This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent.

From vague feeling to presentable knowledge

Systems Engineering

Åsa Nordling Larsson, Lena Gunnarsson, Erik Herzog, Mats Areblad

The Gripen Program is a complex multi discipline engineering program

Systems Engineering

- Systems development
- Software development
- Mechanical Engineering
- "Equipment engineering" Specification and integration of purchased systems and equipment
- Production and Installation
- Integrated Logistic Support ILS

Efficient Development Requires Integrated Development Environments (IDE's)

For all Disciplines

- Requirements
- Design
- Realization
- Verification
- Declaration

The application Eco System supports the total development process

Design dependencies are traditionally realized by centralized PDM system

Centralized PDM systems.

-

Cross discipline collaboration, coordination and traceability

EAMCENTER

For getting to know the dependencies, the so called traceability dimensions have proven to be an important key

COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Your Name | Document Identification | Issue 1

- Requirement Management
- Configuration Item Structure
- Change Control
- Configuration and Baselining

For understanding consequences of tool exchanges the interaction between disciplines needs to be known

7

Traceability Measuring								
	Granularity	Transfer	ID&Version Ctrl					
N/A								
0								
1		Man						
2	Coarse-grained	Aut	No ID on included objects					
3	Coarse-grained	Aut	ID on included objects					
4	Fine-grained	Aut	ID					
5	Fine-grained	Aut	ID and version control					

An Interaction Evaluation Method has been developed analyzing the four traceability dimensions

A number of evaluations has been performed both to evaluate the method and to get interesting results

By understanding the interactions, an understanding of the overall development efficiency can be obtained

COMPANY REST

9

The result from the Discipline specific analysis may form basis to several efficiency improvement projects

Internal Analysis

APPLICATION	Requirement	Design	Realization	Verification	Declaration	Change
Teamcenter - Back End	x	x		х	x	x
Doors	х	х		х		
Rhapsody		x				
Dimensions		х				
Teamcenter - Archive	х	x	x	х	x	x

Observations	In the dicipline	No local change management				
Towards Back End PDM		For ensuring the structure node correspondence between Back End PDM and SysDev - manual review required.				
	Towards SW	The current strength is entirely due to DOORS being used for requirement management both in SW and SE All other integration is either manual or non-existent				
		The Change and structure traceability is entirely dependent on manual review				
	Towards ADI	Doors is used for requirement management in ADI - but it is not integrated to the IDE; i.e VPM				
	Towards Equipment	DOORS is generally not used for EQS documentation When it is used the traceability to system requirement is weak				
Urgent Need		A correspondence between the node structures in SE and in Back- End PDM must be established				
Need		DOORS needs to be replaced				
Future Plans		Establishment of an Integrated Systems Development Environment				

Traceability analysis shows how lose the interactions are, and has built understanding of how it is compensated

Change Control

- Integration between Mechanical Engineering & Production is very tight which gives a very good change traceability
- Top down change management traceability is lost in the interfaces between
 - Back -End PDM Systems Engineering
- Bottom up change management traceability is not maintained at all

Requirement Management

- Requirement are automatically transferred between the engineering disciplines and the Back-End PDM System
- The requirement synchronization is coarse.

Configuration & Baselining

- There is an automatic realisation Config traceability between
 - Mecahnical Engineering -Production
- Between all other diciplines the realisation Config traceability is done manually

Config Item Structure

- Product structure is managed in Back End PDM
- The product structure is manually connected to Mechanical and Software PDM systems.
- No product structure management in the other disciplines

Now we know why things are as they are and has drawn some conclusions

Vertically

Process, Methods & Tools

Non-existing IDE:s is most likely the largest impediment for efficiency in the overall development process.

Overall efficiency is also very much dependent on Information traceability

People

The tool ineffectiveness is compensated or hidden by competent, loyal and reliable employees.

Both the systematic way of analyzing interaction and the results themselves has gained great interest

Eye opener in the understanding of the overall PDM Landscape

Insight that the overall efficiency is very much dependent on traceability between disciplines

Summary

- Simple model for obtaining an objective understanding of the engineering tool landscape within an organisation
 - Based on the process model
- Allows for quick analysis of current capabilities and consequences of modifications to the tool landscape

Thanks!