
Concept Generation and
Modelling with

Large Language Models

Petter Krus

Fluid and Mechatronic Systems, Linköping University

1

INTRODUCTION
Large Language Models (LLMs) and AI
Democratization: The advent of ChatGPT
at the end of 2022 marked a significant
milestone in making artificial intelligence
accessible to a broader audience. This
development has opened up new research
opportunities, particularly in applying AI to
various domains.

Objective of the Paper: This presentation
presents the use of ChatGPT 4o, a large
language model, in the engineering design
process. The primary focus is on
automating the configuration of e.g.
propulsion systems and actuation systems
using ChatGPT.

Case Study: The paper uses the
configuration of aircraft hybrid propulsion
systems as an example. Demonstrating
how system configurations can be
generated and represented as UML
component diagrams.

Challenges and Solutions: LLMs, including
ChatGPT, are inherently non-deterministic,
leading to variability in outputs. The paper
explores methods to increase the
probability of correct results and optimize
prompts for better outcomes.

Significance: The study shows promising
results, indicating that LLMs have immense
potential invarious aspects of engineering
system design.

2

LARGE LANGUAGE MODELS AS BLACK
BOXESThe application of LLM:s has little to do with their internal workings. AI-
scientists does not much of an edge in the applications of LLM over the
domain expert.

The approach to research of LLM application is maybe more like social
science.

3

LLM
Input string (prompt) Output string

Generation of Architectures

Prompt:"Generate a hybrid
electric aircraft system with a fuel
cell. Show the result as code for a
UML-component diagram in
PlantUML“

The diagram is very basic and not
entirely correct..

LARGE LANGUAGE MODELS AS BLACK BOXES
The prompt can be structured to have a general pre-defined prompt the can be
reused, and one specific part.

The pre-prompt can also contain documents and this can also be used to create
a Custom GPT that can be saved for later use.

5

LLM

Pre-Prompt
Output string

Specific Prompt

PRE DEFINED PROMPT WITH MICRO-
TEMPLATES

Describing design rules ín natural
language and with examples

6

Micro Templates in the Pre-Prompt

7

Prompt: "Generate a Concept
for a Hybrid Electric Aircraft
with Two Propellers and Fuel
Cells."

Variations

Prompt: "Generate a system with two gas turbine driven generators"

EXPANDING THE SYSTEM BEYOND
THE PRE-PROMPT

Prompting to ad auxiliary systems for the fuel-cell (This
information was not in the pre prompt)

The Fuzzy Design

Space when using

LLM

Design Space defined using LLM

with pre-prompt

Scaling Property of LLM
The scaling property of LLMs
have to be considered

Just because a simple system
can be generated there is no
guarantee a more complex can
be generated

12

Accuracy

Task complexity

Scaling Property of LLM
Use the lower end of the
complexity to make a program
that can generate a more
“complex” system along some
degrees of freedom

13

Accuracy

Task complexity

From Configuration Rules to Python
Code: A Process Outline

From Python Code to Component Diagram

Output from generated Python program
plantuml_code =
generate_plantuml_code(energy_source="fuel_tank",num_motors=4)

• When some satisfactory base line

system has been generated the LLM

is asked to generate Python code

with some degrees of freedoms.

Design Space

Defined by Coded

Configuration Rules

Design Space when

using LLM

Design Space when using LLM

with pre-prompt

Incrementally Increase the Complexity of
the Python Code

Adding capability for different subsystems, by using the existing code as a starting point.

Incrementally Increase the Complexity of
the Python Code: Example

Flaps and Landing Gears are added to single (named) systems

Load Sensing Hydraulic System for
Truck Mounted Crane

The Fuzzy

Design

Space when

using LLM

Design Space defined

using LLM with pre-

prompt

Insert Requirements
from European

Regulations.

Required valves to fulfill the regulations are added
automatically.

Use API for Tools to Enable Interactive
use of LLMs
Allow for interactive use of LLM by
using LLM-API inside a tool

Example 1: System decomposition

21

Accuracy

Task complexity

Importing (AI-generated) System Layout
to Generate Subsystems/Components

Example: Hybrid Hydrogen

Fuel-Cell Aircraft

AI Generate Subsystems/Components

AI Generate Subsystems/Components

API-Prompt

25

Use API for Tools to Enable Interactive
use of LLMs

Example 2: Function Means Tree

LLM is used to generate suggestions for alternative solutions

26

Use API for Tools to Enable Interactive
use of LLMs
Generating functions for the next level.

27

These means are not correct

but the cost of removing is low

Lawn Mower Example

28

DISCUSSION

• Potential Contribution of Large Language Models, LLM:

• ChatGPT and other large language models can significantly enhance the
conceptual design process by assisting with complex system
configurations.

• Limitations: Difficulty in managing highly intricate and interdependent
design rules due to the model's constraints, as system complexity grows.

• Solution:

• The use of micro templates to show examples of solutions greatly
enhance the reliability.

• Generating initial Python code to generate a confined design space,

• followed by iterative improvement using LLM to expand and
refine these rules step by step, enables efficient management of
complexity.

• Integrating LLM API in tools for using LLMs interactively.

29

DISCUSSION

• Application in UML Component Diagrams:

• The model produced UML component diagrams in PlantUML
due to its minimalist format and ease of use, facilitating a
clear representation of system architecture.

• However, other diagram formats can also be incorporated for
more detailed or specific representations.

• UML diagrams can be mapped to system libraries for
simulation purposes, allowing system architectures to be
manipulated, tested, and validated in simulations.

30

CONCLUSIONS

LLMs should be used when:

value of the correct answers > cost of the bad answers

31

	Slide 1: Concept Generation and Modelling with Large Language Models
	Slide 2: INTRODUCTION
	Slide 3: LARGE LANGUAGE MODELS AS BLACK BOXES
	Slide 4: Generation of Architectures
	Slide 5: LARGE LANGUAGE MODELS AS BLACK BOXES
	Slide 6: PRE DEFINED PROMPT WITH MICRO-TEMPLATES
	Slide 7: Micro Templates in the Pre-Prompt
	Slide 8
	Slide 9: Variations
	Slide 10: EXPANDING THE SYSTEM BEYOND THE PRE-PROMPT
	Slide 11
	Slide 12: Scaling Property of LLM
	Slide 13: Scaling Property of LLM
	Slide 14: From Configuration Rules to Python Code: A Process Outline
	Slide 15: From Python Code to Component Diagram
	Slide 16
	Slide 17: Incrementally Increase the Complexity of the Python Code
	Slide 18: Incrementally Increase the Complexity of the Python Code: Example
	Slide 19: Load Sensing Hydraulic System for Truck Mounted Crane
	Slide 20: Insert Requirements from European Regulations.
	Slide 21: Use API for Tools to Enable Interactive use of LLMs
	Slide 22: Importing (AI-generated) System Layout to Generate Subsystems/Components
	Slide 23: AI Generate Subsystems/Components
	Slide 24: AI Generate Subsystems/Components
	Slide 25
	Slide 26: Use API for Tools to Enable Interactive use of LLMs
	Slide 27: Use API for Tools to Enable Interactive use of LLMs
	Slide 28: Lawn Mower Example
	Slide 29: DISCUSSION
	Slide 30: DISCUSSION
	Slide 31: CONCLUSIONS

