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Dependable Software?

Tech.View: Cars and Software Bugs
May 16th 2010
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l\ . s venerable Windows XP - which had 40m lines of code-
we .u have contained at least 20,000 bugs when launched.”




“Since 2001, Airbus has been integrating several tool
supported formal verification techniques into the

development process of avionics software products”

Jean Souyris et al., “Formal Verification of Avionics Software Product”, FM 2009

Software truly is the most complex artifact
we build routinely. It’s not surprising we
rarely get it right.

Tom Henzinger, 2006
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Year Project Lines of code
[11960s Apollo 11 mission 145K
[John D. Cressler 2016]
Safeguard Program
[11970s 2M
(US Army anti-ballistic missile system) [John Lamb 1985]
IBM air traffic
11980s 2M
control systems [Computerworld 1988]
[11990s Seawolf Submarine 3.6M
[Kevin Kelly 1995]
[11990s Boeing 777 4M
[Ron J.Pehrson 1996]
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Mathematical Modeling:

A Tale of Two Cultures

Engineering Computer Science
Linear Algebra Discrete Structures
Probability Theory Automata Theory
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1 A model is any description of a system
I that is not the thing-in-itself.
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Verification and Validation

Requirements

Verification:
Is this a sound
abstraction?

Assurancé

Your design

Validation:
Is this
faithful?

What you want
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Useful Models and Useful Things

“Essentially, all models are wrong,
but some are useful.”

Box, G. E. P. and N. R. Draper, 1987: Empirical Model-Building and Response
Surfaces. Wiley Series in Probability and Statistics, Wiley.

“Essentially, all system implementations
are wrong, but some are useful.”

Lee and Sirjani, “What good are models,” FACS 2018.
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Our methodology in building

software

* Model Building: capture relevant aspects of the
system formally (using logic and automata)

 Model Checking: implement algorithms for model
analysis [Clarke/Emerson; Queille/Sifakis1981]

Exhaustively testable pseudo-code

Model checker
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Use of Formal Methods at Amazon Web Services

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, Michael Deardeuff
Amazon.com

29" September, 2014

Exhaustively testable pseudo-code

Side Benefit: A Better Way to Design Systems

- Safety properties: “what the system is allowed to do”
Example: at all times, all committed data is present and correct.
Or equivalently: at no time can the system have lost or corrupted any committed data.

- Liveness properties: “what the system must eventually do”
Example: whenever the system receives a request, it must eventually respond to that request

More Side Benefits: Improved Understanding, Productivity and Innovation

Model a traffic light

Model a crossing with two traffic lights




X1 = Red, X2 = Green

* We check the model for required properties
— Mutual exclusion
— Deadlock freedom
— No starvation




ACTORS

Concurrent and Distributed
Message Passing

An actor: a message queue, state variables, message servers

Rebeca: The Modeling Language

Asynchronous and Event-driven

= Rebeca: Reactive object language sirjani, Movachar. 2001)

= Based on Hewitt actors

= Concurrent reactive objects (OO)

Message
(Call)

= Java like syntax
Queue Queue

= Communication:
= Asynchronous message passing: non-blocking send
= Unbounded message queue for each rebec
= No explicit receive

= Computation:
= Take a message from top of the queue and execute it
= Event-driven




& C  © rebeca-lang.org * [+]
Rebeca Home Projects Tools Documents Examples Publications About

Rebeca Modeling Language

Actor-based Language with Form
Foundation ===

nguage with a formal foundation, di _ .
~ nbe considered as a reference mo
~ latform for developing object-base

a8

brmal Semantics

http://www.rebeca-lang.org/ s

# b guhire

* Ten years of Analyzing Actors: Rebeca Experience (Sirjani, Jaghouri) Invited
paper at Carolyn Talcott Festschrift, 70t birthday, LNCS 7000, 2011
* On Time Actors (Sirjani, Khamespanah), Invited paper, Theory and Practice of

Formal Methods, LNCS 9660, 2016 oy

Network on Chip
ASPIN: Two-dimensional mesh GALS NoC

* Explore the design space
* Evaluate routing algorithms
* Select best place for memory
* Choose buffer sizes




[
{ Sout [ South
(verxy) | 7| cluster (vs1.0) z ! 7E=]| cluster (v+1,%)

i

(vx1) ! Cluster (Y,X) 1 ( Cluster (Y,X)
i
H

S g S ST (118

Al

avony T ks T m~1_|t i e
(v-1,%1) | o\ Cluster (Y-1.0 | | = Cluster (¥-1,X) -1
| B 1 ER |

giveAck:
//if | am the final Receiver
//then Consume the Packet

reqSend: ) ool
//Route the Packet sender.getack;
neighbor.giveAck; myCore.forMyCore;

Ack //else if my buffer is not full
getAck:

//get the Packet
sender.getAck
//and route it ahead
self.reqSend;

//send the Packet
//set the flag of your port to free

else (my buffer is full) wait

ASPIN: Rebeca abstract model

reactiveclass Router{ reactiveclass Core{

knownrebecs knownrebecs {Router myRouter}
Actor type {Router[4] neighbor, Core myCore} statevars{ ...}
and its statevars{int[4] buffer;} Core (...){
message I;outer (myld-row, myld-col) { ...
SErVers msgsrv reqSend() { }
neighbor([x]. giveAck() after(3); ... msgsrv forMyCore() {
} // get the Packet and use it
msgsrv getAck() {
A // receive ack from the receiver
message // get ready for receiving the next packet main(){
server }'" Router r00(r02,r10,r01,r20)(0,0);
msgsrv giveAck (...) { Router r01(r00,r11,r02,r21)(0,1);
//if the message is for my core use it
myCore.forMyCore() Core c00(r00) Instances
//send ack to the sender Core c01(r0 different actors
sender.getAck() after(3);
// if not route it to the receiver ... }
1} ~ Parameters

‘\
)

Known rebecs




ASPIN: Rebeca abstract model

reactiveclass Router{
knownrebecs {Router[4] neighbor}
statevars{int[4] buffer;}

Router (...){
Deadline for the
} receiver
msgsrv reqSend() {
elay(2);

Time progress neighbor[x]. giveAck() after(3) deadlifie(6);
because of ..

computation delay

msgsrv giveAck (...) {
//if the message is for my core use it
myCore.forMyCore()
//send ack to the sender
sender.getAck() after(3);
// if not and buffer not full then route it to the receiver ...
// if buffer full then busy-wait until buffer empty
else self.giveAck() after(10), —

} L periodic tasks

Communication
delay

Evaluation of different memory
locations for ASPIN 8x8

» Consider 5 cores and their access time to the memory
: OO0 OO
* 3 choices for memory placement OEO00=E DO
* 40 packets are injected (e O OO O O
» High congestion in area 1 and 2 DO DB JOE] O
N = S R
2 00 O OOl
- OOOEOCOOO
i - J1 | Dooooooo
;Ef 150 | Model checking: 3 seconds ' OUF expectation
£ a better choice
$ HSPICE: 24 hours /2
g 50
‘. acket injection is
1 2 3 Much less details. on an application
Cores that cores have

Showed the same trend.
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Model Checking

Model
Specification

MODEL
CHECKER

Safe / Correct
Model

Properties
Specification

From Requirements to Model




From Requirements to the Model
The Train Door System

Door Lock System

* The external doors of a train can be opened by:
— the driver, who pushes the “external door opening button” on
the driver’s desk.

— a passenger, who pushes the “door opening button” installed
on each external door.

* But, if the train is running the external doors shall be kept closed to
avoid that passengers fall out of the train.

* So, the “doors lock” mechanism is put in place to keep locked all the
external doors when the train is running to prevent a passenger
from opening an external door out of the platform.




Properties

e Safety: we want to check the model if there is
any possibility that a passenger can open a
locked door to get off from a running train,
thus causing an accident.

* Progress: we want to be sure that each
passenger can get off the train at a platform
by opening the door.

Hazard Ontology of the Door

INITIATING
CONDITION INITIATING EVENT HAZARD MISHAP
The train is ) A passenger A passenger falls The passenger is
. accidentally pushes the ) . .
running . out of the train seriously injured
door opening button
HAZARD
INITIATING ROLE ENV. OBJECT ELEMENT EXPOSURE MISHAP VICTIM
. Train external .
Exit Open door Standing close to Person
door
|
INITIATOR HARM
FACTOR ENV CRJECT TRUTHMAKER
Can be open in
Train external any situation (e.g.
No lock door while the train is
running)




Safety Requirements for the Train

Doors Control System

By using the Hazard Ontology, and by applying the
SARE* (Safety Requirements Elicitation) approach,
the analyst and safety engineer obtained a set of
safety requirements (to lock the doors).

*An Ontological Approach to Elicit Safety Requirements. Luciana Provenzano, Kaj
Hanninen, Jiale Zhou, and Kristina Lundqvist. Proceedings of the 24th Asia-Pacific
Software Engineering Conference (APSEC’17), Nanjing, China, December 2017

Safety Requirements Elicitation for the

Train Doors Control System

[REQID  |REQ DESCRIPTION Elicited REQ ID

ST ES GIVEN the train is ready to run SSysReq1
WHEN the driver requests to lock the external doors

THEN all the external doors in the train shall be closed and

locked

ST LA GIVEN an external door is locked SSysReq2
WHEN the passenger requests to open the external door
THEN the external door shall be kept closed and locked

S
S
S

AT HEGER GIVEN an external door is unlocked SSysReq3
- WHEN the passenger requests to open the external door
THEN the external door shall open
SVEST LTS GIVEN all the external doors on the side of the train close to SSysReq3
the platform are unlocked
WHEN the driver requests to open all the external doors
THEN all the external doors on the side of the train close to
the platform shall be open

ST EN GIVEN the train arrives at a station AND the train speed is less SSysReq4
than 0.5 km/h
WHEN the driver requests to unlock all external doors that are
on the train side close to the platform
THEN all the external doors on that side of the train shall be
unlocked




From requirements to Use Case

«requirement»
SSysSpecReql

Lock external doors

Open an external
door

«requirement»
SSysSpecReq5

Passenger

«requirement»
SSysSpecReq2
SSysSpecReq3
SSysSpecReq8

Unlock externaI/
doors /

Driver

{The train is running}

Manage alarm foN Q

open doors

Open external doors

«requirement» «inherits»

SSysSpecReq4

DoorControlSystem

Provide "doors
open'" alarm

Provide warning "not
stand close to ext.
doors"

«requirement»
SSysSpecReq6

«requirement»
SSysSpecReq9

Force an open door
to close

«requirement»
SSysSpecReq7

Chosen use cases

«requirement»
SSysSpecReq1l

Lock external doors

Open an external
door

«requirement»
SSysSpecReq5

Passenger

Unlock external
doors /

«requirement»
SSysSpecReq2
SSysSpecReq3
SSysSpecReq8

Driver

{The train is running}

Open external doors

o

«requirement» «inherits»

SSysSpecReq4 inherits»

DoorControlSystem

Provide "doors
open™ alarm

Provide warning "not
stand close to ext.
doors"

«requirement»
SSysSpecReq6

«requirement»
SSysSpecReq9

Force an open door
to close

«requirement»
SSysSpecReq7




Why these two use cases?

We want to verify that it is not possible to open
a locked door or lock an open door.

unlockDoor()
close, lockDoor() close,
unlocked locked
o
1

closeDoor()

(J1o

open,
unlocked

Door Control System Class diagram

TrainManager Door Controller Door
CisTrainRunning : bool -isDoorOpen : bool -isLocked : bool
—isTrainAtStation. - bool -isDoorLocked : bool -isOpen : bool
+SendTrainStatus() 1 1 |+Close&LockExternalDoors() 1 1.* [+OpenDoor()

+0penAnExternalDoor() +LockDoor()




Sequence Diagram: Lock External

Driver TrainManager DoorController Door

isTrainNotRunning

T

|

I

|
________________ SendTrainStatus }
|
|
I
I
|
I

I
lock external doors
|
S

T
I
I
I
I
I
I
I
I
I
I I

I I

| | LockDoor
I I

I I

I

I

I

I

I

I

I

Sequence Diagram: Open an External

Door

open an external door isDoorNotLocked SendTrainStatus

Passenger DoorController Door TrainManager
‘ i
|
| SendDoorStatus
|
|

>

|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
} OpenDoor
|

|

|

|

|

|




From UML to Rebeca Model

Reactive classes: ¢ Door
* Driver ¢ DoorController
e Passenger ¢ TrainManager

TrainManager Door

; .
sTrainNotRunning i i
________________ SendTrainStat
< isTrainAtStation endiranstates 1 .
& - T
lock external doors Passenger DoorController Door TrainManager

DoorController

SendDoorStatus
open an external door isDoorNotLocked SendTrainStatus

The Verification of the Rebeca Model

[REQID  |REQ DESCRIPTION Elicited REQ ID

ST B GIVEN the train is ready to run SSysReq1
WHEN the driver requests to lock the external doors

THEN all the external doors in the train shall be closed and

locked

@1 = G((trainReady A lock rsLocked A doorsClosed))




The Rebeca Model counter-exam

g 37 B fromr 38
rainManager.SENDSTATUS from trainManager trainManager.LEAVESTA}lON from trainManager doorCommIIer.DOOfOPENED from door
2 36 40
driver,TRAlNSTATU{ from trainManagetrainManager.DOORCLOSEDANDLOCKED from doorController trai"'Ma"‘age’*"\PpROACHSf/*TIQN from trainManager
42
4 35
0 5 44
d°°'c°”“°"e"L°%<D°°R from driver doorcOntroller,DOORCLO%EDANDLOCKED from door trainManager.LEAVESTATION from trainManager Q;]
8 34 es . i}
passenger.OPENDOQR from passenger door.LOCKDOOR ffom doorController e"AFPRO"CHS&”'ON from trainManager
30 f 32 41 PENED-fromrdoor > 43

@1 = G((trainReady A lockl prsLocked A doorsClosed))

Attribute Valie
¥ driver
¥ State Variables
isTrainRunning false
isAtTrainStation true
isOpen false
isLocked true

Queue Content
¥ doorController
) State Variables
Queue Content
¥ trainManager
) State Variables

—QueueContent
¥ door
¥ State Variables
isOpen true
isLocked true
T Queue Content
¥ passenger

b State Variables
Queue Content

Using Rebeca and Afra

for Modeling and Model Checking




Traffic Lights U D
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Rebeca Model: Traffic Lights

TrafficLight( myId) {
Color = 0;
(myId==1) {
s .RedtoGreen(); \ ), \ ),
¥ 3 ——
msasrv RedtoGreen() { reactiveclass TrafficlLight(5) {
!% knownrebecs {
&( * TrafficLight tOther;
¢ + }
&+!) ) statevars {
byte Color;
+ ’ }
¢
&« L
TrafficLight(byte myId) {
Color = @; /* red */
if (myId==1) {
% ) * % self.RedtoGreen();
) % *) }




Rebeca Model:

P #s $t
11%

& (

RedtoGreen() {
Color = 1;
.GreentoYel low();

% ) <%
) % *)

self.RedtoGreen( )

Traffic Lights

msgsrv RedtoGreen() {
Color = 1; #$
self.GreentoYellow();

$#

Rebeca Model:

1" #$ $#
1%
&” (¢
(¢
1 %
&( +
¥
GreentoYellow() {
Color = ()

VR E! LD AACY
. TE€LLOWCOREA ),

msasrv YellowtoRed() {
P

& (

% ) * %
) % *)

Traffic Lights

self.GreentoYellow( )

msgsrv GreentoYellow() {
Color = 2; #$
self.YellowtoRed();

$#




Rebeca Model: Traffic Lights

<1
)]
o'
(@]
e
2
Lo e 2
(1) L
&” ( = \ ) \
b
¢
1 %
&( +
(¢ +
1)

&+ ’ msgsrv YellowtoRed() {
isgsrv YellowtoRed() { Color = @; #$ $#
Color = 0;

;suu.mg@;uu<x tOther.RedtoGreen();
' 3

% ) <%

) % * )

Rebeca Model: Traffic Lights

1" #$ $#
1%
&” (¢ = —
}
NS R§dtoGreen() {
LULUI.Z._:.’.LJYeHOW();
¥
|n<r1<r'\/'Qr)‘Ppn+nYP1'Inwf\ { tother_RedtoGreen( )
&+-
msgsrv RedtoGreen() {
+ ,
e Color = 1; #$ $#
& ¢ self.GreentoYellow();

% ) * %
) % *)




Rebeca Model: Traffic Lights

Color = 1; #$ $#
self.GreentoYellow();
}

@1 = G(—~(green; A green,)) = NO CONCURRENT GREEN

Safe Rebeca Model: State-space

tl.RedtoGreen() tl.GreentoYellow()tl.YellowtoRed() t2.RedtoGreen()  t2.GreentoYellow()

N N

1111
S~ A

t2.YellowtoRed()




Rebeca Model: Traffic Lights

Impatient Rebeca Model: Traffic Lights

11% \ ), \ ),

reactiveclass TrafficlLight(5) {
knownrebecs {

7 (
1% TrafficLight tOther;
&( + }
C . statevars {
woLor £ 25 byte Color;
sel f.YellowtoRed(); 3

tOther.RedtoGreen();
1

e ’ TrafficLight(byte myId) {
) Color = @; /* red */
if (myId==1) {
self.RedtoGreen();
% ) * % }
) % *) }




Impatient Rebeca Model: Traffic Lights

self.RedtoGreen( )

msgsrv RedtoGreen() {

Color = 1;
self.GreentoYellow();

Impatient Rebeca Model: Traffic Lights

self.GreentoYellow( )

msgsrv GreentoYellow() {
Color = 2;
self.YellowtoRed();
tOther.RedtoGreen();




* What will happen here?

Impatient Rebeca Model: Traffic Lights

tOther.RedtoGreen( )

msgsrv RedtoGreen() {
Color = 1;
self.GreentoYellow();
}




Impatient Rebeca Model: Traffic Lights

tOther.RedtoGreen( )

. msgsr, RedtoGreen() {
Color =113
self.GreentoYellow();

Impatient Rebeca Model: State-space

t2.GreentoYellow()

t2.RedtoYellow()

t1.RedtoGreen() t1.GreentoYellow()

YA

%ﬂ/ t1.YellowtoRed)()

B
2
v
VN g
2 1 2 2
! I l 5
_\
tl.YellowtoRed()

/ ~

t2.RedtoGreen()  t2.GreentoYellow()

A |
(Jpayomo|arza




Impatient Rebeca Model: Traffic Lights

@1 = G(—(green; A green;)) = NO CONCURRENT GREEN /
on = G(—(yellow; A greeny)) > NO YELLOW AND GREEN ~ X

Timed Traffic Lights U D

’ (
wuLur é ", #$ $#
delay(2);
&( +
! #$ $#
11%
&« after(2); ( N
1) #% SH
& ( delay(2);
self.Yellon ~
& & & ———
+ E )
% ) * % \V-‘U‘LL’V)I'WTH\;(J #$ $#
d@'/"u)ﬂ\;);
) % * ) & (

63




Timed Rebeca Model: Traffic Lights

7
-
N

1%

( )usaiooipayyles

J

o

Eh

(]

o

5

(0)

sl

(]

=3

\ e/ \— ~

TIME : 0
4 (

1 % #$ $H

&( +




* What will happen here?

self.RedtoGreen( )

' % #$ $#




Timed Rebeca Model: Traffic Lights

self.ké‘dto_G reen( )

msgsrv Redto'Gr\gen() {
\ Color = 1; J/Green
itemp = now;
//temp= Q;
- driftedDelay = 2;
- delay(driftedDelay);
self.GreentoYeltow();

}

@1 = G(—(green; A green,)) > NO CONCURRENT GREEN X

Timed Rebeca Model: Traffic Lights

[« + 0 -~ - @O8|%%Z|nn|r0|d

Il ¥ Steps: 1« Real Time Factor: Sim Time:

@1 = G(—~(green; A green,)) > NO GREEN AND GREEN ~ X




Timed Rebeca Model: Traffic Lights

Different shift in time

Semaphore 1 Semaphore 2
self.redToGreen() after(4) self.redToGreen()
—> —>
z delay(2) T delay(2)
©| self.greenToYellow() g self.greenToYellow()
(O
2 2
e e
3 3
— I frn |
NS delay(2) NS delay(2)
3 self.yellowToRed() S self.yellowToRed()
he) o

v

Timed Rebeca Model: Traffic Lights

Different shift in time

— 7,
TIME : 0
reactiveclass TrafficLight(5) {

knownrebecs {
TrafficLight tOther;

}

statevars {
byte Color;
int driftedDelay;
int temp;

3

TrafficLight(byte myId) {
Color = @; //Red
if (myId==1) {
self.RedtoGreen() after(4);

}
else self.RedtoGreen();




Timed Rebeca Model: Traffic Lights

Different shift in time

o

2

D

o

o

()

o

D

=1
¢

1 % #$ $#

)

&( +

Timed Rebeca Model: Traffic Lights

Different shift in time

(@LJIEIXSUEESSYIEN

1) #% $#




Timed Rebeca Model: Traffic Lights

Different shift in time

o

Q) O
2 s
409 or 6,:
2 /i
= \ J \ ) \ —
b TIME : 4

] ( =+ z

1% #$ $# ; #$ $#

)

&( + &’ (

Timed Rebeca Model: Traffic Lights

Different shift in time

o
T '\ 5
(O] =
[0 o
5 3
3 or &
S >
< =3
= N \__J \—) —
& TIME : 4
msgsrv RedtoGreen() { msgsrv YellowtoRed() {
Color = 1; //Green Color = @; //Red
driftedDelay = 2; driftedDelay = 4;
delay(driftedDelay); delay(driftedDelay);
self.GreentoYellow(); self.RedtoGreen();
} }

@, = G(—(green; A green,)) > NO CONCURRENT GREEN v/




Timed Rebeca Model: Traffic Lights

Different shift in time

©
5 :
2
< g
'8 =
° ™
g o
o =
o . -
b
msgsrv RedtoGreen() { msgsrv YellowtoRed() {
Color = 1; //Green Color = @; //Red
driftedDelay = 2; driftedDelay = 4;
delay(driftedDelay); delay(driftedDelay);
self.GreentoYellow(); self.RedtoGreen();
} }

@1 = G(~(green; A green,)) = NO CONCURRENT GREEN v

Timed Rebeca Model: Traffic Lights
Different shift in time

406 -~ - |08 %Z | na|r0i

Il ») Steps: 1 Real Time Factor:

@1 = G(—(green; A green,)) > NO CONCURRENT GREEN v/




Rebeca Traffic Lights Model to ROS

Automatic conversion from Rebeca specification to ROS with Afra 3.0

C 40

{5 Project Explorer 38 -4 v=n

1 HxVolvo
¥ 13 TrafficLight
> out
Vs
» (> TrafficLightROS
P TrafficLignt property

Trafficignt  NeW
3 TrafficLightUnsaf
B TatfcLigntnsah o
Open With

Copy
X Delete

Move...
Rename...

Import...
3 Export...

Refresh

Team
Compare With
Replace With

Properties

R TrafficLight.rebeca 3
//Traffic Light Simple version
// The traffic light signals th

reactiveclass Trafficlight(5) {
knownrebecs {
Trafficlight tOther;

}
statevars {
> byte Color;
}
#C TrafficLight(byte myId) {
Color = @; /* red */
B if (myId==1) {
self.RedtoGreen();
r2 }
X
msgsrv RedtoGreen() {
Color = 1;
s self.GreentoYellow();
}
> msgsrv GreentoYellow() {
: Color = 2;
7t toRed();

tOther.RedtoGreen();
}

——

reactiveclass = ROS class (robot)
rebecs = ROS nodes

message servers = ROS topics
message parameters = ROS msgs
sending messages = publish on topic
receive messages = subscribe on topic

——

{5 Project Explorer 23
1] HXVolvo
P (= out
Y (= src
¥ (= TrafficLightROS
¥ (= TrafficLight
¥ (= include
¥ (= TrafficLight
B TrafficLight.h
¥ (& launch
TrafficLight.launch
¥V (= msg
GreentoYellow.msg
RedtoGreen.msg
YellowtoRed.msg
¥ (= src
@ TrafficLight.cpp
CMakelists.txt
package.xml
P TratficLignt.property

D vossaiat tare oa haaa

Flow Management




Flow Managemnet of Track-based Applications

Warehouse Management System

Public Transportation System

Transporting Shuttles in a Close Environment

Air Sbacé

C
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LOADING POINT CHARGE STATION SECONDARY CRUSHER
T (UNLDADING POINT)

WHEEL LOADER PRIMARY CRUSHER MATERIAL TRANSPORT

mobile network

T

ISTITUTIONAL NETWORK
—
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Smart Transport
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Track-based Flow Management

Similar Pattern:
Flow of objects on tracks

Topology Configuration, design
e Sources variables and constraints
* Destinations * Capacity
* Intermediate Destinations ~ Bandwidth
— Charging stations * Speed
— Bus stations e Latency/Time
— Hubs e Cost

Goals

* Minimum Time

* Minimum Fuel
 Maximum Throughput




Analysis

e Safety

e Optimization and Performance Analysis

e Self-Adaptation

In Physics

Lagrange

May need a copyright




VCE Automated Quarry

LOADING POINT CHARGE STATION SECONDARY CRUSHER
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Eulerian and Lagrangian models of
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Use this model to
study or design:

[ taskTime 2.0 I

e Trajectory planning
* Resource optimization
e Affects of disruptions




Lagrangian Model

Actors are Haulers

Continuous Director
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e Collision avoidance
Use this model to

. e Sensor performance
study or design:

* Battery usage

Other Projects




SmartHub Project

(Unicam Smart Mobility Lab, Andrea Polini and Francesco De Angelis)

* Smart Hubs are Local container of one
or more smart mobility services
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Goals in Smart Transportation

* Minimize:
— number of service disruptions
— number of mobility resources in smarthubs
— cost of mobility for commuters
— travel time for commuters
— travel distance for commuters




Adaptive Track-based Traffic Control

Network instrumentation
Environmental sensors
User context

Application requirements
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or administrators Rules and policies
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Decide
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Dependable Self-Adaptive Actors

e Coordinated Actors in Ptolemy
 Model Change and Handle Rerouting
* Use model@runtime grymmmmm

Director

North Atlantic Organized Track System
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* Schedulability Analysis - Wireless Sensor
Networks
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