
OpenModelica - The Common Requirement Modelling Language (CRML)
Integration

Adrian Pop, Lena Buffoni, Audrey Jardin, Daniel Bouskela

Open Source Modelica Consortium
PELAB, Linköping University
EDF, Électricité de France

2009-02-02

2025-02-05

Outline

What is CRML
 The Common Requirement Modelling Language

 CRML Tooling
 The CRML Compiler

 CRML Integration
 OMEdit & VSCode & Online
 Status

 Future work
2

What is CRML?

 The Common Requirement Modelling Language
 Language for Verifying Realistic Dynamic Requirements

 Started at around 2006
 Further developed during the ITEA3 project

3

Ambition: Effective Engineering of Large CPS

Scope: Cyber-Physical Systems (CPS), especially energy systems

•CPS Projects have often strong social and environmental impacts
•They are long lasting projects involving numerous stakeholders
•They should obey to multiple even conflicting requirements
•Project performance is a key as large over costs may be induced quickly due to financial

charges (discount rate)

Characteristics

•How to focus on conceiving systems more sustainable, trusty and resilient?
•How to solve over-constrained problems? How to coordinate stakeholders efficiently?
•How to specify the right need without going into realization details?

How to reconcile innovation with what already exists?
•How to propagate changes in assumptions all over the system design cycle?
•How to evaluate design alternatives efficiently?
•How to perform failure modes, effects, and criticality analysis (FMECA) all along design lifecycle?
•How to justify and document design choices for future generations?

Challenges

CRML Slides, Audrey Jardin – The 15th International Modelica Conference

Examples of Challenges - Related to Energy Systems

 Interconnected systems with stringent physical constraints to ensure grid balancing
 Long system lifecycles: new solutions built on existing ones (they are not created from scratch)
 Compliance with strict safety and environmental rules
 Compliance with dependability and availability constraints (to ensure security of energy supply)
 Involvement of multiple stakeholders: clients, regulatory authorities, grid operators, energy

providers, insurers, urban and land-use planning, plant operators..., with different and possibly
contradictory objectives

 Moving context with increasing uncertainties (due to geopolitical tensions, energy market
instabilities, climate change, lack of energy policy coordination between countries, evolution of
demand wrt. new usages...)

Energy systems are globally over constrained.
New generation of methods & tools are needed to help engineers

find the best compromise for covering multiple “what-if” operational
situations (incl. variabilities and hazards)

CRML Slides, Audrey Jardin – The 15th International Modelica Conference

What Should Be Improved in CPS Engineering?

 Today

 system evaluation is performed
mostly with static models
(or dynamics are considered too late)

 most verifications are performed manually
(or with domain-specific tools)
and hence not as often as necessary

 information is difficult to share
between disciplinary engineering teams

 There is a need for more rigorous engineering method to
 Be more effective assessing the impact of each solution

all along the system lifecycle
including during preliminary design phases
 guide and justify design choices also for non-experts

 Open the solution space to innovative products or services
 specify only “what is needed”

 oversizing, late error detections,
and eventually delays and cost overruns

Figures:
T. Nguyen

CRML Slides, Audrey Jardin – The 15th International Modelica Conference

CRML – A Part of the Solution

Use of realistic dynamic behavioral models
to better handle multi-physics
& systems’ interactions  e.g. Modelica

Use of formal dynamic requirement models
to automate verifications and evaluate multiple
“what-if” scenarios  CRML

Rationale
- Consideration of “System Dynamics” as time may be part of new solutions to

cover non-regular situations and hence source of cost reductions
- Formal verifications since for many CPS demonstration that the system operates

safely is as important as the design itself

Scope of ITEA EMBrACE Project
“An enabler for making the best decisions at each step of the project cycle”

Idea =

CRML Slides, Audrey Jardin – The 15th International Modelica Conference

CRML: A Language for Verifying Realistic Dynamic Requirements

Why a new language?
- Main principles from « System Engineering »
- Tools exists but are incomplete or essentially made

for software design
- Native difficulty to address requirements that are

« realistic » for systems with strong physical aspects
- In particular to study their dynamical interactions with

their environments 1. The system should stay within its normal operating domain.
2. If partial requirement 1 above fails, then the system should go back to its

normal operating domain within a given time delay.
3. If partial requirement 2 above fails, or if partial requirement 1 fails with a too

high failure rate, then the system should go to a safe backup state within a
given time delay.

4. The complete requirement made of the conjunction of partial requirements 1,
2 and 3 should be satisfied with a given probability (e.g., > 99.99%).

A typical realistic
dynamical requirement

is multiple and stochastic
…

… and a typical project quickly sees its
complexity increase with the number of

requirements/stakeholders and evolution
over timeCRML positioning vs. State-of-the-Art :

a bridge between the physical & the functional views
CRML Slides, Audrey Jardin – The 15th International Modelica Conference

CRML: a Long-Lasting History

2006

•EUROSYSLIB project: start reflections on how to specify systems without describing their detailed
behavior  need for a formal specification language
 investigation of the state-of-the-art.

2009

•OPENPROD project: proposition of a link between SysML and Modelica
 ModelicaML prototype developed by Airbus and tested by EDF.

2012

•MODRIO project: proposition by EDF of a new language called FORM-L (Formal Requirement Modelling
Language)
• Specification written by EDF (Thuy Nguyen)
• Blocks as functions in Modelica
• Development of two Modelica libraries for the formal capture of requirements:

Modelica_Requirement (DLR) and ReqSysPro (EDF).
• Development of a FORM-L compiler (Inria and Sciworks Technology) on an EDF contract.

2020 •EMBRACE project: proposition of CRML as the formal specification of FORM-L.
• Specification written by EDF (Daniel Bouskela).
• CRML compiler developed by University of Linköping.

BASEECS 2025 – ITEA5 project, FPP phase
Behavioral Analysis and Simulation for Environmentally and Economically-sustainable
Co-Engineered Systems

CRML Slides, Audrey Jardin – The 15th International Modelica Conference

How To Express a CRML Requirement?

 Combination of 4 items
 Spatial locators
 Time locators
 Condition to be checked
 (optionally) Performance indicator

 Value at instant t is a Boolean4
which can be :
true, false, undefined
or undecided

R = [Where or Which] [When] [What] + (optional) [How well]
for all’ pump ‘in’ system.pumps ‘during’ system.inOperation ‘check count’ (pump.isStarted ‘becomes true’) ‘<=‘ 3;

‘during’ systemOperatingLife ‘check at end’ (estimator Probability (noStart at inOperation ‘becomes false’)) ‘>’ 0.99;

CRML Specification v1.1 (EMBrACE D2.1, Daniel Bouskela)

CRML Slides, Audrey Jardin – The 15th International Modelica Conference

How to Use CRML for Verifications?

• Requirement models
to capture all constraints on
the system and define
envelopes of acceptable
behaviors

• Behavioral models
to capture the behavior
of design solutions

• Verification models
to automate tests
by using requirement
models as observers
to check whether design
solutions meet
requirements
or not.

Requirements

Natural language

CRML
(FORM-L)

ETL/Modelica

Executable codeTest sequences

Bindings

CRML to Modelica compiler

Ontologies

Modelica compiler

Verification
results

Simulation runs

Behavioral
model

As
su

m
pt

io
ns

Initial conditions

Scenarios

Assumptions

CRML

Informal model
Formal model

generated manually

Executable model
generated

automatically
Legend

CRML Slides, Audrey Jardin – The 15th International Modelica Conference

How To Evaluate a CRML Requirement?

0
count(ψ,P)

1
2

3
4

5

P

true
falseϕ = (count(ψ,P) ≤ 3)

false
true

a(ϕ,P) = ¬ ϕ∨P↓

a(ϕ,P) x ϕ

P↑ P↓

undecided
false

undecided
false

De
ci

sio
n

ev
en

t

undefined

ψ ↑
(ψ ↑)1 (ψ ↑)2 (ψ ↑)3 (ψ ↑)4 (ψ ↑)5 (ψ ↑)6 (ψ ↑)7

Class Pump is {
Boolean isStarted is external};

Class System is {
Pump{} pumps is external;
Boolean inOperation is external};

System system;

Requirement R3 is {
‘for all’ pump ‘in’ system.pumps
‘during’ system.inOperation
‘check count’(pump.isStarted ‘becomes true’)
‘<=‘ 3;

};

Case 1: Requirement R3 is declared as « violated »
as soon as condition ᵠ becomes false

Requirement evaluation
via observation of system behavioral dynamics

Requirement capture in CRML

external keyword is used to retrieve values in solution models
Operators in ‘’ are defined by user to improve readability

Requirement
value

Time period
system.inOperation

Events pump.isStarted

CRML Slides, Audrey Jardin – The 15th International Modelica Conference

How To Evaluate a CRML Requirement?

Case 2: Requirement R5 is declared as
« undecided » until time period is completed

Requirement evaluation
via observation of system behavioral dynamics

ψ ↑
(ψ ↑)1

0
count(ψ,P)

1
2

3
4

5

P

true
ϕ = (count(ψ,P) ≤ 5)

false
a(ϕ,P) = ¬ ϕ∨P↓

a(ϕ,P) x ϕ

P↑ P↓

undecided

ϕ ⊗ P =∫a(ϕ,P) x ϕ

undecided
true

De
ci

sio
n

ev
en

t

undefined

true

true

(ψ ↑)2 (ψ ↑)3 (ψ ↑)4 (ψ ↑)5 (ψ ↑)6 (ψ ↑)7

Class Pump is {
Boolean isStarted is external};

Class System is {
Pump{} pumps is external;
Boolean inOperation is external};

System system;

Requirement R5 is {
‘for all’ pump ‘in’ system.pumps
‘during’ system.inOperation
‘check count’(pump.isStarted ‘becomes true’)
‘<=‘ 5;

};

Requirement capture in CRML

Requirement
value

Time period
system.inOperation

Events pump.isStarted

CRML Slides, Audrey Jardin – The 15th International Modelica Conference

How to Use CRML As a Decision Tool?

N°0 I inherit my
system missions
from the « top-
level » system

N°1
I formalize them & specify
the interface contracts with

my system

N°2
I design my

system

N°3
I verify my system

wrt. Initial
requirements

N°4
I have to improve

something

N°5
I send

requirements for
my component

providers

C1
C2
C..

R is During operational scenario N°1
dynamic variable V(t)

should satisfy condition C(t)
C1

KPI

System of Interest
Interacting
System

R
is satisfied?

YES

NO

Requirement
model

Solution model

Interfaces model /
Environment model

and/
or

and/
or

I renegotiate the contract

I refine my assumptions on the environment/interface

I change system design

I change system operation

and/
or

Model to support complexity
 Scope of responsibility of stakeholders
 Multiplicity of constraints and operating

scenarios
 Dynamics of interactions between

systems, human and environment

Center development on the
requirements
 Evaluate the impact of each solution

on your overall ambition
 Design only for the « right » need
 Adapt the studies to « what is just

needed »
 All along the project
 And according to the data

available at instant T
On-site
Data

CRML Slides, Audrey Jardin – The 15th International Modelica Conference

How to Use CRML As a Decision Tool?

N°0 I inherit my
system missions
from the « top-
level » system

N°1
I formalize them & specify
the interface contracts with

my system

N°2
I design my

system

N°3
I verify my system

wrt. Initial
requirements

N°4
I have to improve

something

N°5
I send

requirements for
my component

providers

C1
C2
C..

R is During operational scenario N°1
dynamic variable V(t)

should satisfy condition C(t)
C1

KPI

System of Interest
Interacting
System

R
is satisfied?

YES

NO

Requirement
model

Solution model

Interfaces model /
Environment model

and/
or

and/
or

I renegotiate the contract

I refine my assumptions on the environment/interface

I change system design

I change system operation

and/
or

On-site
Data

Corresponding modelling
architecture

CRML Slides, Audrey Jardin – The 15th International Modelica Conference

Outline

What is CRML
 The Common Requirement Modelling Language

 CRML Tooling
 The CRML Compiler

 CRML Integration
 OMEdit & VSCode & Online
 Status

 Future work
16

CRML Tooling

 The CRML compiler
 https://github.com/lenaRB/crml-compiler/
 Implemented in Java
 Translates CRML to Modelica
 Integrates with Unit testing and Reporting

 Ongoing work
 Support the full CRML specification
 Graphical notation for CRML and support in OpenModelica GUI
 Continue to improve the integration with OpenModelica GUI

 17

https://github.com/lenaRB/crml-compiler/

CRML – OMEdit Integration

 CRML menus in OMEdit activated by
Tools->Options->General->Enable CRML support

 Generate and load Modelica code (also via the Library/File
browser, right click)
Call the CRML compiler on the opened CRML file, generate Modelica

code, load it into OMEdit, give errors if the code cannot be loaded

 Dialog for CRML configuration before compilation
 Set the name of the generated Modelica file, the package name, etc
 Future
 annotation in the CRML file where one can provide a configuration
 Modelica annotation in the generated Modelica file

18

CRML – OMEdit Integration

 Run test suite
 Select a directory with CRML files
 Call the CRML tool to generate the html report
 Load and display the html test report
 A CRML test will go through these phases
Parsing
Translation
Verification model generation
 Execution
Result Verification

19

CRML – OMEdit Integration

 New / Open CRML models

 Load directories
containing CRML models
 Syntax Highlighting

20

Generate and Simulate Modelica code

21

CRML – OMEdit Integration

 Run CRML Testsuite

22

CRML – OMEdit Integration

 Editor Settings

23

CRML – OMEdit Integration

 Tool Settings

24

CRML – VSCode integration

 Basic VSCode extension for CRML
 https://github.com/lenaRB/crml-vscode
 syntax highlighting

25

https://github.com/lenaRB/crml-vscode

CRML – Online

 CRML and OpenModelica tutorial available online
 https://tutorial.opennmodelica.org/
 No install needed
 Contact us for user

access

26

https://tutorial.opennmodelica.org/

Status (I)

 CRML integration is now part of OpenModelica v1.25
 Available as nightly-build
 Will be released as final version soon

We continue the CRML compiler development
 To support as much as possible from the CRML specification
Work ongoing on support of ETL and FORML libraries, Probabilistic

aspects, hierarchical modeling

27

Status (II)

 Visual Graphical support for CRML
 Starting point is the KTH Master Thesis from Baptiste Mazurié
 Support for UML-style (inheritance) class diagrams for CRML classes,

attributes and inheritance
 Support for UML-style internal structure diagrams for CRML class

composition and behavior
 Support for instance diagrams

28

https://kth.diva-portal.org/smash/get/diva2:1742865/FULLTEXT01.pdf

Outline

What is CRML
 The Common Requirement Modelling Language

 CRML Tooling
 The CRML Compiler

 CRML Integration
 OMEdit & VSCode & Online
 Status

 Future work
29

Future Work

 Near Future
 Design and implement the CRML graphical support
 Present CRML to Modelica Association as a new standard

 Future
 How to group together several requirements into a project
 How to handle debugging (CRML <- Modelica <- C code)
 Evaluate traceability from CRML to simulation results
 Integration with dashboards to support dynamic requirement

monitoring

30

31

End

Thank You!
Questions?

The OpenModelica Project
https://www.OpenModelica.org

The CRML Project
https://crml-standard.org/

https://www.openmodelica.org/
https://crml-standard.org/

	OpenModelica - The Common Requirement Modelling Language (CRML)�Integration
	Outline
	What is CRML?
	Ambition: Effective Engineering of Large CPS
	Examples of Challenges - Related to Energy Systems
	What Should Be Improved in CPS Engineering?
	CRML – A Part of the Solution
	CRML: A Language for Verifying Realistic Dynamic Requirements
	CRML: a Long-Lasting History
	How To Express a CRML Requirement?
	How to Use CRML for Verifications?
	How To Evaluate a CRML Requirement?
	How To Evaluate a CRML Requirement?
	How to Use CRML As a Decision Tool?
	How to Use CRML As a Decision Tool?
	Outline
	CRML Tooling
	CRML – OMEdit Integration
	CRML – OMEdit Integration
	CRML – OMEdit Integration
	Generate and Simulate Modelica code
	CRML – OMEdit Integration
	CRML – OMEdit Integration
	CRML – OMEdit Integration
	CRML – VSCode integration
	CRML – Online
	Status (I)
	Status (II)
	Outline
	Future Work
	End

