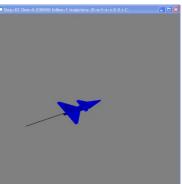
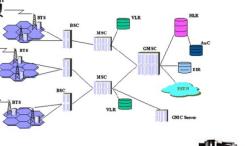

Research in Model-Based Product Development at PELAB and RISE in the MODPROD Center

Presentation at MODPROD'2025 Department of Computer and Information Science Linköping University 2025-02-04

Adrian Pop, Peter Fritzson, Martin Sjölund, Lena Buffoni, Lennart Ochel, John Tinnerholm, Mahder Gebremedhin, Robert Braun, Arunkumar Palanisamy, Per Östlund, Adeel Asghar, Abdelazim Hussien




Industrial Challenges for Complex Products of both Software and Hardware

- Increased Software Fraction
- Embedded and real time constraints
- Higher demands on effective strategic decision making

Digitalization Revolution Happening Now!

Internet of Things, AI, CPS

Research

Large-Scale Modeling and Simulation

Modeling-Language Design

Model-Based Co-simulation with FMI and TLM

Model Debugging

Model-Based Fault Analysis

Embedded System Real-Time Modeling

Modeling in the Cloud

Energy Modeling

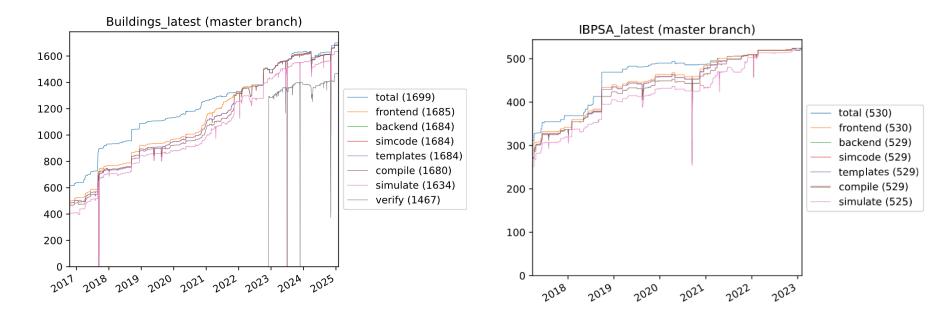
Sustainable Systems

Large-Scale, High Performance Model-Based Development

10 million equation goal!

Per Östlund, Adrian Pop, Martin Sjölund, Mahder Gebremedhin, John Tinnerholm, Abdelazim Hussien

Peter Fritzson, et al


High Performance Modelica Compilation Methods for Large Model Applications

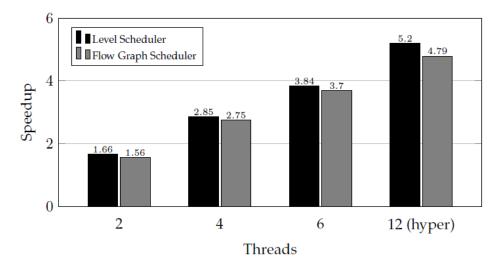
- The OpenModelica new compiler frontend a large effort to redesign and rewrite more than half of the compiler to gain high compilation performance and 100% Modelica semantics
- Uses Model-centric and multiple phases design principles
- OpenModelica 1.14.1 December 2019 First release with New Frontend.
 OpenModelica 1.18.x July 2021 on by default.
- The New frontend is about **10 to 100 times faster** than the old compiler frontend. It can also flatten more libraries: Buildings, Chemical, ClaRa, HanserModelica, HelmholtzMedia, IBPSA, MEV, ModelicaByExample, Modelica (3.2.3 & 4.0.0), ModelicaTest, Modelica_DeviceDrivers, OpenHydraulics, OpenIPSL, PNLib, PhotoVoltaics, PhotoVoltaics_TGM, PlanarMechanics, PowerGrids, PowerSysPro, PowerSystems, ScalableTestGrids, ScalableTestSuite, SystemDynamics, ThermoPower, TILMedia, ThermoFluidStream, VehicleInterfaces
- During 2024 Further tuning and performance increases; coupling with the new backend in development at FA Bielefeld. New API to use the new frontend in model editing as well.

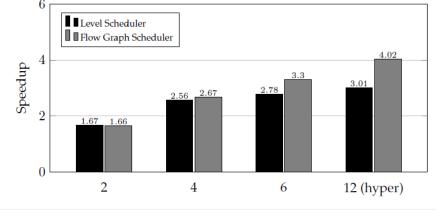
Continuing collaboration with LBL on Buildings

- Strategic partnership started in 2021 with LBL (US gov't laboratory in Berkeley)
- Goal: provide open-source support for Modelica libraries (Buildings, IBPSA) involved in the Spawn of Energy Plus project

- > 98% Build success on Buildings and IBPSA
- > 98% Simulation success on Buildings, 98% on IBPSA

Experimental OpenModelica Compiler in Julia Goal – Flexible Just-in-time Compilation, variable structure

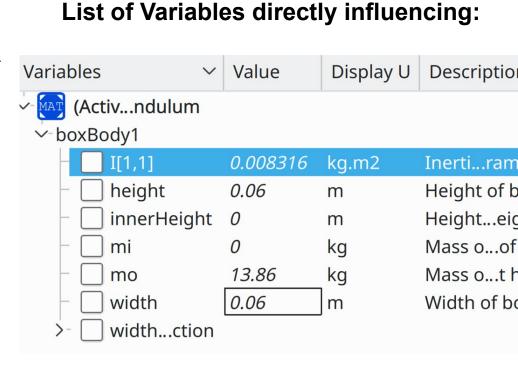

- During 2019, Developed a preliminary MetaModelica to Julia translator
- Translated most of the previous OM frontend
- Able to execute some translated MetaModelica functions
- Goal support variable structure systems (VSS) and large-scale models
- Status 2022 new front-end translated, PoC for VSS using recompilation during runtime
- Status 2023 first release: <u>https://github.com/JKRT/OM.jl</u> new applications: Dynamic Overconstrained Connection <u>https://ecp.ep.liu.se/index.php/modelica/article/view/556</u>
- Status 2025 first release: new applications: ESCIMO/Earth3 translated from System Dynamics – VenSim
- John Tinnerholm PhD thesis defence in autum


ParModAuto Parallelization (Released spring 2020) Automatic AutoTuned Parallelization of Equation-based Models

- Parallelization for higher performance
- Automatic Parallelization
- Automatic clustering of small tasks
- Automatic load balancing based on measurements, automatically adapts to changing load
- Shared-memory task
 parallelization
- 2022 better integration in OM
- 2023 testing different models
- 2025 trying new metaheuristic
 optimizations for better speedup

BranchingDynamicPipes model, **Speedup 4 on 6 cores**:

Enhance Modeling Ease-of-use! Model Debugging and Performance Analysis


Martin Sjölund, Adrian Pop, Adeel Asghar Dept Computer and Information Science Linköping University

Enhanced OM Debugger that can trace (and plot) which variables and equations influence a variable

New functionality to show direct variable dependencies

Variables	\sim	Value	Display U	Descrip		
∽ 🛺 (Activ…r	ndulum					
∽ boxB Sho	w only dire	ect depend	encies		\bigwedge	
Sho	w only dire	ect depend	encies (initi	al)		N
– 🗌 Ope		V				
- 🗌 I[2,	1]	0	kg.m2	Inertir 📕		~
- 🗌 I[2,2	2]	0.292908	kg.m2	Inertir		
- 🗌 I[2,:	3]	0	kg.m2	Inertir		
– 🗌 I[3,	1]	0	kg.m2	Inertir		
- 🗌 I[3,2	2]	0	kg.m2	Inertir		
- 🗌 I[3,:	3]	0.292908	kg.m2	Inertir		
>- R						
>- 🗌 a_0						
– 🗌 ang	les_fixed	0		= true,		
>- 🗌 ang	les_start					
– 🗌 anii	mation	1		= true		
>-body						
>- 🗌 colo	or		_			
l – 🗌 den	sitv	7.7	a/cm3	Densitv.		
elcome 💰	Modeling	🔜 Plott	ing 🦉	Debugging		

Integrated Static-Dynamic OpenModelica Equation Model Debugger

ĺ	🖉 OMEdit - Transformational Debugger									
	Variables View OpenModelica/OMEdit/Modelica.Mechanics.MultiBody.Examples.Elementary.DoublePendulum_info.xml									
Efficient	Variables				Source Browser					
	Variables Browser		Defined In Equations	Used In Equations	C:/OpenModelica/trunk/build/li/Mechanics/MultiBody/Joints.mo					
handling	frame		Index Type Equation	Index Type Equation	317 // relationships between 🔺					
of	Case Sensitive	Regular Expression 🔻			quantities of frame_a and of frame b					
	Expand All	Collapse All			318 frame b.r 0 = frame a.r 0;					
Large	Variables	Comment			319					
•	🗉 boxBody1	Absolutframe_a	Variable Operations		320 if rooted(frame_a.R) then 321 R rel =					
Equation	🗉 body	Absolutframe_a	Operations		Frames.planarRotation(e,					
Systems	🗉 frame_a	Positiod frame	solved: boxBody1.body.frame_a.R.T[1,1] =	= boxBody1.frame b.R.T[11]	<pre>phi_offset + phi, w);</pre>					
5	E R	AbsolutI frame		,xBody1.frameTranslation.frame_a.R.T[1,1]	322 frame_b.R = Frames.absoluteRotation(frame					
	 T	Transfol frame	Substitute boxbody:100dyintine_and f(r)	a.R, R rel);						
	٠ m		Equations View	323 frame_a.f = -						
	Equations		<pre>Frames.resolv (R_rel, frame b.f);</pre>							
Showing	Equations Browser		Defines	Depends	324 frame a t = -					
U	Index Type	Equation ^	Variable	Variable	Frames.resolv:1(R_rel,					
equation	-819 regular	(assignmer.a_rel	world.frame_b.f[2]	- boxBody1.frame_b.R.T[1,2]	frame_b.t); 325 else					
transfor	-820 regular	(assignmolute2.a		boxBody1.frame_b.R.T[2,2]	326 R rel =					
motiona	-821 regular	(assignmer.a_rel		- revolute1.frame_b.f[1]	Frames.planarRotation(-e,					
mations	-822 regular	(assignme_a.f[2]		revolute1.frame_b.f[2]	phi_offset + phi, w); 327 frame a.R =					
of a	-823 regular	(assignme_a.f[1]	Equation Operations		Frames.absoluteRotation(frame					
	-824 regular	(assignme_b.f[2]	Operations		b.R, R_rel);					
model:	-825 regular	(arrigan e.b.f[1]	- solve: -world.frame_b.f[2] = (-boxBody1	ame b.R.T[2,2] * revolute1.frame b.f[2]	<pre>328 frame_l.f = - Frames.resolvel(R_rel, frame a.f);</pre>					
	-826 regular	(assignme_b.t[2]	+ scalarize(2): {-world.frame_b.f[1], -worl							
	-827 regular	(assignme_b.f[2]	simplify: -{boxBody1.frame_b.R.T[1,1] *		329 frame_p.t = -					
	- 828 regular	(assignme_b.t[2]	- inline: -Modelica.Mechanics.MultiBody.F		<pre>Frames.resolve1(R_rel, frame a.t);</pre>					
				330 end if;						
		(statomo_width")	substitute, evoluted frame a f => (wor		331 👻					

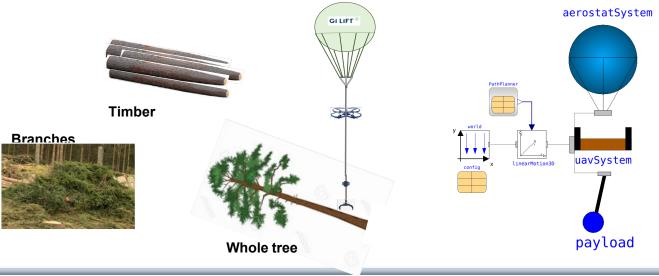
Mapping dynamic run-time error to source model position I

Digital Twins using Modelica and OpenModelica

Collaboration with Modelicon InfoTech, Bangalore, India GI-LIFT AB, Linköping, Santa Anna

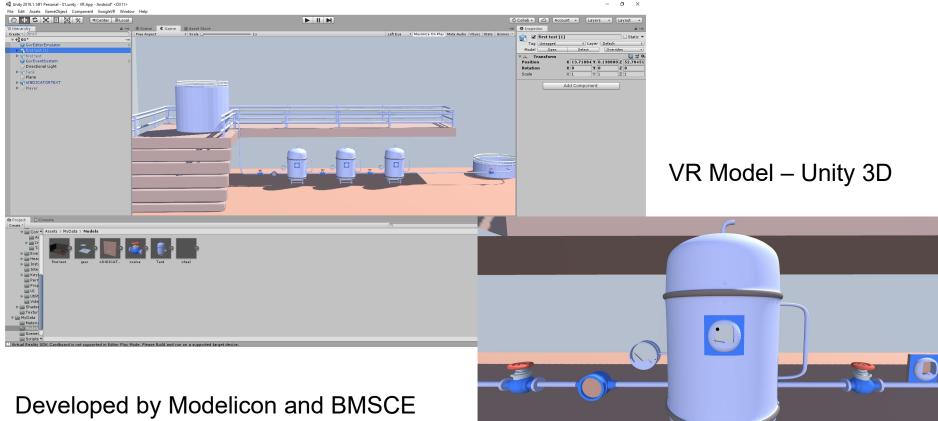
Adeel Asghar, Martin Sjölund, Peter Fritzson, Lennart Ochel, Arunkumar Palanisamy

More Sustainable Forestry – Digital Twin of Balloon-Assisted UAV – Collaboration with GI-LIFT AB and Modelicon


Avoid clear-cut damage

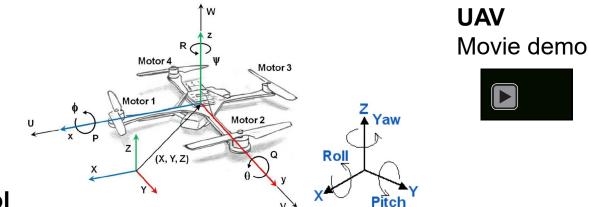
Digital Twin Using OpenModelica

Instead high-powered Electric Ballon-assisted UAV lifting system (patent pending, GI-LIFT)


Test-Flight of Balloon-Assisted UAV – Outside Linköping – by GI-LIFT AB

Integration with Unity 3D Visualization in VAL – Virtual Automation Lab

Development environment integrated with OpenModelica



in Bangalore, India

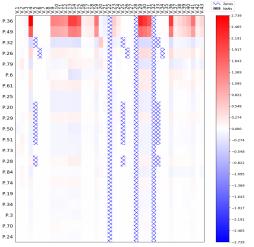
Digital Twin OpenModelica Applications by Modelicon (Bangalore) Model-based Control of UAVs and Walking Robots

- UAV control and simulation
- Walking 2-wheel robot

All models and control software done using OpenModelica!

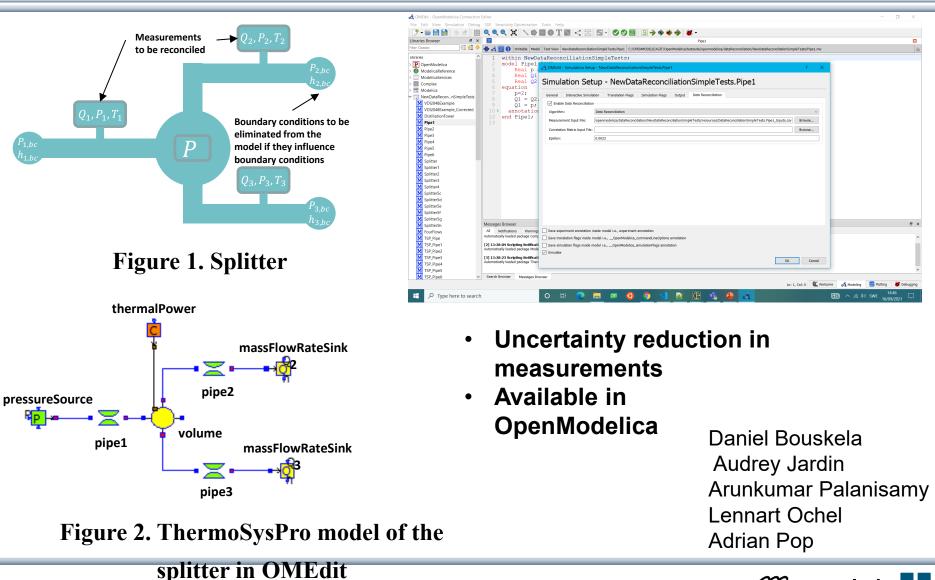
Walking 2-wheel Robot,

Movie demo



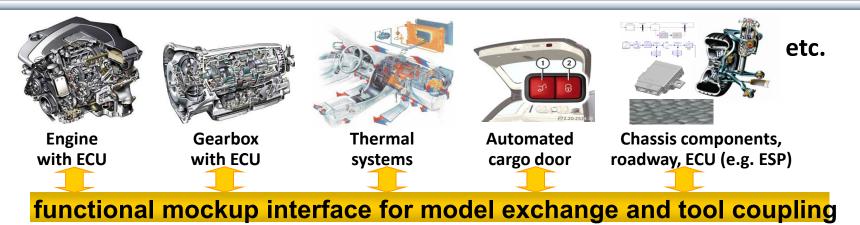
Simultaneous Param-based Sensitivity Analysis and Robust Optimization (collaboration with Univ. Buenos Aires)

- To define a sensitivity experiment:
 - The state variable to analyze
 - The set of parameters to perturb
 - The allowed perturbation intervals for each parameter
- Main goal: pinpoint a small number of parameters that produce the largest deviations when perturbed within narrow ranges around their default values
- To select parameters and their intervals is not a trivial task
 - Responsibility relies completely on the expertise of the user
 - Enabling all parameters can lead to very costly experiments
- Use a top-N subset of parameters from a ranked list
 - obtained using individual parameter-based analysis
- Using CURVIF robust derivative-free model building method for few function evaluations
- Heat-map visualization of parameter influence


Paper published at EOOLT 2017 (prototype)

Part of OpenModelica since 1.17

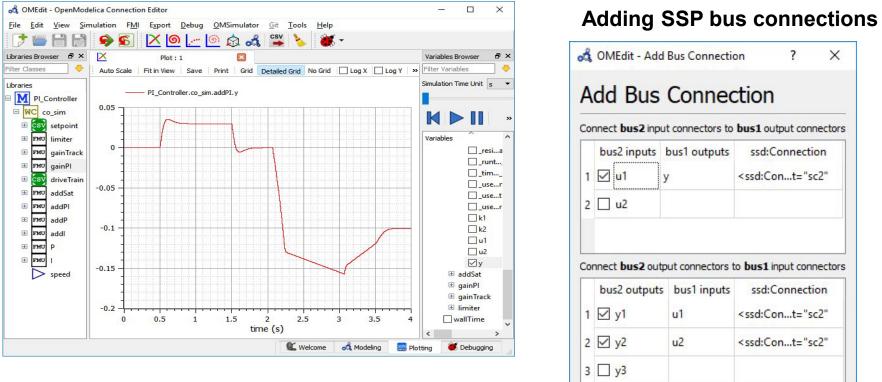
Data reconciliation in OpenModelica



Co-simulation, FMI, Model Composition

Lennart Ochel, Robert Braun, Adeel Asghar, Adrian Pop, Arunkumar Palanisamy, Amin Bajand, Peter Fritzson

General Tool Interoperability & Model Exchange Functional Mock-up Interface (FMI)

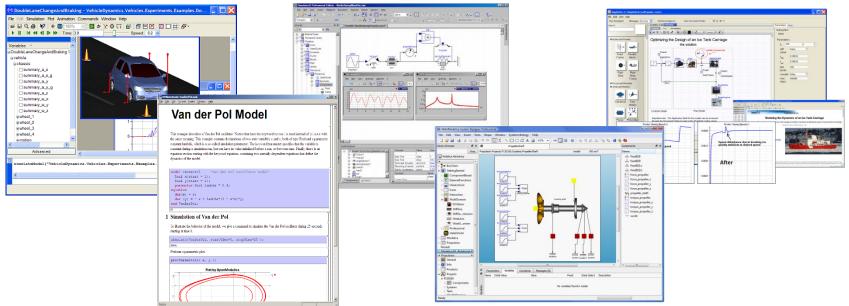

- FMI development was started by ITEA2 MODELISAR project.
 FMI is a Modelica Association Project now
- Version 1.0
- FMI for Model Exchange (released Jan 26,2010)
- FMI for Co-Simulation (released Oct 12,2010)
- Version 2.0
- FMI for Model Exchange and Co-Simulation (released July 25,2014)
- > 100 tools supporting it (<u>https://www.fmi-standard.org/tools</u>)
- Version 3.0
- Work in progress

courtesy Daimler

Enhanced FMI Co-simulation, Run-time, and Master Simulation Tool

- General Master simulation tool OMSimulator part of OpenModelica
- 2024-2025 support for FMI3 and SSP2 in OpenSCALING

FMI Simulation results in OMEdit

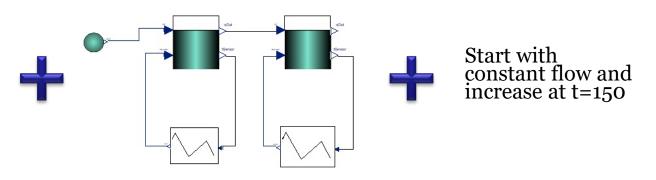


Cancel

OK

Dynamic Verification/Testing of Requirements vs Usage Scenario Models EMBRACE (2020-2023), future projects

Lena Buffoni, Adrian Pop, et. al



Testing a single verification model in Modelica

In EMBRACE project – develop CRML standardized Requirement language

- Req. 001: The volume of each tank shall be at least 2 m3.
- Req. 002: The level of liquid in a tank shall never exceed 80% of the tank height.
- Req. 003: After each change of the tank input flow, the controller shall, within 20 seconds, ensure that the level of liquid in each tank is equal to the reference level with a tolerance of \pm 0.05 m.

Design alternative: two tank model

Design alternative: two tank model

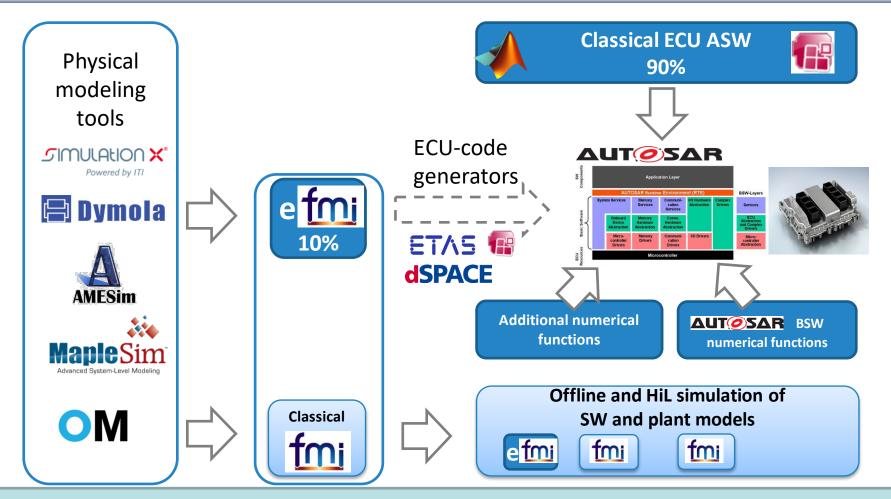
One possible test scenario

CRML to Modelica compiler

STATUS:

- A prototype available
- Ongoing project with EDF on supporting CMRL libraries
- Ongoing work on supporting CMRL modeling in OMedit
- Ongoing work on probabilistic aspect modeling in CRML
- A new application in the works
- A thesis on the visualisation of simulation results planned this spring

Model-based Development Tooling for Embedded Systems


Project EMPHYSIS, EMISYS

EMbedded systems with PHYSIcal models In production code Software

Lennart Ochel, Martin Sjölund, Adrian Pop, et al Dept Computer and Information Science Linköping University

Bridging the gap between modelling and simulation tools and embedded systems through a new interface definition (eFMI)

Seamless model-based design of ECU-Software based on physical models

Status

- EMPHYSIS finished 2021, FlatModelica specification draft
- EMISYS finished 2022, integration with Volvo Trucks tooling: EAST-ADL tooling and Adapt runtime
- New project proposal involving FMI/eFMI, OpenSCALING got funded.

Embedded Systems Real-time Control Code Generation Using OpenModelica

Martin Sjölund et al Dept Computer and Information Science Linköping University

OpenModelica Code Generators for Embedded Real-time Code

- A full-fledged OpenModelica-generated source-code FMU (Functional Mockup Unit) code generator
 - Can be used to **cross-compile FMUs** for platforms with more available memory.
 - These platforms can map FMI inputs/outputs to analog/digital I/O in the importing FMI master.
- A very **simple code generator** generating a **small footprint** statically linked executable.
 - Not an FMU because there is no OS, filesystem, or shared objects in microcontrollers.

Large-Scale Collaborative Cyber-Physical System Development in the Cloud

Abdelazim Hussien, Adrian Pop, Peter Fritzson, Lena Buffoni, Martin Sjölund

Dept Computer and Information Science Linköping University

ELLIIT project - in cooperation with Lund University

Large-Scale Collaborative CPS Development in the Cloud

Collaborative cloud-based tools and methods for integration and testing in complex large-scale cyber-physical systems development

2024

 published new metaheuristic algorithm for cloud scheduling to improve efficiency and sustainability of cloud-based simulations

2025

- Licentiate defence
- Julia metaheuristics package with 100+ algorithms
- Improvements to automatic parallelization of Modelica simulation code via ParModAuto (Mahder) – better optimization using metaheuristics
- More cooperation with Lund on CodeProber OpenModelica integration

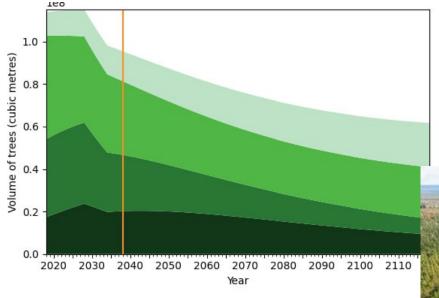
Energy Mega Game

(Att vända strömmen – ett megaspel för ökad förståelse av energisystemet)

Björn Johansson^{*}, Ola Leifler, Lena Buffoni, Ola Uhrqvist, Magnus Persson, Emily Hofstetter

Dept Computer and Information Science Linköping University in collaboration with Jönkoping University and Skövde Högskolan

Project supported by Energimyndigheten



Project specifics

- Goal give a better understanding to the participants of the different perspectives on energy, climate, sustainability through a workshop in a mega-game format
- 3 year project 2021-2024
- LiU is investigating the use of simulation in the mega-game format and how it can provide a better understanding of the impact of decisions made in the game
- 04/2025 OpenModelica predictive simulations on Energy and Transportations are used in a game with 170 students
- Research work on sustainable food cycle modeling ongoing

The future of the forest

- The rush to replace fossil fuel with biomass to reduce emissions has led to overcutting of the forest
- The simulation shows that we are on track for an irreversible deforestation scenario

Open standards for SCALable virtual engineerING and operation

OpenScaling project (started 2024)

Adrian Pop, Lena Buffoni, Martin Sjölund, Amin Bajand, Arunkumar Palanisamy

Project specifics

- Energy efficient solutions require that the use and optimization of large-scale facilities be considered for full day cycles over a full year to account for seasonal weather conditions.
- OpenScaling aims to extend the open standards <u>Modelica</u>, <u>FMI</u>, <u>eFMI</u>, <u>SSP</u>, and related toolchains with support for:
 - LSS models, which require array and loop preserving code generation, and aspect-oriented object diagrams.
 - Standardized uncertainty quantification of model parameters across these standards and tool support for UQ in V&V workflows
 - Physics enhanced neural ODEs integration with Modelica
 - Connection causality, array sizes and neural network parameterization of FMI to enable models being changed without regeneration, enabling life-time improvements of (runtime adaptable) digital twins of LSS.
- A PhD thesis started in the context of OpenScaling

Thanks for Listening!

