
Dirk Zimmer,
Institute of System Dynamics and Control

08.02.2024 – MODPROD Workshop, Linköping Sweden

Enabling the Compilation of
Individual Components for Systems of
Linear Implicit Equilibrium Dynamics

Motivation: From Necessary to Sufficient

▪ Our current standard interfaces, ultimately result from Hamilton’s trick to double
the dimension. They are what is necessary for object-oriented modeling.

▪ We can find extended interfaces that offer a sufficient form.
(Unfortunately hardly anyone is looking for these forms)

2
Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Domain Translational

Mechanics

Rotational

Mechanics

Hydraulics Electrics Thermal …

Potential 𝑟 𝜑 𝑃 𝑉 𝑇

Flow 𝑓 𝜏 ሶ𝑄 𝑖 𝑄

Domain Translational

Mechanics

Rotational

Mechanics

Thermo

Fluids

Electrics ? …

Potential 𝑣𝑘𝑖𝑛 𝜔𝑘𝑖𝑛 r ? …

Flow 𝑓 𝜏 ሶ𝑚 ? …

Signal 𝑟 𝜑 𝚯 ? …

Definition of a Linear Equilibrium Dynamics System

3

▪ The way of modeling that we derived leads to a special class of
DAE systems: Linear Implicit Equilibrium Dynamics.

▪ What looks like a very restrictive class of models is actually much
more powerful than expected.

𝟎 = 𝐟(ሶ𝐱, 𝐱,𝐰, 𝑡) 𝐀 𝐱
ሶ𝐱

𝐰
= 𝐛(𝐱, 𝑡)

The DAE is linear in the state derivatives ሶ𝐱 and the algebraic variables 𝐰
(besides small nonlinear algebraic equations that may arise inside components to compute local variables
of a component and where the component developer ensures that a solution can be reliably computed.
When hidding such nonlinear algebaric equations inside functions (at least conceptually), the above structure holds)

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Basis for new Modelica Libraries

4

▪ DLR ThermoFluid Stream:
github.com/DLR-SR/ThermofluidStream

▪ Dialectic Mechanics:
(internal development)

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

https://github.com/DLR-SR/ThermofluidStream

Basis for new Modelica Libraries

5

▪ Dialectic Mechanics:
(internal development)

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Robustness as Original Motivation

▪ The original motivation
was simply to enable a
robust solution of the total
system by insisting on the
implicit system to be
linear.

▪ However, it then later
revealed to us that the
enforced linearity also is
rewarded by a structural
certainty (w.r.t causality,
state-selection, dummy
derivaties and residuals)

6

𝟎 = 𝐟(ሶ𝐱, 𝐱,𝐰, 𝑡) 𝐀 𝐱
ሶ𝐱

𝐰
= 𝐛(𝐱, 𝑡)

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Observation regarding State Selection

▪ State Selection in TFS components:

▪ Mass-flows are selected for the source
of any new branch.

7

▪ State Selection in Dialectic Mechanics:

▪ Each joint defines the position and
(kinetic) velocity as state variables of
the system

𝑠, 𝑣 𝜑,𝜔
{𝑥, 𝑦, 𝜑},
{𝑣𝑥, 𝑣𝑦, 𝜔}

ሶ𝑚 ሶ𝑚 ሶ𝑚,𝚯

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Observation regarding the Linear Equations

8

▪ Linear System in TFS components:

▪ The derivative of each mass selected
mass flow is a good tearing variable.
The difference in inertial pressure is a
good residual.

▪ State Selection in Dialectic Mechanics:

▪ The derivative of each selected
positional state is a good tearing
variable the collective force on the
joint is a good residual.

𝑑𝑠

𝑑𝑡
, 𝑓

𝑑𝜑

𝑑𝑡
, 𝜏

𝑑𝑥

𝑑𝑡
, 𝑓𝑥 ,

𝑑𝑦

𝑑𝑡
, 𝑓𝑦 ,

𝑑𝜑

𝑑𝑡
, 𝜏

𝑑 ሶ𝑚

𝑑𝑡
, Δ𝑟

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Consequences for code generation

With this knowledge we can basically pre-compile each
component:

▪ we stipulate the states

▪ we stipulate the tearing variables of the linear system and the
corresponding residuals

▪ we perform the dummy derivative method on those equations
where necessary.

▪ we define the causality of the interface variables

▪ we causalize all equations into assignments in a particular order

▪ we group the list of assignments depending on their dependence
of the inputs.

9
Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Example: Main computational code

▪ A component can be pre-compiled into seperate blocks:

10

model PressureDrop

TFSPlug inlet;

TFSPlug outlet;

parameter VolumeFlowRate v_ref;

parameter Pressure dp_ref;

VolumeFlowRate v_norm;

SI.Pressure dp;

SI.MassFlowRate m;

equation

v=inlet.m.flow/rho(inlet.state);

v_norm = v/v_ref;

dp*2 = dp_ref*(v_norm+v_norm^2);

inlet.m + outlet.m = 0;

v = inlet.v;

inlet.p - dp = outlet.p;

end PipeFrictionNL;

void PressureDrop::evalState() {

const double v = inlet.m.flow/rho(inlet.state);

const double v_norm = v/v_ref;

const double dp = 0.5*dp_ref*(v_norm + v_norm*v_norm);

outlet.state.h = inlet.state.h;

outlet.state.p = inlet.state.p – dp;

}

void PressureDrop::evalFlow() {outlet.m = -inlet.m;}

void PressureDrop::evalInertial() {

inlet.inertial.r = outlet.inertial.r

+ L*inlet.m.flow_der;

}

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Example: Meta Information

▪ For collecting, sorting and pruning, meta information is needed

11

model PressureDrop

TFSPlug inlet;

TFSPlug outlet;

parameter VolumeFlowRate v_ref;

parameter Pressure dp_ref;

VolumeFlowRate v_norm;

SI.Pressure dp;

SI.MassFlowRate m;

equation

v=inlet.m.flow/rho(inlet.state);

v_norm = v/v_ref;

dp*2 = dp_ref*(v_norm+v_norm^2);

inlet.m + outlet.m = 0;

v = inlet.v;

inlet.p - dp = outlet.p;

end PipeFrictionNL;

void PressureDrop::metainfo(Meta& meta)

{

meta.regComp (&inlet, “inlet”);

meta.regComp (&inlet, “outlet”);

meta.addBlock(this,

LambdaFuncCalling(this->evalState()),

Signals{&inlet.state,&inlet.m},

Signals{&outlet.state});

meta.addBlock(this,

LambdaFuncCalling(this->evalFlow()),

Signals{&inlet.m},

Signals{&outlet.m});

meta.addBlock(this,

LambdaFuncCalling(this->evalInertial),

Signals{&outlet.inertial,&inlet.m},

Signals{&inlet.inertial});

}

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Example: Whole System in C++

12

…

virtual void metainfo(Meta& meta) override{

meta.regComp(&t1, "t1: first vessel");

meta.regComp(&t2, "t2: second vessel");

meta.regComp(&s, "s: flow split");

meta.regComp(&t3, "t3: third vessel");

meta.regComp(&p1, "p1: first valve");

meta.regComp(&p2, "p2: 2nd valve");

meta.regComp(&p3, "p3: third valve");

};

};

class ComVessels : public Component {

public:

OutTank t1{};

InTank t2{};

InTank t3{};

Splitter s{};

PressureDrop p1{};

PressureDrop p2{};

PressureDrop p3{};

Connections con {

Connection{&t1.outlet, &p1.inlet},

Connection{&p1.outlet, &s.inlet},

Connection{&s.outlet1, &p2.inlet},

Connection{&p2.outlet, &t2.inlet},

Connection{&s.outlet2, &p3.inlet},

Connection{&p3.inlet, &t3.inlet},

};

...

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Example: Sorting

▪ For LIED systems, the code blocks would then be sorted. This can be done at run-time.

▪ In our example:

▪ evalState() and
evalFlow()are both sorted downstream

▪ evalInertia() is sorted upstream.

13

10

1

19

2

4

3

5

6

8 9

11 12

13 14

17

15

18

20

7

16

21

24

252627

2223

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Example: Pruning

▪ A full model evaluation is not always needed. For the solution of the linear system
only a partial evaluation is needed.

14

10

1

19

2

4

3

5

6

8 9

11 12

13 14

17

15

18

20

7

16

21

24

252627

2223

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Overview of the object-oriented simulator code

Meta (Crawler Class)

Component/Model
Local variabels

(parameters, states,

derivatives)

Component

Signal

Connection

Structural Meta
allocates blocks,

retrieves state

vectors

Diagnose Meta
Retrieves

identifiers, units,

hierarchy

ModelEvaluation

Simulator Recorder

Sorts blocks and

evaluates model

or parts of it

Applies

numerical

ODE Solver

Calls recorder

for storing

results

Handling of model

output. (to file or

memory or void)

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Demo

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

From Modelica to Compiled Components in C++

▪ For the compilation of components, a causal interface needs to be provided.

▪ The causal interface requires the presence of additional derivatives

▪ The signal types can be classified as:
- State-signal

- Tearing signal

- Residual signal

- Other causal signals.

▪ The tearing signal determines yields a linear response on the residual signal and
determines the derivative of the state signal

▪ Everything else is purely causal signal-based.

17
Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Example Rotational Dialectic Mechanics

18

Modelica Causal Interface
(also inverted)

C++
(also inverted)

𝜑
(output)

𝜑
(output: state signal)

FlangeOn.state.phi

𝜔
(potential)

𝜔
(output: state signal)

FlangeOn.state.omega

ሶ𝜑
(output: tearing signal)

FlangeOn.tear.phi_der

𝛼
(output: tearing signal)

FlangeOn.tear.alpha

𝜏
(flow)

𝜏
(input: residual signal)

FlangeOn.impulse.tau

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Example ThermoFluid Stream (unidirectional)

19
Dirk Zimmer, Institute of System Dynamics and Control, 10. October 2023

Modelica Causal Interface
(also inverted)

C++
(also inverted)

𝛉
(output)

𝛉
(output: other signal)

outlet.state

ሶ𝑚
(flow)

ሶ𝑚
(output: state signal)

outlet.m.flow

𝑑 ሶ𝑚

𝑑𝑡
(output: tearing signal)

outlet.m.flow_der

𝑟
(potential)

𝑟
(input: residual signal)

outlet.inertial.r

From Modelica to Compiled Components in C++

▪ Using this interface, we can then wrap
LIED components

▪ Now compilation can be performed on
the instance of this class, like with a
FMU

▪ Similar to an FMU, we can enable the
modification of non-structural
parameters in the compiled version.

▪ The compiler should have all
information that it needs from the
interface wrapping.

20
Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

From Modelica to Compiled Components in C++

equation

flowRes.inlet.Theta = Theta_in;

flowRes.inlet.m_flow = m_flow;

der(flowRes.inlet.m_flow) = m_flow_der;

flowRes.inlet.r = r_in;

flowRes.outlet.Theta = Theta_out;

flowRes.outlet.m_flow = m_flow;

der(flowRes.outlet.m_flow) = m_flow_out;

flowRes.outlet.r = r_out;

21
Dirk Zimmer, Institute of System Dynamics and Control, 10. October 2023

From Modelica to Compiled Components in C++

equation

flowRes.inlet.Theta = Theta_in;

flowRes.inlet.m_flow = m_flow;

der(flowRes.inlet.m_flow) = m_flow_der;

flowRes.inlet.r = r_in;

flowRes.outlet.Theta = Theta_out;

flowRes.outlet.m_flow = m_flow;

der(flowRes.outlet.m_flow) = m_flow_out;

flowRes.outlet.r = r_out;

22
Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

From Modelica to Compiled Components in C++

input ThermalState Theta_in
annotation (LIED(
signal=StdSignal,
CPPref=“inlet.state“)

);
input MassFlowRate m_flow_in
annotation (LIED(
signal=StateSignal,
CPPRef=“inlet.m.flow“)

);
ínput MassFLowAcc m_flow_der_in
annotation (LIED(
signal=TearingSignal,
CPPRef=“inlet.m.flow_der“)

);
output Pressure r
annotation (LIED(
signal=ResidualSignal,
CPPRef=“inlet.inertial.r“)

);

23
Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

From Modelica to Compiled Components in C++

24

▪ The nice thing about this approach
would be that it leaves the original
Modelica component completely
untouched.

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Next Development / Research Steps

Goal for this summer:

▪ LIED Mechanical library in C++

▪ LIED Mechanical library in Modelica

▪ Causal interface in Modelica

▪ This will specify compilation source and
compilation target.

Current Development on the C++ simulator:

▪ Implement better Diagnosis and Output

▪ Setup Regression Testing and Continuous Integration

▪ Implement pruning and measure scaling

▪ Make open-source and provide corresponding Modelica examples for compilation.

25
Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

A More General Remark on LIED Systems.

26

It may be very tempting to allow for non-linear equation in implicit form…

…but it triggers lots of complexity down the line

▪ Structural Uncertainty:
▪ States cannot be selected on component level

▪ States may have to be determined at run-time

▪ Tearing is non-deterministic

▪ Structural changes very difficult

▪ Flattening does not scale for large models

▪ Slow compilation, complicated algorithms

▪ Algebraic limitations
▪ Unable to compute higher derivatives for multi-derivative methods

▪ Unable to compute partial derivatives

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

	Enabling the Compilation of Individual Components for Systems of Linear Implicit Equilibrium Dynamics
	Motivation: From Necessary to Sufficient
	Definition of a Linear Equilibrium Dynamics System
	Basis for new Modelica Libraries
	Basis for new Modelica Libraries
	Robustness as Original Motivation
	Observation regarding State Selection
	Observation regarding the Linear Equations
	Consequences for code generation
	Example: Main computational code
	Example: Meta Information
	Example: Whole System in C++
	Example: Sorting
	Example: Pruning
	Overview of the object-oriented simulator code
	Demo
	From Modelica to Compiled Components in C++
	Example Rotational Dialectic Mechanics
	Example ThermoFluid Stream (unidirectional)
	From Modelica to Compiled Components in C++
	From Modelica to Compiled Components in C++
	From Modelica to Compiled Components in C++
	From Modelica to Compiled Components in C++
	From Modelica to Compiled Components in C++
	Next Development / Research Steps
	A More General Remark on LIED Systems.

