
Presentation at MODPROD'2017

Department of Computer and Information Science

Linköping University

2017-02-07

Peter Fritzson, Adrian Pop, Lena Buffoni,

Bernhard Thiele, Martin Sjölund

Research in Model-Based Product Development

at PELAB in the MODPROD Center

class x {

public

int a;

float b;

int func (int a,int b);

Asa asad

Asda ad

Asd ad cc

Aac sdscfcc c a

Ascccv ca

Ascc cac

}

class x {

public

int a;

float b;

int func (int a,int b);

Asa asad

Asda ad

Asd ad cc

Aac sdscfcc c a

Ascccv ca

Ascc cac

}

class x {

public

int a;

float b;

int func (int a,int b);

Asa asad

Asda ad

Asd ad cc

Aac sdscfcc c a

Ascccv ca

Ascc cac

}

class x {

public

int a;

float b;

int func (int a,int b);

Asa asad

Asda ad

Asd ad cc

Aac sdscfcc c a

Ascccv ca

Ascc cac

}

pelab2

Examples of Complex Systems in Engineering

• Robotics

• Automotive

• Aircraft

• Mobile Phone Systems

• Business Software

• Power plants

• Heavy Vehicles

• Process industry

pelab3

• Advanced Interactive Modelica compiler (OMC)
• Supports most of the Modelica Language

• Modelica and Python scripting

• Basic environment for creating models
• OMShell – an interactive command handler

• OMNotebook – a literate programming notebook

• MDT – an advanced textual environment in Eclipse

3

• OMEdit graphic Editor

• OMDebugger for equations

• OMOptim optimization tool

• OM Dynamic optimizer collocation

• ModelicaML UML Profile

• MetaModelica extension

• ParModelica extension

The OpenModelica Open Source Environment
www.openmodelica.org

http://www.ida.liu.se/~adrpo/mdt/mdt-0.6.8.1/MDT-0.6.8.1-ClassElementsCompletion.JPG
http://www.ida.liu.se/~adrpo/mdt/mdt-0.6.8.1/MDT-0.6.8.1-ClassElementsCompletion.JPG

pelab4

Research

Modeling-Language Design

Model-Based Co-simulation with FMI and TLM

Model Debugging

Model-Based Fault Analysis

Multi-Core based Simulation

Embedded System Real-Time Modeling

Modeling Support Environments

pelab5

Parallel Execution

Compilation to MultiCore

Mahder Gebremedhin

pelab6

Compiling Models to Efficient Parallel Code
(scheduling on multiple cores)

18 Tasks

72 Edges

1122 Tasks

1360 Edges

Modelica.Electrical.Spice3.Examples.Spice3BenchmarkFourBitBinaryAdder

Original task system of Four Bit Binary Adder model

Task system after clustering for level

scheduler

pelab7

Speedup using Dynamic Scheduling on 4-core laptop

Modelica Model CaurLowPassSC

pelab8

Model Debugging

and Performance Analysis

Martin Sjölund,

Adeel Asghar, Adrian Pop

Dept Computer and Information Science

Linköping University

pelab9

Mapping dynamic run-time error to source model position

Integrated Static-Dynamic

OpenModelica Equation Model Debugger

Showing

equation

transfor

mations

of a

model:

Efficient

handling

of

Large

Equation

Systems

pelab10

Research on Debugging in OPENCPS

Project
Debugging of new features

• clocked synchronous

models

• real-time debugging and

event tracing

• graphic support for state

machine debugging

Critical for efficient usability by industrial

partners!

pelab11

Co-simulation, FMI, Modeling

Traceability, etc.

Adrian Pop, Alachew Mengist, Lennart Ochel,

Robert Braun, Adeel Asghar, Arunkumar

Palanisamy

Traceability Support in OpenModelica
Using Open Services for Lifecycle

Collaboration (OSLC)

Traceability between requirements, models, and
simulation artifacts

Alachew Mengist, Adrian Pop,

Adeel Asghar, Peter Fritzson

See separate Talk on wednesday

pelab13

General Tool Interoperability & Model Exchange

Functional Mock-up Interface (FMI)

• FMI development was started by ITEA2 MODELISAR project. FMI is a

Modelica Association Project now

• Version 1.0

• FMI for Model Exchange (released Jan 26,2010)

• FMI for Co-Simulation (released Oct 12,2010)

• Version 2.0

• FMI for Model Exchange and Co-Simulation (released July 25,2014)

• > 60 tools supporting it (https://www.fmi-standard.org/tools)

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling
courtesy Daimler

pelab14

Enhanced FMI Co-simulation, Run-time, and Master

Simulation Tool – Work in OPENCPS Project

• Further extensions to the FMI standard to support TLM-based co-

simulation including support for SKF mechanical bearing models

• Enhanced run-time for efficient co-simulation of FMUs, including

FMUs from OpenModelica and Papyrus

• General Master simulation tool support for FMI

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

INTO-CPS: Co-Simulation Framework Vision

FMU‘s from
other tools

Design Space
Exploration

(DSE)

Model
management

Physical model
(20-sim)

Controller
model

(Overture)

Test
automation

Physical model
(OpenModelic

a)

Co-
Simulation

Orchestratio
n Engine

(COE)

User
interface

(INTO-CPS
Application)

15

PyModSimA: Simulation of Connected FMUs

• Create a model
containing several
FMUs connected to
each other.

• XML format is
used to define
connections
between FMUs.

• Connect FMUs
using the graphical
user interface.

16

PyModSimA: Co-Simulation of FMUs in Pysimulator

17

pelab18

Dynamic Verification/Testing of

Requirements vs Usage Scenario Models

Lena Buffoni, Wladimir Schamai, Peter Fritzson

and contributions from MODRIO partners

pelab19

vVDR Method –

virtual Verification of Designs vs Requirements

Formalize
Requirements

Formalize Designs

Formalize
Scenarios

Create Verification
Models

Execute and
Create Report

Analyze Results

RMM
Requirement

Monitor Models

Scenario

Models
SM

Designs

Alternative

Models

DAM

VM Verification Models

AUTOMATED

Task Created Artifact

Goal: Enable on-demand

verification of designs

against requirements

using automated model

composition at any time

during development.

AUTOMATED

Actor

Reports

*

pelab20

Support of vVDR in Modelica within OMEdit

in OpenModelica

vVDR concepts in standard Modelica

• mediators mapped to records

• requirements, design, scenarios mapped to

Modelica classes

pelab21

Single Scenario Generation

Connecting the

design model and

the requirement

Generating correct

number of

requirement

instances

pelab22

Batch Scenario Generation

pelab23

Model-based Failure Mode and Effects Analysis

(Marc Bouissou and Lena Buffoni)

• Modelica models augmented with reliability properties can be used to generate

reliability models in Figaro, which in turn can be used for static reliability analysis

• Prototype in OpenModelica integrated with Figaro tool

Modelica Library
Application

Modelica model

Simulation

Figaro Reliability

Library
Reliability model

in Figaro
FT generation FT processing

Automated

generation

pelab24

Real-time Simulation and State-

Machine support in Modelica

Bernhard Thiele

Dept Computer and Information Science

Linköping University

pelab25

Real-Time Control System Applications

Sensors

Control

Computing

Actuators

Measurements Controller Outputs

pelab26

Goal: Interactive Real-Time Simulations

• Human-in-the-Loop (HITL) simulators (including flight,

driving, and marine training simulators),

• Hardware-in-the-Loop (HIL) simulators

Needed:

• Synchronize simulation with "wall clock" time

• Access hardware devices

pelab27

Approach: Modelica_DeviceDrivers Library (MDD)

• Free library for interfacing

hardware drivers
https://github.com/modelica/Modelica_

DeviceDrivers

• Layered Design:

• Block Layer: Drag &

drop graphical interface

• Function Layer:

Modelica (external C)

functions

C-Code Layer: OS

specific C code

https://github.com/modelica/Modelica_DeviceDrivers

pelab28

Featured MDD Blocks (Mostly Cross-Platform)

Input Devices
Communication

Hardware I/O (Linux only)

Alternatively:

OMC sim. flag

-rt=1

pelab29

Challenge of Non-Modelica Standard Constructs

The MDD library was initially developed using the Dymola

tool by Bernhard Thiele Tobias Bellmann. Support in

OpenModelica poses a challenge:

• MDD is using some non-Modelica standard conforming

constructs; the MDD code could be partly rewritten to be

more conformant, but some constructs are essential

• Important parts of MDD are now supported by

OpenModelica (thanks to Volker Waurich and others!)

• However, there remain parts which are not yet supported

pelab30

Plans for the MDD Library

• Extend MDD library coverage in OpenModelica

• Advocate OM+MDD library as low-cost and low-effort

solution for interactive simulations, particularly in

combination with low-latency Linux kernels (e.g.

available in Linux distributions like Ubuntu)

• Further library improvements and extensions

• Extend the scope of MDD library to support restricted

embedded systems (Martin Sjölund will discuss this

later in this talk)

pelab31

State Machines in Modelica 3.3: Simple Example

pelab32

Modelica State-Machines in OpenModelica

• Modelica 3.3 introduced language elements for clocked

(discrete-time) state machines

• State-Machine textual constructs now supported by

OpenModelica (ongoing work to support graphical

editing)

• Further plans:

• Support state-machines in the new OMC compiler front-end

• Efficient code-generation suitable for restricted embedded

targets

• Traceability from models to generated code fragments

(support debugging of state machines, facilitate V&V activities)

pelab33

Embedded Systems Real-time Control

Using OpenModelica

Martin Sjölund

Dept Computer and Information Science

Linköping University

Modelica_DeviceDrivers: Embedded Targets

� Explicitly model the hardware available in
the microcontroller.

� The library includes external objects that

deal with the microcontroller constants and
flags.

� The AVR package handles Atmel’s ATmega

microcontrollers and includes analog and
digital I/O as well as real-time

synchronization.

Single Board Heater System (SBHS)

One of the AVR examples included in MDD is the Single Board

Heater System (SBHS, http://sbhs.fossee.in/), which was
developed by IIT Bombay and is used for teaching and learning

control systems. It consists of:

� Heater assembly

� Fan

� Temperature sensor

� AVR ATmega16 microcontroller

� Associated circuitry

http://sbhs.fossee.in/

Modeling the SBHS

� Uses a real-time controller
(here set @125 Hz).

� Uses pulse width modulation

(PWM) to control the heater
and fan.

� Uses an analog-to-digital

converter (ADC) block to
read the temperature

(0V=0C, linear gain; the

SBHS does the rest in
hardware).

� Includes code for the LCD

(not shown in the diagrams).

Timer1B

fan

Timer1A

heat

degC

AVR

ATmega16

Real-time:
125 Hz

adc
ADC A0
0..5 [V]

pwm

PWM Timer1
{A, B}

k=23.7252

gain1

Controlling temperature using the fan

� The example feeds the heat
assembly a constant (PWM)

voltage.

� It then includes a PID
controller with a fixed

setpoint, trying to keep the

temperature at a constant
45 ℃ by sending a PWM

signal to the fan.

sbhs
Fan

Temp[°C]
constantHeatHeat

k=50

controller
°C

Fan
Setpoint

constantSetpoint

k=45

Code Generator

� Designed to support as many targets aspossible.

� Supports few Modelica constructs.

� Focuses on generating good code with small footprint.

� Unsupported constructs such a linear systems are rejected.

� Reasonably predictable execution times.

� FMU-like interface (statically linked).

Target Agnostic

� No support for Atmel AVR or Arduino in
the compiler.

� Compiler generates simple C code without

use of OS or Clibrary.

� Not a single malloc call, even during

initialization.

� All hardware I/O and clocks is handled by the
Modelica_DeviceDrivers library.

F

R
E

S
E

T

3
V

3

P
W

R

S

E
L

P

3 2 1 0 9 8 7 6 5 4 3 2 1 0

www.adruino.cc

POW

5V Gn

RX

ADRUINO

http://www.adruino.cc/

SBHS controller using MDD and the new code

generator

