
Restricted © Siemens AG 20XX

YYYY-MM-DDPage 1 Author / Department

A Design-by-Contract approach to

distributed embedded software

development

Unrestricted © Siemens AG 2018

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 2 Author / Department

Content

• Introduction

• Contracts and assume guarantee

analysis.

• Keeping the traces

• Conclusion

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 3 Author / Department

Siemens

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 5 Author / Department

We are truly driving on top of software

Recent trends in industry, have led to an

exponential increase in software size and

complexity.

With it the number of recalls has

increased as well.

Source: 2018 Automotive warranty & recall report;

Stout;

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 6 Author / Department

Use case

Electrical Vehicle Temperature control

Simple Example:

• Batteries are sensitive to temperature:

• Range is drastically reduced in cold,

• Life time of battery is drastically reduced when to

warm

• Consumers have grown accustom to

• car ranges

• thermal comfort in the car

• Cooling and heating have to be used both for battery

and human comfort.

• This increase the complexity of the system and hence

the software needed to control it.

https://optibike.com/lithium-battery-performance-in-

cold-temperatures/

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 7 Author / Department

A-SPICE

Process Model

SWE.1

Software Requirements

Analysis

SWE.6

Software Qualification

Tests

SWE.5

Software Integration and

Integration Tests

SWE.2

Software Architecture

Design

SWE.3

Software Detailed Design &

Units Construction

SWE.4

Software Unit

Verifications

The process

Any software development process will do

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 8 Author / Department

Using the software architecture as a single source of truth

A visual solution to tackle increasing

complexity and size of code

Enrichment in form of architectural meta data

• Ensure consistency and completeness from requirements to implementation

• Frontload development of your testing environment early in the design process

• Integrate and test from different sources

• Trace links in the software development.

Contract

Interface

Timing

Runnable

functions

Scheduling needs

Cyclic block

Period 10 ms

Offset 5 ms

Deadline 20 ms

Block properties

Architecture driven

• Model based design

• Structuring software in functional units

• Increased readability and reusability

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 9 Author / Department

Content

• Introduction

• Contracts and assume guarantee

analysis.

• Keeping the traces

• Conclusion

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 10 Author / Department

SWE.2 Software Architecture Design

Datatypes of the I/O

SWE.2:

from informal

to formal

Architecture

Interface definition

Datatype, unit and range definition

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 11 Author / Department

SWE.2: Software Architecture Design

Building the Architecture

SWE.2:

Building the

architecture

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 12 Author / Department

Contract in software development

 A “Contract” is an explicit binding agreement between 2

or more subsystems, wherein the subsystems guarantees

they will deliver a certain output such that the other

subsystems can assume certain inputs.

 Contracts are formal executable requirements.

 A “Contract” is split in 2 contracts a pre- and a post-

contract connected to the subsystem itself to allow MBSE.

 Assume Guarantee analysis: Consistency check of the

software architecture by checking the assumptions with

respect to the guarantee of the connected components.

“Contract”

Contracts in Software Engineering

Providing continuous requirements compliance

AssumptionGuarantee

Allowing debugging of requirements before

implementation, preventing mistakes and bugs

in later development

Aiding assignment of responsibilities to a

precise stakeholder*

Supporting independent development of the

different sub-systems while guaranteeing

smooth system integration*

* Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-Baptiste Raclet, et al.. Contracts for Systems Design:

Theory. [Research Report] RR-8759, Inria Rennes Bretagne Atlantique; INRIA. 2015, pp.86. 〈hal-01178467〉

EV-475 EV-500

https://hal.inria.fr/hal-01178467

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 13 Author / Department

SWE.2 Software Architecture Design
Informal requirements to formal requirements

EV-501 Battery control should operate such that the control shall switch on when the

battery temperature rise at least 1.5 deg C above the reference point. (This will

establish the hysteresis band based on heating/cooling dynamics)

(batteryTemp >= referenceBatteryTemp + 1.5 degC) -> batteryAirControl == 1;

Contract =

Mathematical formulation of the requirement that can be executed and verified.

SWE.2:

from informal

to formal

Trace to original

requirement

Informal Requirement

Formal Requirement

Contract in interface definition

EV-501 Battery control should operate such that the control shall switch on when the

battery temperature rise at least 1.5 deg C above the reference point. (This will

establish the hysteresis band based on heating/cooling dynamics)

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 14 Author / Department

SWE.2 Software Architecture Design
Formal verification

(batteryTemp > referenceBatteryTemp - 0.5 degC) -> batteryAirControl == 0;

Conflict with another contract of

a block in the architecture

SWE.2:

Checking the

consistency of

the requirements

Assume Guarantee analysis will verify the

consistency of the software architecture by

trying allowed post-contract values in the

pre-contract of the connected block.

Condition causing the conflict:

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 15 Author / Department

SWE.2 Software Architecture Design
Formal verification

Follow link: (batteryTemp >= referenceBatteryTemp + 1.5 degC) -> batteryAirControl == 1;

Since 70 > 30 + 1.5

batteryTemp = 70.0

referenceBatteryTemp = 30.0

From batteryTemperatureControl SW component:

batteryAirControl == 1;

SWE.2:

Analysing

the

Inconsistency

(70.0 > 30 – 0.5 ? Yes so batteryAirControl == 0

From EVTemperatureControl SW component:

(batteryTemp > referenceBatteryTemp - 0.5 degC) ->

batteryAirControl == 0;

Detailed analysis

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 16 Author / Department

SWE.2 Software Architecture Design
Formal verification

Assume Guarantee Analysis: Frontload testing

Ensure consistency throughout software architecture using verifiable contracts

SWE.2:

Solving the

issue

(batteryTemp ><= referenceBatteryTemp -

0.5 degC) -> batteryAirControl == 0;

3 possible errors:

• Inconsistent requirements

• Wrong translation into formal requirement

• Inconsistent architecture

Correction shows consistent software

architecture with traceable links to the

requirements.

In EVTemperatureControl SW component:

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 17 Author / Department

Content

• Introduction

• Contracts and assume guarantee

analysis.

• Keeping the traces

• Conclusion

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 18 Author / Department

SWE.3 Software Detailed Design & Units Construction

Keeping the trace and the consistency

SWE.3:

keep

implementatio

n consistent

Trace to architecture and

requirements

Generate

implementation shell

Datatypes and units of the

software component I/O

Function definition

Contracts

Implementation space

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 19 Author / Department

SWE.4 and 5 Software Unit Verifications and open loop

integration testing

SWE.4/5:

Unit testing

and integration

testing

Test case definition based on requirements

Linked to the software architecture

Integration Testing = Unit test of composed

software components.

Run unit test for all implemented software

components linked to the architecture

Using contracts will reduce the number of errors typically found at this stage

and will reduce the typical glue code that has to be made to connect everything.

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 20 Author / Department

SWE.6 Software Qualification Tests Closed loop SIL

validation

SWE.6:

System testing

Cooling Circuit

Cabin

Battery

Car

Control

Integrated code

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 21 Author / Department

Content

• Introduction

• Contracts and assume guarantee

analysis.

• Keeping the traces

• Conclusion

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 22 Author / Department

Frontloaded workflow

SWE.1: Requirements

SWE.5 Integration testing SWE.4: Unit testing SWE.3: Implementation

Extract Implementation shells from architecture

5) Find wrong requirements 4) Orchestrate Analyses in test framework 3) Analyze consistency of architecture and Requirements

2) Build SW architecture in ESD

Functional contracts

Timing contracts

Analyses code on bugs

Robustness

Compliance

Coverage

Write unit and integration test case

SWE.6 system Validation

Export code for closed loop validation

in system simulation tool

Run test suits

Orchestrate in test framework

SWE.2: Software Architecture Design1) Define requirements

Iterate until consistent SW

architecture and Requirements

Implement in desired environment

Restricted © Siemens AG 20XX

YYYY-MM-DDPage 23 Author / Department

A-SPICE

Process Model

SWE.1

Software Requirements

Analysis

SWE.6

Software Qualification

Tests

SWE.5

Software Integration and

Integration Tests

SWE.2

Software Architecture

Design

SWE.3

Software Detailed Design

& Units Construction

SWE.4

Software Unit

Verifications

A-SPICE

Process Model

SWE.1

Software Requirements

Analysis

SWE.6

Software Qualification

Tests

SWE.5

Software Integration and

Integration Tests

SWE.2

Software Architecture

Design

SWE.3

Software Detailed Design

& Units Construction

SWE.4

Software Unit

Verifications

ASPICE

Process Model

SWE.1

Software Requirements

Analysis

SWE.6

Software Qualification

Tests

SWE.5

Software Integration and

Integration Tests

SWE.2

Software Architecture

Design

SWE.3

Software Detailed Design

& Units Construction

SWE.4

Software Unit

Verifications

Model based software architecture design by contract

Solution scope of Simcenter Embedded Software Designer

Extended SupportSolution scope Integration ALM-tool

• Upfront analysis and Verification of the

architecture consistency and interfaces

• Easy integration after implementation

• Automate unit and integration testing

• Ensure consistency throughout the

design process

• Distribute implementation over different

tools and internal and external suppliers.

• Validate performance with SIL testing

• Ensure bidirectional traceability by

connecting to an ALM-tool

• Automated test result reporting and

communication between all the

stakeholders

