Model-Based Stochastic Analysis with Probabilistic Graph Query Evaluation

Máté Földiák, Kristóf Marussy, Dániel Varró

Context

Critical Cyber-Physical System

- Correct operation must be ensured
 - Formally verified or
 - Systematically tested
- Stochastic failures are present
 - Component degradation
 - Environmental conditions
- Conflicting objectives
 - Safety, reliability, cost
 - Optimization, design decisions
 - Influenced by early design

Early System Design

- Requirements, constraints
- High level concepts related to the system
 - Abstraction with a system architecture model
- Previous experience
- Unknowns in
 - System architecture
 - Failure management, reliability
 - Behaviour
- Frequent changes

Running Example: Architecture Models

- Satellite constellation to measure background radiation
 - Performance measure
- Design system architecture

LINKÖPING

- What components to use
- Arrange communication topology

S. J. I. Herzig, S. Mandutianu, H. Kim, S. Hernandez and T. Imken, "Model-transformation-based computational design synthesis for mission architecture optimization," 2017 IEEE Aerospace Conference, USA, 2017

Running Example: Reliability Modeling

- Satellite constellation to measure background radiation
 - Performance measure
- Design system architecture
 - What components to use
 - Arrange communication topology
- Component level failures
 - Reduced performance
- Optimize for expected performance
 - Performability

INKÖPING

Background

Performability Analysis

- Expected performance in presence of failures
- Basic event
 - Atomic, independent failures
 - Failure probability is known
- Compound events
 - Corresponds to higher level functionality
 - Depends on other events
- Performability
 - Indicator of the architecture quality

Traditional Analysis Toolchain

- System model in SysML, EMF, etc.,
- Transformation rules
 - From modelling language to stochastic analysis language
 - Epsilon, Xtend, etc.
- External analysis
 - Fault trees, Markov chains, Petri nets
 - Analysis tools are separate from modeling tools

Lifting Stochastic Analysis to Model Level

Lifting Stochastic Analysis to Model Level

- <u>Challenge</u>: Create an analysis method that is
 - High level, and scalable (in model size)
 - Support incremental changes
- Core ideas
 - Reuse graph predicates for stochastic analysis
 - Leverage query engines for efficient reevaluation
- Expected outcomes
 - Model-based formal analysis
 - Reduced engineering complexity

Probabilistic Graph Query

- Event semantics (instead of Boolean)
 - Based on discrete probability theory
 - Declarative failure modeling
- Lightweight language extension
 - Distinguished queries for basic events
 - component state (operational)
 - Override operator semantics
 - Evaluate match probability
 - Expected value

Incremental analysis

- Small changes in the system model
 - Made by engineers, tools, AI
 - Not affecting the whole model*
- Incremental analysis

INKÖPING.

- Retain intermediate calculations results
- Detect and propagate changes
 - What is changed?
 - What is affected?
- Inherited from underlying technologies

Evaluation

Analysis performance

- Evaluate 30 models with different tools
 - Measure runtime
 - Completed analysis only
 - Time limit of 20 minutes
 - % of failed runs
- Baseline: ProbLog
 - Similar formalism to PGQ
- Reduced analysis time

Incremental Analysis Performance

- Apply realistic changes, and reevalute
 - E.g., add a new component
- Baseline: batch analysis with PGQ
- Results
 - ~50% reduced mean analysis time
 - Dependent on domain, and change

Conclusions

