AI-Driven Pre-Design Predictions of a 90 Passenger Hybrid-Electric Aircraft

Erick Espinosa-Juárez, Research Assistant

MODPROD

19th MODPROD Workshop on Model Based Cyber-Physical Product Development Linköping, February 4-5, 2025

Outline

- 1. Problem framing
- 2. Method
- 3. Results
- 4. Conclusions

Problem Framing

Hybrid-Electric Aircraft Needed!

- The RETAS project¹ needs aircraft models.
 - A 90-passenger hybrid electric model was needed based on demand predictions².
 - This is a small "spin-off"

The Aircraft Conceptual Design Process

Top Level Requirements (given)

How much weight do you want to transport and where.

Payload: Passengers and cargo

Range: Defined by battery technology (for hybrid-electric aircraft)

Payload is given, range is to be determined.

•Your iterative design process must start somewhere.

—A statistical analysis gives you an educated guess.

Statistics on available designs

- Numerous statistics available based on existing aircraft
 - Just search it on a graph!
 - But what if the design searched for does not exist?

Aircraft plan forms and their relative wetted area.³

Electrified Aircraft Concepts Database

- Multiple concepts have been proposed in Academia & Industry.
- Creation of a 52 airplane database
- Data is not clean or complete
 - A conventional statistical analysis was performed

*Hybrid-electric aircraft concept.*⁴

Number	Model	Manufacturer / Designer	Propulsion	Туре	Certific ation sought	nPAX	OEM [kg]	MTO M [kg]	Payload [kg]	Fuel Mas s [kg]	Battery Mass [kg]	<u>Battery</u> <u>Mass</u> Fraction	Wingsp an [m]	Wing area [m2]	MAC [m]	Aspect Ratio []	<u>Wing</u> loading [kg/m2]
1	AEA-800	MIT	Full Electric	AirTransport	CS-25	180		109000	17500	0	48000	0.440	36	125.6	3.49	10.3	868
2	Volt Air	Airbus	Full Electric	AirTransport	CS-25	33	31000	33000		0							
3	Wright Spirit	Wright Electric	Full Electric	AirTransport	CS-25	100							26.34	77.3	2.935	9.0	0
4	A320-200PHE	TRADE	Hybrid-electric	AirTransport	CS-25	150		77000					33.91	122.4			644
5	A320neoPHE	TU DELFT	Hybrid-electric	AirTransport	CS-25	150		79000					35.8	122.6			644
6	ATR-72HE	TU Delft	Hybrid-electric	AirTransport	CS-25	70	13500	28500	7500	1400	4700	0.165	30.1	75.7	2.51	12.0	376
7	BHLA320PHE	Bauhaus Luftfahrt	Hybrid-electric	Air Transport	CS-25	180	42267.13	74023	18370	4655	8734.714	0.118	38.2	115.0			644
8	E-fan X	Airbus	Hybrid-electric	Air Transport	CS-25	70		38400		0	2000	0.052	26.34	77.3	2.93	9.0	497
9	ES-19	Heart Aerospace	Hybrid-electric	Air Transport	CS-25	19		8600	475		1600	0.186	32				
10	EVE	Georgia Tech	Hybrid-electric	Air Transport	CS-25	150	11339	69126			10205	0.148	50	137.2	2.744	18.2	504
11	PEGASUS	NASA	Hybrid-electric	Air Transport	CS-25	48		18143			5897	0.325	24.57	54.5	2.22	11.1	333
12	Refined SUGAR N+4	UTRC	Hybrid-electric	Air Transport	CS-25	154		61875		12026	9745	0.157		126.0		9.5	491
13	REG-C	NLR	Hybrid-electric	Air Transport	CS-25	40		21300			3600	0.169	24.57	43.2	1.76	14.0	493
14	REG-R	NLR	Hybrid-electric	Air Transport	CS-25	40		22641	6115		3070	0.136	30	65.6	2.19	13.7	345
15	STARC-ABL	NASA	Hybrid-electric	Air Transport	CS-25	150	36505	60495		8777		0.000	36	105.0	2.92	12.3	576
16	Sugar VOLT	Boeing	Hybrid-electric	Air Transport	CS-25	154	40280	68040		6667	7121	0.177	50	137.2	2.74	18.2	496
17	CENTRELINE	Bauhaus Luftfahrt	Turboelectric	AirTransport	CS-25	340		229000			0	0.000	65				644

What would have happened if I had just asked ChatGPT?

Usage of AI in pre-design studies and its comparison to conventional statistical methods

Method

What are we searching for?

• Configuration-independent design parameters

Conventional Statistics Methods

Linear Regression

A linear approximation was applied to nPax and the searched variables.

-Logarithmic scale was used for better linearization

Singular Variable Decomposition

Only a few parameters can be used to represent what appears to be complex relations⁶

The Great Flight Diagram⁵

Different question strategies

Since answers are not deterministic, for each LLM:

- Questions (always the same) were asked sharing or not the table, in the same or in different windows.
 - 7 questions for each strategy

The question (always the same):

Give me the estimation for MTOM (in kg), cruise speed (in knots), Wing loading (in kg/m2), power to weight ratio (in kW/kg) and battery mass fraction for a HYBRID-ELECTRIC 90 PASSENGER AIRCRAFT

Based on this table and your own knowledge, give me the estimation for MTOM (in kg), cruise speed (in knots), Wing loading (in kg/m2), power to weight ratio (in kW/kg) and battery mass fraction for a HYBRID-ELECTRIC 90 PASSENGER AIRCRAFT

Results

Linear Regression

- R² coefficient varied from 0.96 to 0.276.
- Went from nPAX \rightarrow MTOM \rightarrow (W/S) \rightarrow (P/W) \rightarrow BMF

Singular Variable Decomposition (SVD)

- Aircraft dataset reduced from 52 to 31
- Number of passengers had the highest weight in the W-Diagonal.
 - Not absurd to predict other parameters from it.
 - All other SVD variables set to zero.

	Rel error	ATR-72HE	Estimate	Adjusted	Result	Average						SVD variables	w-diagonal	residual
nPAX	0.00	90.00	90.00	1.95	1.06	0.89	-0.691	0.111	-0.034	0.065	0.002	-1.54	5.75	0.8
MTOM [kg]	0.58	28500.00	45076.26	4.65	1.05	3.61	-0.681	-0.050	-0.002	-0.066	-0.034	0.00	1.48	0.1
Wing loading [kg/m2]	0.42	376.49	535.62	2.73	0.52	2.21	-0.339	-0.118	0.015	-0.008	0.068	0.00	1.14	0.1
Power to Weight Ratio [kW/kg]	0.01	0.17	0.17	-0.77	0.09	-0.86	-0.059	-0.181	0.070	0.059	-0.030	0.00	0.62	0.1
Battery Mass Fraction	0.03	0.16	0.17	-0.77	-0.13	-0.64	0.083	-0.096	-0.189	0.010	-0.006	0.00	0.46	0.0

W Diagonal

Maximum Take-Off Mass

Median Mean

Wing Loading

Power Loading

Battery Mass Fraction

Conclusions

Conclusions

 AI was not used for inspiration⁹ nor as active decision maker¹⁰, but rather as an interpolator/ extrapolator (of not easily available data), complementing statistical analysis.

Bibliography

[1] Swedish National Road and Transport Research Institute, "Aviation research." <u>https://www.vti.se/en/research/aviation</u> Accessed: 2024-02-02.

[2] Jouanet, C., Amadori, K., & Espinosa Juarez, E. (2024). *Sustainable aviation in Nordic countries*. Paper presented at the 34th Congress of the International Council of the Aeronautical Sciences (ICAS), Florence, Italy

[3] Scholz, D. (n.d.). *Aircraft design: Chapter 5 – Preliminary sizing*. Hamburg University of Applied Sciences. Retrieved from <u>https://www.fzt.haw-hamburg.de/pers/Scholz/HOOU/AircraftDesign_5_PreliminarySizing.pdf</u>

[4] Heart Aerospace. (2024, September 12). Heart Aerospace unveils first full-scale demonstrator for 30-seat hybrid-electric airplane. Heart Aerospace.

[5] Sirohi, J. (2013), Engineered Biomimicry Chapter 5 - Bioinspired and Biomimetic Microflyers, Elsevier.

[6] Krus, Petter. (2016). *Models Based on Singular Value Decomposition for Aircraft Design*. Aerospace Technology Congress 11-12 October 2016, Solna, Stockholm

[7] Raymer, D. P. (2018). *Aircraft design: A conceptual approach* (6th ed.). American Institute of Aeronautics and Astronautics (AIAA).

[8] Gitnux. (2024). Market Data Report 2024. Gitnux

[9] Wernersson, J., & Persson, R. (2023). Exploring the potential impact of AI on the role of graphic content creators: Benefits, challenges, and collaborative opportunities (Bachelor's thesis). Jönköping University, School of Engineering.
[10] Lovaco, Jorge & Munjulury, Raghu & Staack, Ingo & Krus, Petter. (2024). Large language model-driven simulations for system of systems analysis in firefighting aircraft conceptual design. International Congress of Aeronautical Sciences, Florence, Italy

[11] Pradas Gomez, A., Krus, P., Panarotto, M., & Isaksson, O. (2024). *Large language models in complex system design*. Proceedings of the Design Society, 2197–2206. https://doi.org/10.1017/pds.2024.222

erick.espinosa.juarez@liu.se

www.liu.se

