
Marjan Sirjani

Professor in Software Engineering

MDH, IDT

Cyber-Physical Systems Analysis group

From Dependable Timed Actor Models

to Executable Code

Thanks to Edward Lee, Hossein Hojjat, and Tom Henzinger, I used some of their slides.

Acknowledgement:

Ehsan Khamespanah, Giorgio Forcina, Luciana Provenzano, Bahar Salmani, Ali Jafari

Center for Model-Based Cyber-Physical Product Development (MODPROD)

Feb. 5-6, 2019

Linköping University, Sweden

Dependable Software?

2

•

•

3

Software truly is the most complex artifact

we build routinely. It’s not surprising we

rarely get it right.

Tom Henzinger, 2006

• � 1080

• 10 64 > 10190

�

�

�

�

�

7

Mathematical Modeling:

A Tale of Two Cultures

Engineering

Differential Equations

Linear Algebra

Probability Theory

Computer Science

Mathematical Logic

Discrete Structures

Automata Theory

Models

10

A model is any description of a system

that is not the thing-in-itself.

Verification and Validation

11

Model

Thing

Your design

What you want

Model Requirements

Validation:Validation:

Is this

faithful?

Verification:

abstraction?

Verification:

Is this a sound

abstraction?

Assurance

Hope

SCIENCE ENGINEERING

SCIENCE ENGINEERING

Useful Models and Useful Things

“Essentially, all models are wrong,

but some are useful.”

Box, G. E. P. and N. R. Draper, 1987: Empirical Model-Building and Response

Surfaces. Wiley Series in Probability and Statistics, Wiley.

“Essentially, all system implementations

are wrong, but some are useful.”

Lee and Sirjani, “What good are models,” FACS 2018.

12

Our methodology in building

software

• Model Building: capture relevant aspects of the

system formally (using logic and automata)

• Model Checking: implement algorithms for model

analysis [Clarke/Emerson; Queille/Sifakis1981]

Exhaustively testable pseudo-code

Model checker

M

Model
Checker

p → F q
yes

no

φ

Error Trace

Use of Formal Methods at Amazon Web Services

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, Michael Deardeuff

Amazon.com

29
th

 September, 2014

15

- Safety properties: “what the system is allowed to do”

Example: at all times, all committed data is present and correct.

Or equivalently: at no time can the system have lost or corrupted any committed data.

- Liveness properties: “what the system must eventually do”

Example: whenever the system receives a request, it must eventually respond to that request

Side Benefit: A Better Way to Design Systems

More Side Benefits: Improved Understanding, Productivity and Innovation

Exhaustively testable pseudo-code

Model a traffic light

Model a crossing with two traffic lights

X1 = Red, X2 = Green

• We check the model for required properties

– Mutual exclusion

– Deadlock freedom

– No starvation

Concurrent and Distributed

Message Passing

An actor: a message queue, state variables, message servers

Actor-1 Actor-2

A B
C

X,Y,ZM,N

A B

X,Y,ZAB

C

M,N

ACTORS

queue queue

Rebeca: The Modeling Language

Asynchronous and Event-driven

� Rebeca: Reactive object language (Sirjani, Movaghar, 2001)

� Based on Hewitt actors

� Concurrent reactive objects (OO)

� Java like syntax

� Communication:

� Asynchronous message passing: non-blocking send

� Unbounded message queue for each rebec

� No explicit receive

� Computation:

� Take a message from top of the queue and execute it

� Event-driven

21

Project editor

http://www.rebeca-lang.org/

• Ten years of Analyzing Actors: Rebeca Experience (Sirjani, Jaghouri) Invited

paper at Carolyn Talcott Festschrift, 70th birthday, LNCS 7000, 2011

• On Time Actors (Sirjani, Khamespanah), Invited paper, Theory and Practice of

Formal Methods, LNCS 9660, 2016

Model and

Property editor

Model checking

result view

Network on Chip

ASPIN: Two-dimensional mesh GALS NoC

• Explore the design space

• Evaluate routing algorithms

• Select best place for memory

• Choose buffer sizes

• …

reqSend:

//Route the Packet

neighbor.giveAck;

giveAck:

//if I am the final Receiver

//then Consume the Packet

sender.getAck;

myCore.forMyCore;

//else if my buffer is not full

//get the Packet

sender.getAck

//and route it ahead

self.reqSend;

else (my buffer is full) wait

getAck:

//send the Packet

//set the flag of your port to free

1: reqSend
2: neighbor.giveAck

3: sender.getAck

reactiveclass Router{

knownrebecs

{Router[4] neighbor, Core myCore}

statevars{int[4] buffer;}

Router (myId-row, myId-col) { …

}

msgsrv reqSend() {

neighbor[x]. giveAck() after(3); . . .

}

msgsrv getAck() {

// receive ack from the receiver

// get ready for receiving the next packet

…

}

msgsrv giveAck (…) {
//if the message is for my core use it

myCore.forMyCore()

//send ack to the sender

sender.getAck() after(3);

// if not route it to the receiver …

} }

ASPIN: Rebeca abstract model

Actor type

and its

message

servers

A

message

server

reactiveclass Core{

knownrebecs {Router myRouter}

statevars{ …}

Core (…) {

….

}

msgsrv forMyCore() {

// get the Packet and use it

. . .

}

main(){

Router r00(r02,r10,r01,r20)(0,0);

Router r01(r00,r11,r02,r21)(0,1);

…

Core c00(r00)

Core c01(r01)

…

}

Instances of

different actors

Known rebecs

Parameters

reactiveclass Router{

knownrebecs {Router[4] neighbor}

statevars{int[4] buffer;}

Router (…) {

….

}

msgsrv reqSend() {

delay(2);

neighbor[x]. giveAck() after(3) deadline(6);

. . .

}

msgsrv giveAck (…) {
//if the message is for my core use it

myCore.forMyCore()

//send ack to the sender

sender.getAck() after(3);

// if not and buffer not full then route it to the receiver …

// if buffer full then busy-wait until buffer empty

else self.giveAck() after(10),

}

…

}

ASPIN: Rebeca abstract model

Time progress

because of

computation delay

Communication

delay

Deadline for the

receiver

periodic tasks

Evaluation of different memory

locations for ASPIN 8×8

� Consider 5 cores and their access time to the memory

� 3 choices for memory placement

� 40 packets are injected

� High congestion in area 1 and 2

� Unlike our expectation
M1 is a better choice
than M2

� The packet injection is
based on an application
(note that cores have
different roles)

Model checking: 3 seconds

HSPICE: 24 hours

Much less details.

Showed the same trend.

Model Checking

28

From Requirements to Model

From Requirements to the Model

The Train Door System

29

Door Lock System

• The external doors of a train can be opened by:

– the driver, who pushes the “external door opening button” on

the driver’s desk.

– a passenger, who pushes the “door opening button” installed

on each external door.

• But, if the train is running the external doors shall be kept closed to

avoid that passengers fall out of the train.

• So, the “doors lock” mechanism is put in place to keep locked all the

external doors when the train is running to prevent a passenger

from opening an external door out of the platform.

Properties

• Safety: we want to check the model if there is

any possibility that a passenger can open a

locked door to get off from a running train,

thus causing an accident.

• Progress: we want to be sure that each

passenger can get off the train at a platform

by opening the door.

Hazard Ontology of the Door

32

Safety Requirements for the Train

Doors Control System

By using the Hazard Ontology, and by applying the

SARE* (Safety Requirements Elicitation) approach,

the analyst and safety engineer obtained a set of

safety requirements (to lock the doors).

*An Ontological Approach to Elicit Safety Requirements. Luciana Provenzano, Kaj

Hanninen, Jiale Zhou, and Kristina Lundqvist. Proceedings of the 24th Asia-Pacific

Software Engineering Conference (APSEC’17), Nanjing, China, December 2017

REQ ID REQ DESCRIPTION Elicited REQ ID

SSysSpecReq1 GIVEN the train is ready to run

WHEN the driver requests to lock the external doors

THEN all the external doors in the train shall be closed and

locked

SSysReq1

SSysSpecReq2 GIVEN an external door is locked

WHEN the passenger requests to open the external door

THEN the external door shall be kept closed and locked

SSysReq2

SSysSpecReq3 GIVEN an external door is unlocked

WHEN the passenger requests to open the external door

THEN the external door shall open

SSysReq3

SSysSpecReq4 GIVEN all the external doors on the side of the train close to

the platform are unlocked

WHEN the driver requests to open all the external doors

THEN all the external doors on the side of the train close to

the platform shall be open

SSysReq3

SSysSpecReq5 GIVEN the train arrives at a station AND the train speed is less

than 0.5 km/h

WHEN the driver requests to unlock all external doors that are

on the train side close to the platform

THEN all the external doors on that side of the train shall be

unlocked

SSysReq4

Safety Requirements Elicitation for the
Train Doors Control System

From requirements to Use Case

Chosen use cases

Why these two use cases?

We want to verify that it is not possible to open
a locked door or lock an open door.

Door Control System Class diagram

Sequence Diagram: Lock External

Doors

Sequence Diagram: Open an External

Door

From UML to Rebeca Model

Reactive classes:

• Driver

• Passenger

• Door

• DoorController

• TrainManager

The Verification of the Rebeca Model

REQ ID REQ DESCRIPTION Elicited REQ ID

SSysSpecReq1 GIVEN the train is ready to run

WHEN the driver requests to lock the external doors

THEN all the external doors in the train shall be closed and

locked

SSysReq1

�� � ��	 ��	
��	��	 ∧ ��������� 	→ ������������	 ∧ ������������

The Rebeca Model counter-example

�� � ��	 ��	
��	��	 ∧ ��������� 	→ ������������	 ∧ ������������

Model Checking

44

Using Rebeca and Afra

for Modeling and Model Checking

Traffic Lights

45

reactiveclass TrafficLight(5) {
knownrebecs {
TrafficLight tOther;
}
statevars {
byte Color;
}

TrafficLight(byte myId) {
Color = 0; /* red */
if (myId==1) {

self.RedtoGreen();
}

}

. . .
main {
TrafficLight
traffic1(traffic2):(1);
TrafficLight
traffic2(traffic1):(2);
}

msgsrv RedtoGreen() {
Color = 1; /* green */
self.GreentoYellow();
}

msgsrv GreentoYellow() {
Color = 2; /* yellow */
self.YellowtoRed();
}

msgsrv YellowtoRed() {
Color = 0; /* red */
tOther.RedtoGreen();
}

1 2

Rebeca Model: Traffic Lights

1 2
reactiveclass TrafficLight(5) {
knownrebecs {
TrafficLight tOther;
}
statevars {
byte Color;
}

TrafficLight(byte myId) {
Color = 0; /* red */
if (myId==1) {

self.RedtoGreen();
}

}
msgsrv RedtoGreen() {
Color = 1;
self.GreentoYellow();
}
msgsrv GreentoYellow() {
Color = 2;
self.YellowtoRed();
}
msgsrv YellowtoRed() {
Color = 0;
tOther.RedtoGreen();
}
}

main {
TrafficLight traffic1(traffic2):(1);
TrafficLight traffic2(traffic1):(2);
}

Rebeca Model: Traffic Lights

1 2

se
lf

.R
e

d
to

G
re

e
n

(
)

/* green */

reactiveclass TrafficLight(5) {
knownrebecs {
TrafficLight tOther;
}
statevars {
byte Color;
}

TrafficLight(byte myId) {
Color = 0; /* red */
if (myId==1) {

self.RedtoGreen();
}

}
msgsrv RedtoGreen() {
Color = 1;
self.GreentoYellow();
}
msgsrv GreentoYellow() {
Color = 2;
self.YellowtoRed();
}
msgsrv YellowtoRed() {
Color = 0;
tOther.RedtoGreen();
}
}

main {
TrafficLight traffic1(traffic2):(1);
TrafficLight traffic2(traffic1):(2);
}

Rebeca Model: Traffic Lights

se
lf

.G
re

e
n

to
Ye

ll
o

w
(

) 1 2

/* yellow */

reactiveclass TrafficLight(5) {
knownrebecs {
TrafficLight tOther;
}
statevars {
byte Color;
}

TrafficLight(byte myId) {
Color = 0; /* red */
if (myId==1) {

self.RedtoGreen();
}

}
msgsrv RedtoGreen() {
Color = 1;
self.GreentoYellow();
}
msgsrv GreentoYellow() {
Color = 2;
self.YellowtoRed();
}
msgsrv YellowtoRed() {
Color = 0;
tOther.RedtoGreen();
}
}

main {
TrafficLight traffic1(traffic2):(1);
TrafficLight traffic2(traffic1):(2);
}

Rebeca Model: Traffic Lights

se
lf

.Y
e

ll
o

w
to

R
e

d
(

) 1 2

/* red */

reactiveclass TrafficLight(5) {
knownrebecs {
TrafficLight tOther;
}
statevars {
byte Color;
}

TrafficLight(byte myId) {
Color = 0; /* red */
if (myId==1) {

self.RedtoGreen();
}

}
msgsrv RedtoGreen() {
Color = 1;
self.GreentoYellow();
}
msgsrv GreentoYellow() {
Color = 2;
self.YellowtoRed();
}
msgsrv YellowtoRed() {
Color = 0;
tOther.RedtoGreen();
}
}

main {
TrafficLight traffic1(traffic2):(1);
TrafficLight traffic2(traffic1):(2);
}

Rebeca Model: Traffic Lights

tOther.RedtoGreen()

1 2

/* green */

reactiveclass TrafficLight(5) {
knownrebecs {
TrafficLight tOther;
}
statevars {
byte Color;
}

TrafficLight(byte myId) {
Color = 0; /* red */
if (myId==1) {

self.RedtoGreen();
}

}
msgsrv RedtoGreen() {
Color = 1;
self.GreentoYellow();
}
msgsrv GreentoYellow() {
Color = 2;
self.YellowtoRed();
}
msgsrv YellowtoRed() {
Color = 0;
tOther.RedtoGreen();
}
}

main {
TrafficLight traffic1(traffic2):(1);
TrafficLight traffic2(traffic1):(2);
}

Rebeca Model: Traffic Lights

tOther.RedtoGreen()

1 2

�� � � � ���� 	∧ 		���� � NO CONCURRENT GREEN

/* green */

Safe Rebeca Model: State-space

1 2 1 2 1 2 1 2 1 2

t1.RedtoGreen() t1.GreentoYellow()

t2.YellowtoRed()

1 2

t1.YellowtoRed() t2.RedtoGreen() t2.GreentoYellow()

Rebeca Model: Traffic Lights

Impatient Rebeca Model: Traffic Lights

1 2reactiveclass TrafficLight(5) {
knownrebecs {
TrafficLight tOther;
}
statevars {
byte Color;
}

TrafficLight(byte myId) {
Color = 0; /* red */
if (myId==1) {

self.RedtoGreen();
}

}
msgsrv RedtoGreen() {
Color = 1;
self.GreentoYellow();
}
msgsrv GreentoYellow() {
Color = 2;
self.YellowtoRed();
tOther.RedtoGreen();
}
msgsrv YellowtoRed() {
Color = 0;
}
}

main {
TrafficLight traffic1(traffic2):(1);
TrafficLight traffic2(traffic1):(2);
}

Impatient Rebeca Model: Traffic Lights

1 2

se
lf

.R
e

d
to

G
re

e
n

(
)

Impatient Rebeca Model: Traffic Lights

se
lf

.G
re

e
n

to
Ye

ll
o

w
(

) 1 2

• What will happen here?

57

Impatient Rebeca Model: Traffic Lights

tOther.RedtoGreen()

1 2

Impatient Rebeca Model: Traffic Lights

tOther.RedtoGreen()

1 2

Impatient Rebeca Model: State-space

1 2 1 2 1 2

1 2

1 2 1 2

1 2

t1.RedtoGreen() t1.GreentoYellow()

t2.RedtoYellow()

t2.GreentoYellow()

t2.YellowtoRed()
t1.YellowtoRed()

t1.YellowtoRed()

t1.YellowtoRed()

t2.GreentoYellow()

t1
.R

e
d

to
G

re
e

n
()1 2

t2.RedtoGreen()

…

t2
.Ye

llo
w

to
R

e
d

()

Impatient Rebeca Model: Traffic Lights

�� � � � ���� 	∧ 		���� � NO CONCURRENT GREEN ✓

�� � � � ���� � 	∧ 		���� � NO YELLOW AND GREEN ✗

Timed Traffic Lights

63

reactiveclass TrafficLight(5) {
knownrebecs {
TrafficLight tOther;
}
statevars { byte Color;
}
TrafficLight(byte myId) {
Color = 0; /* red */
if (myId==1) {

self.RedtoGreen() after(2);
}

else self.RedtoGreen()

}
. . .
main {
TrafficLight
traffic1(traffic2):(1);
TrafficLight
traffic2(traffic1):(2);
}

msgsrv RedtoGreen() {
Color = 1; /* green */
delay(2);
self.GreentoYellow();
}

msgsrv GreentoYellow() {
Color = 2; /* yellow */
delay(2);
self.YellowtoRed();
}

msgsrv YellowtoRed() {
Color = 0; /* red */
delay(2);
self.RedtoGreen();
}

1 2

Timed Rebeca Model: Traffic Lights

1 2

TIME : 0

reactiveclass TrafficLight(5) {
knownrebecs {
TrafficLight tOther;
}
statevars {
byte Color;
}

TrafficLight(byte myId) {
Color = 0; /* red */

if (myId==1) {
self.RedtoGreen() after(2);
}

else self.RedtoGreen()
}

1 2

se
lf.R

e
d

to
G

re
e

n
()

TIME : 0

Timed Rebeca Model: Traffic Lights

1 2

se
lf.R

e
d

to
G

re
e

n
()

TIME : 0

msgsrv RedtoGreen() {
Color = 1; /* green */
delay(2);
self.GreentoYellow();
}

• What will happen here?

66

Timed Rebeca Model: Traffic Lights

se
lf

.R
e

d
to

G
re

e
n

(
) 1 2

TIME : 2

msgsrv RedtoGreen() {
Color = 1; /* green */
delay(2);
self.GreentoYellow();
}

Timed Rebeca Model: Traffic Lights

se
lf

.R
e

d
to

G
re

e
n

(
) 1 2

TIME : 2

�� � � � ���� 	∧ 		���� � NO CONCURRENT GREEN ✘

Timed Rebeca Model: Traffic Lights

�� � � � ���� 	∧ 		���� � NO GREEN AND GREEN ✗

Timed Rebeca Model: Traffic Lights

Different shift in time

1 2

TIME : 0

Timed Rebeca Model: Traffic Lights

Different shift in time

1 2

se
lf.R

e
d

to
G

re
e

n
()

TIME : 0

Timed Rebeca Model: Traffic Lights

Different shift in time

msgsrv RedtoGreen() {
Color = 1; /* green */
delay(2);
self.GreentoYellow();
}

1 2

se
lf.G

re
e

n
to

Ye
llo

w
()

TIME : 2

Timed Rebeca Model: Traffic Lights

Different shift in time

msgsrv GreentoYellow() {
Color = 2; /* yellow */
delay(2);
self.YellowtoRed();
}

1 2

se
lf.Ye

llo
w

to
R

e
d

()

TIME : 4

1 2

se
lf

.R
e

d
to

G
re

e
n

(
)

or

Timed Rebeca Model: Traffic Lights

Different shift in time

msgsrv YellowtoRed() {
Color = 0; /* red */
delay(2);
self.RedtoGreen();
}

msgsrv RedtoGreen() {
Color = 1; /* green */
delay(2);
self.GreentoYellow();
}

1 2

se
lf.Ye

llo
w

to
R

e
d

()

TIME : 4

1 2

se
lf

.R
e

d
to

G
re

e
n

(
)

or

�� � � � ���� 	∧ 		���� � NO CONCURRENT GREEN ✓

Timed Rebeca Model: Traffic Lights

Different shift in time

1 2

se
lf.Ye

llo
w

to
R

e
d

()

TIME : 4

1 2
se

lf
.R

e
d

to
G

re
e

n
(

)

or

�� � � � ���� 	∧ 		���� � NO CONCURRENT GREEN ✓

Timed Rebeca Model: Traffic Lights

Different shift in time

�� � � � ���� 	∧ 		���� � NO CONCURRENT GREEN ✓

Timed Rebeca Model: Traffic Lights

Different shift in time

Rebeca Traffic Lights Model to ROS

Automatic conversion from Rebeca specification to ROS with Afra 3.0

reactiveclass � ROS class (robot)

rebecs � ROS nodes

message servers � ROS topics

message parameters � ROS msgs

sending messages � publish on topic

receive messages � subscribe on topic

Flow Management

79

Flow Managemnet of Track-based Applications

Warehouse Management System Public Transportation System

Transporting Shuttles in a Close Environment Airport and Airspace Systems

HOME NETWORK

ISTITUTIONAL NETWORK

MOBILE NETWORK

REGIONAL ISP

GLOBAL ISP

Flow Management: An Abstract View

Quarry

Air Space

Networks

City

Quarry

HOME NETWORK

ISTITUTIONAL NETWORK

MOBILE NETWORK

REGIONAL ISP

GLOBAL ISP

Network on Chip (NoC)

.

Smart Transport Hubs

Air Space

HOME NETWORK

ISTITUTIONAL NETWORK

MOBILE NETWORK

REGIONAL ISP

GLOBAL ISP

Track-based Flow Management

Quarry

Air Space

Networks

City

Similar Pattern:

Flow of objects on tracks

Topology

• Sources

• Destinations

• Intermediate Destinations

– Charging stations

– Bus stations

– Hubs

Configuration, design

variables and constraints

• Capacity

– Bandwidth

• Speed

• Latency / Time

• Cost

Goals

• Minimum Time

• Minimum Fuel

• Maximum Throughput

• …

Analysis

• Safety

• Optimization and Performance Analysis

• Self-Adaptation

In Physics (classical field theory)

May need a copyright

VCE Automated Quarry

Courtesy of Volvo CE

90

91

92

Eulerian and Lagrangian models of
the quarry in Ptolemy II

Eulerian Model

Actors are Tracks and Worksites

• Trajectory planning

• Resource optimization

• Affects of disruptions

93

Use this model to

study or design:

Lagrangian Model

Actors are Haulers

• Collision avoidance

• Sensor performance

• Battery usage
94

Use this model to

study or design:

94

Other Projects

95

SmartHub Project
(Unicam Smart Mobility Lab, Andrea Polini and Francesco De Angelis)

• Smart Hubs are Local container of one

or more smart mobility services

Goals in Smart Transportation Hub

• Minimize:

– number of service disruptions

– number of mobility resources in smarthubs

– cost of mobility for commuters

– travel time for commuters

– travel distance for commuters

Adaptive Track-based Traffic Control

Typical Autonomic
Control Loop

IBM MAPE-K

Dependable Self-Adaptive Actors

• Coordinated Actors in Ptolemy

• Model Change and Handle Rerouting

• Use model@runtime Destination

airport
Airplane in a

Sub-track Storm in a

Sub-track

ATC

Director

North Atlantic Organized Track System

• Schedulability Analysis - Wireless Sensor
Networks

102

An Imote2 device

running TinyOS

A Monitored

Structure

Ether

Misc.

Radio Comm.

Device (RCD)
Sensor

CPU

Radio Comm.

Device (RCD)

The Actor Model

• Correctness of Network Protocols

References

• For publications, see

http://rebeca-lang.org/publications

• For projects, see

http://rebeca-lang.org/projects

103

