

Active use by the Software Center companies!

Software Center 🕼

Advantages for Industry

- More consistent, integrated focus on your key change initiatives
- Holistic approach including technical, organizational and business aspects
- Value every 6 months
- Opportunity to steer projects frequently

Some Online Companies

Overview

- Vem är jag? Wie ben ik? Who am I?
- Towards a Digital Business Operating System
- Al Engineering
- Some ongoing research
- Conclusion

How do we deliver value to customers?

- Product generations
- Annual software updates
- DevOps, DataOps and AI/MLOps
- A/B testing
- Reinforcement learning

shortening of value delivery cycles

Software Center

CIVIT: Visualizing Continuous Integration And Test

Software Center 🕼

Continuous Delivery Model

e-center.se

How do we know that we're actually delivering value customers care about?

Software Center 🕼

"Featuritis"

Our Research ...

Software Center 🕼

Three Layer Product Model

Bosch, J. (2013). Achieving Simplicity with the Three-Layer Product Model, *IEEE Computer*, Vol. 46 (11), pp. 34-39.

Software Center 🕼

Value Design

Value factors at different levels that need to align for an organization to benefit from data driven development practices and achieve the **outcomes** they look for.

*H.H. Olsson. and J. Bosch, "Make up your mind: towards a comprehensive definition of customer value in large scale software development". CLEI Electronic Journal, 2018, 21(1).

Case company example I: Key value factors

Software Center 🕼

The HYPEX Model

A/B testing: "Xbox deals" experiment

- **Experiment Goal:** •
 - Identify the impact of showing the discount in the weekly deals stripe.
- Value Hypotheses: ٠
 - (1) increased engagement with ٠ the stripe
 - (2) no decrease in purchases. ٠
- Outcome:
 - Treatment B decreased engagement with the stripe without decreasing purchases.
 - Treatment C increased both ٠ engagement with the stripe and purchases made.

(No Prices, Manual Ordering)

(Prices, Automatic Ordering)

Overview

- Vem är jag? Wie ben ik? Who am I?
- Towards a Digital Business Operating System
- AI Engineering
- Some ongoing research
- Conclusion

Holistic DevOps Framework

Artificial Intelligence

Why Software Engineering For Deep Learning?

Google: D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, "Hidden technical debt in machine learning systems," in Advances in Neural Information Processing Systems, 2015, pp. 2503–2511 www.software-center.se

Al engineering: Research agenda*

*Bosch, J., Olsson, H.H., and Crnkovic, I. (forthcoming). Engineering AI systems: A research agenda, In Artificial Intelligence Paradigms for Smart Cyber-Physical Systems. IGI Global

Overview

- Vem är jag? Wie ben ik? Who am I?
- Towards a Digital Business Operating System
- Al Engineering
- Some ongoing research
- Conclusion

Automated Experimentation

Software Center 🕼

Multi-armed bandit algorithms

Software Center 🕼

Optimization of the Random Access Success Rate

Federated Learning: Architectures

- We propose and compare four architecture alternatives for a Federated Learning system, i.e., centralized, hierarchical, regional and decentralized architectures.
- We conducted the study by using two well-known data sets and measuring several system performance metrics for all four alternatives. Our results suggested scenarios and use cases which are suitable for each alternative.

Zhang, H., Bosch, J., & Olsson, H.H. (2020). Federated Learning Systems: Architecture Alternatives. In Proceedings of the 27th Asia-Pacific Software Engineering Conference, 1 – 4 December, Singpore.

Real-time End-to-End Federated Learning

Async FL aggragtion protocol:

During the training procedure, the central node performs aggregation based on the model version and don't need to wait for other nodes to complete local training.

When perform aggregation:

 $w_{t+1} \leftarrow (1-\alpha) \times w_t + \alpha \times w_{t+1}^k$

Data Pipelines for Machine Learning

DATA PIPELINE FOR ML

- Efficient flow of data from source to destination with minimum human intervention and maximum automation
- Exploratory Study: Ericsson
- Validation Study: Grundfos, CEVT and Ericsson

Munappy, R.A., Bosch, J., Olsson, H.H., and Wang, T.J. (2020). Modeling Data Pipelines. In Proceedings of the Euromicro Conference on Software Engineering and Advanced Applications (SEAA), August 26-28th, Slovenia.

Automatic Labeling

UAV-assisted wireless network deployment

Software Center 🕼

Multiple Deployable UAV-BSs

Software Center 🕼

Coordinated and Decentralized ML

Performance Comparison (With/Without UAV-BSs)

DL Performance Comparison (With/Without UAV-BSs)

UL Performance Comparison (With/Without UAV-BSs)

Observations:

Comparing with no-UAV case, deployable UAV-BSs improve the performance of MC users in terms of throughput (5%, 50%) and drop rate in both DL&UL Big gap still exists if comparing with macro-BS case due to capability difference (40 dBm, 10 m height vs 46 dBm, 32m height)

MLOps Maturity Model

- Ad hoc: A stage in which companies have ad hoc processes for the end-to-end MLOps lifecycle.
- DataOps: A stage in which companies have standard and automated processes for end-to-end data lifecycle.
- Manual MLOps: A stage in which companies manually standardise the end-to-end MLOps lifecycle.
- Automated MLOps: A stage that automates endto-end MLOps workflow. At this stage, companies have fully automated tasks related to data and models.
- Kaizen MLOps: Kaizen is a Japanese term meaning "continuous improvement". At this stage, companies need continuous improvement in MLOps workflow.

MLOps Framework

	Ad hoc feature store	Standardised and automated	Standardised and automated	Standardised and automated	Continuously improved and
	Au noc reature store	feature store	feature store	feature store	optimised feature store
Model	Ad hoc processes for	Ad hoc processes for	Standardised and manual	Standardised and automated	Model development is continuously
WIGHEI	model development	model development	processes for model development	processes for model development	improved through an iterative processes
	Ad hoc code versioning	Basic code versioning	Highly structured and manual	Highly structured and automated	Continuously improved and
	and code review	and code review	code versioning and code review	code versioning and code review	optimised code versioning and review
	Ad hoc model metadata	Ad hoc model metadata	Standardised and manual	Standardised and automated	Continuously improved and
	management	management	model metadata management	model metadata management	optimised model metadata management
	No reproducible	Limited reproducible	Manual reproducible	Automated reproducible	Reproducible experimentation setup is
	experimentation setup	experimentation setup	experimentation setup	experimentation setup	continuously refined and improved
Deployment	Adhoc processes for	Ad hoc processes for	Standardised and manual	Standardised and automated processes	Model deployment is continuously
	model deployment	model deployment	processes for model deployment	for model deployment	improved through an iterative processes
	Infrequent model deployments	Less frequent model deployments	Frequent model deployments	Highly frequent model deployments	Continuous and iterative model deployments
	No/basic CI/CD pipeline	Well-defined CI/CD pipeline	Manual CI/CD pipeline	Highly automated CI/CD pipeline	CI/CD pipeline is continuously improved and optimised
Operations and	Ad hoc processes for	Ad hoc processes for	Standardised and manual	Standardised and automated processes	Model monitoring is continuously
Infrastructure	model monitoring	model monitoring	processes for model monitoring	for model monitoring	improved through an iterative processes
	Ad hoc processes for	Ad hoc processes for	Standardised and manual	Standardised and automated processes	Model retraining is continuously
	model retraining	model retraining	processes for model retraining	for model retraining	improved through an iterative processes
	Infrequent model retraining	Less frequent model retraining	Frequent model retraining	Highly frequent model retraining	Continuous and iterative model retraining
	Limited infrastructure and tooling	Infrastructure and tooling focus on data management and governance	Infrastructure and tooling focus on manual ways to manage ML lifecycle	Infrastructure and tooling focus on automated ways to manage ML lifecycle	Infrastructure and tooling support continuous improvement

Software Center 🕼

Overview

- Vem är jag? Wie ben ik? Who am I?
- Towards a Digital Business Operating System
- Al Engineering
- Some ongoing research
- Conclusion

"In the future, all companies will be Digital companies" (Software, Data & AI)

George F. Colony (CEO Forrester Research)

Conclusion

- Digitalization is disrupting industry and society to an extent that we have only seen the early beginnings of
- Digital companies need to be world class in: Software (continuous deployment) to continuously deliver value
 Data to increase the quality of decision making
 Artificial Intelligence to provide superior solutions to almost everything
- Using AI requires AI Engineering and many companies fail to incorporate this

Learn More?

www.janbosch.com jan@janbosch.com

Follow me on LinkedIn, Twitter (@JanBosch) or www.janbosch.com/blog

