Functional Mockup Interface (FMI)
A General Standard for Model
Exchange and Simulator Coupling

Adeel Asghar and Willi Braun
LinkGping University
University of Applied Sciene Bielefeld

2017-02-07

FH Bielefeld / : .
II’" l iversity of H U D E L I [. A
LINKOPING UNIVERSITY

Un
Applied Sciences

FMI — Motivation 1

 Need to SOLVE large integrated modeling and simulation
engineering problems

 Hundreds of simulation tools, different model formats

« Exchange dynamic models between different tools and define
tool coupling for dynamic system simulation environments.
« Two main approaches:
— 1. Export models from some tools,

Import into other tools for simulation
— 2. Co-simulation of models in different tools

* Implementation Package Format: Functional Mockup Unit
(FMU)

« Solution: Functional Mockup Interface (FMI) standard
www.fmi-standard.org

2017-02-07 2

FMI — Motivation 2

supplierl supplier2 supplier3 supplier4 supplier5
 Problems / Needs g & & :
— Component development by @; @ @

supplier = \ ‘l h
— Integration by OEM

— Many different simulation tools

 Solution
— Reuse of supplier models by § ‘ ay
OEM: i
« DLL (model import) and/or tool 1 t°°' tool 3 ? ?
» Tool coupling (co- I
simulation) | FMI | OEM
|
« Added Value supptiert @ @ oEm
))) \ i/ oy —— s@g}
— Early validation of design R s/
:qnucgﬁslsed process efficiency and supplier2 @5&5 . — @

&\\v

supplier3

2017-02-07 3

Functional Mock-up Interface (FMI) —

Gearbox Thermal Chassis components,

with ECU with ECU systems cargo door roadway, ECU (e.g. ESP)

B

courtesy Daimler

* FMI development was started by ITEA2 MODELISAR project. FMI is a
Modelica Association Project now.

 Version 1.0
— FMI for Model Exchange (released Jan 26,2010)
— FMI for Co-Simulation (released Oct 12,2010)

 Version 2.0
— FMI for Model Exchange and Co-Simulation (released July 25,2014)

« 73 tools supporting it (https://www.fmi-standard.org/tools)

2017-02-07 4

FMI — Main Design Idea

A component which implements the interface is
called

Functional Mockup Unit (FMU)

« Separation of

— Description of interface data (XML file)

— Functionality (C code or binary)

A FMU is a zipped file (*.fmu) containing the XML

description file and the implementation in source or
binary form

Additional data and functionality can be included

2017-02-07 5

Functional Mockup Units

* Import and export of input/output blocks —
Functional Mock-Up Units — FMUs

« described by
— differential-, algebraic-, discrete equations,
— with time-, state, and step-events

 An FMU can be large (e.g. 100 000 variables)

« An FMU can be used In A
" y 4
an embedded system U
(small overhead) LSO, e
« FMUs can be connected |~ 1" 5
vi _U1
together S o]

2017-02-07 6

Model Distribution as a Zip-file (.fmu file)

A model is distributed as one zip-file with extension ".fmu“, containing:

« XML model description file
All model information that is not needed during integration of
model, e.g., signal names and attributes. Advantage:

— No overhead for model execution.

— Tools can read this information with their preferred language (C/C++, C#,
Java, ...)

 Model equations defined by a small set of C-functions. In zip-
file:
— C source code and/or
— Binary code (DLL) for one or more platforms (Windows, Linux, ...)

e Resources

— Documentation (html files)
— Model icon (bitmap file)
— Maps and tables (read by model during initialization)

2017-02-07 7

Simulator with GUI and Solver
Executing Imported Model = FMU
(Functional Mockup Unit)

-

\J

control simulator
GUI

model.dll

reads
-

T references

modelDescription.xml
|

T run 1 or many

simulator
P
solv

FMU
Functional Mockup Unit
IN more detall

Structure of an FMU zip-file

1. modelDescription.xml // Description of model (required file)
2. model.png // Optional image file of model icon
3. documentation // Optional directory containing the model
// documentation
_main.html // Entry point of the documentation
<other documentation files>
4. sources // Optional directory containing all C-
sources

// all needed C-sources and C-header files to compile and link the model
// with exception of: fmiModelTypes.h and fmiModelFunctions.h

5. binaries // Optional directory containing the binaries

win32 // Optional binaries for 32-bit Windows
<modelIdentifier>.dll // DLL of the model interface implementation
VisualStudio8 // Microsoft Visual Studio 8 (2005)
<modelIdentifier>.1lib // Binary libraries
gcec3.1 // Binaries for gcc 3.1.
win64 // Optional binaries for 64-bit Windows

linux32 // Optional binaries for 32-bit Linux

6. resources // Optional resources needed by the model
< data in model specific files which will be read during initialization >

2017-02-07

10

Model Description Schema

- Model information (o e (e 5 (|
not needed for | fmiModelDescription EH~—J=H 1-2 T | lmigunit {goo-ieery]

: : -t UnitDefinitions [+ —===—[ZH Unit F] o} hrrrnsenat |
exeCUtlon IS Stored __________________ - """7““-::_-_-— |

in one xml-file ____l_—_—_—ii_—_—_—_—TJ
(modelDescription.x mesmeteTee

|
ml in zip-file) | Typebetintions [~ SimpleType Bl (" - Feoolean | I
|
|

defined by xml iy | —

schema (.xsd) - LogCategories (=[] | [Enumeration E}-{ -~ = item |
1

files. | pefaitExperiment | - e -

|
=
[=]
(=3
1]
=
=
:
(1]
7]
ar
iy
nj
[
2
&
[
a2
2
=
7]
m
(=]
E
2
g
[=]
=]

2017-02-07 11

E stiributss

fmiVersion

type | xs:normalizedString

modellame
type | xs:string

Clazs name of FMU, 2.g. "A.B.

Version of FMI (FMI 2.0 revision is defined as "2.0"; future

= denoted s 2.0.1, 2.0.2 etc),

ﬁu Il
)

guid
type | xs:normalizedString

, variableNamingConvention |

1 type xznormalizedString |
(enum flat structured '

= — vdefault flat
fmilModelDescription E]_ i derivedBy | restriction

Fingerprint of xml-file content to verify that xmi-file and C-functions are

N

2017-02-07

Model Attributes

quid is a globally unique identifier
(“fingerprint" of all releveant information
in the xml file) that is also stored in the
C-functions to gurantee consisteny

Number of event indicators:; numbers

are fixed
(numberofContinuousStates have
been removed in FMI 2.0 because it
can be deduced from other information
in the xml file.)

12

B attriputes

Unit Definitions

7 SI base unitS “kg”, “m”, “S”, “A”, “K”, “mol”, “Cd”, Eﬂtz;;ﬂ;eumt"kg"

and Sl derived unit “rad”. st

roefault |0]

el ; ;
fmi2Unit _| I —

H attributes

name

type | s normalizedString

=

Basellnit_value =
Factor*nit_walue + offset

—
wbype | xsint
roefault |0]

vood]

—
Wbype | xssint
ralefault |0]

L —
bype | =ssing

BaseUnit_value = factor*Unit_value + offset e

e

2017-02-07

Type Definitions

| fmi2SimpleType

A attributes

name

tyvpe | s normalizedString

| MName of SimplkType element. “n

" T P SimpleType | Drescription of the SimpleType
-+ TypeDefinitions —
. type | fmi2SimpleType

=)
E
=

|
L

—(***—:IEI—(—” EEI—:EI— =Boolean

L Enumeration [+

2017-02-07 14

Log Categories

* unordered set of category strings that can be
utilized to define the log output via function “logger”

[=] sttributes

narme

type | xs.normalizedString

Mame of Category elemen e st b
gue Wwith respect to all ot ments of t
ogCategories st Standan m
LoaCategeries E—{ Category BH-| (85’ TogSgrtneats s’
. L. ry ogionlinearSystems,
aDrrnamicStateSalection”, "k Yarm
Log categonies availzb FrU 1.@ jfE.‘“__'_D'__" - =§:;i_ _E:_lfj e
e = = T = .
ogStatuskat o StatusPeano oo &

description

2017-02-07

15

Default Experiment

ModelExchange: Default step size for fxed step integrators,
CoSimulation: Prefemred communicationStepSize,

2017-02-07 16

Vendor Annotations

-

fmiZAnnotation

2017-02-07

G (o (oo

[=] attributes

narme

type | xs:normalized3tring

Mame of tool that can interpret
e SnndiEnon, nEame st

—
D= RAME WL respear] 10 2

Tool specific annotation
(ignored by other tools),

other elements of the

W endor & motation list,

17

Model Variables

r———_—— - — — — —
fmi2 ScalarVariable _|

|
| — [sttributes
|

— Real [

/

] -Mﬂ-del'l.l"ar:lahles E]_@_WEI HH_L —| Integer [
B fmieScalarvariable | E
|
|
|
|
|
|

data types

Ordened list of 2ll varisbles 1.® Boolean [+
rfirst definition has index = 1),

—{ String [+

ordered set of scalar
variables

—{ Enumeration [+

(arrays, records, etc. must Annotations

tyvpe l fmi2&nnotation
be mapped to scalars when S ———
generating code). e e e

2017-02-07 18

Attributes of Model Variables

—
fmi2ScalarVariable

B atioutes | :
name < unigue name

type | xs:normalizedString

Identifier of varizble, =.g
respect to all ather elements of ¢

t:aell;;ﬂ:euin:e:;?nt - — handle to identify
variable in C-
functions

1 iype x=normalizedString
1 ENUM parameter calculatedParameter input cutput local independent
default lncal

type xz:normalizedString

| enum constant fixed tunable discrete continuous
default centinuous

1 derivedBy | restriction

initial]
'type xs:normalizedString |
| enum exact approx calculated |

| ScalarVariable
type | fmi2ScalarVariable

i canHandleMultiple SetPerTimelnstant
1 type | xs:boolean |

2017-02-07

Data Types

ml— TypeDefinitions | Simpl v -
Bl orp fmizRealAttributes
Data types allow to ecareie L

store all (relevant) meamn
Modelica attributes,
including units.

Defaults from

TypeDefinitions

declaredType
type | xs:normalizedString

Name of ty

Enumeration [

FMU

2017-02-07 20

2017-02-07

Model Structure

[iegesee B =

Ovdered lists of cutputs,
exposed state derivatives,
and the initial unknowns,
Optionally, the functionz
dependency of thess
varizbles can be defined,

o
=
=
=
@
:l.-

type | fmi2VariableDependency . |

Ordered list of all outputs, Exacthy all variables with
causaliny="output” must be in this list, The dependancy
definition holds for Continwous-Time and for Event Mode
{ModelExchange) and for Communication Points
{CoSimulstion),

Derivatives

:l.-

——

Crroered list of 2ll exposed state derivatives (and
thenefore implicitehy assodiated contineous-time states),
Exacthy zll state desivatives of a ModelExchangs FMU
mwest be im this list. & CoSimulation FMU need not exposs
its state derivatives, If 2 model has dynamic state
selaction, introduce dummyy state warizhles, The
dependency definition holds for Continuows-Time and for
Event Mode (ModelExchange) and for Communication
Points {CoSimulation]),

InitialUnknowns &}
Cirdered list of 2l exposed Unknowns in Initizlization
Maode, This list consists of all varizbles with (1) causslity
= "putput” and (initial="approx” or caloulatad”™), (2)
causzliny = “caloulzted Parameter”, and (3 2
continsous-time states znd 2l state derivatives (defined
with element Derivatives from ModelStruchre)with
="approx” or “caloulated™), The resulting st & not
zllowed to have duplicates (e.g. if 2 state & 2ko an
output, it i incheded onhy once in the list), The Unknowns
n this list must be ondered according to their

SczlarV arizble index (g, i for two varizbles & and B the
Sezlar arizble index of & = less than the indey of B, then
& maust appesr before B in InitizlUnknowns),

IS
fmiZVariabIeDependencﬂ

Example Model Description XML File

<?xml version="1.0" encoding="UTF8"?>

<fmiModelDescription

fmivVersion="2.0"
modelName="Modelica.Mechanics.Rotational.Examples.Friction"
modelIdentifier="Modelica Mechanics_Rotational Examples Friction"
guid="{8c4e810£f-3df3-4a00-8276-176fa3c9f9%0}"

numberOfEventIndicators="34"/>
<UnitDefinitions>
<Unit name="rad">
<BaseUnit rad="1"/>
<DisplayUnit name="deg" factor="57.2957795130823"/>
</Unit>
</UnitDefinitions>
<TypeDefinitions>
<SimpleType name="Modelica.SIunits.Inertia">
<Real quantity="MomentOfInertia" unit="kg.m2" min="0.0"/>
</SimpleType>
</TypeDefinitions>
<ModelVariables>
<ScalarVariable
name="inertial.J"
valueReference="1073741824"
description="Moment of load inertia"
causality="parameter"
variability="fixed">
<Real declaredType="Modelica.SIunits.Inertia" start="1"/>
</ScalarVariable> <!—index="1" -->

</ModelVariables>
</fmiModelDescription>

2017-02-07 22

FMI for Model Exchange

FMI for Model Exchange Export

« Export: Subsystem model is exported from its simulation tool
« Preparation as FMU-archive containing
— model description (xml-file)
— executable dll-file containing model equations
— optionally C source code

Simulation Tool 1

User Interface

<xml /> :
.

Sub-system1| :

s A4

LS amEmmEm aEmEmEmmEE "
Solver Tool 1

2017-02-07 24

FMI for Model Exchange Import

* Import: Subsystem model is imported into simulation system for system
simulation
— Reading FMU-archive
— model information from xml-file
— connecting subsystem variables
— executable model equations (dIl)
— running system simulation

Simulation Tool 2

: [Sub-system
o |

User Interface

y

2017-02-07

25

FMI for Model Exchange Interface

* |nterfaces to Simulation Tool

Enclosing Mode| 1 ‘

t time
Vs Variables with initial = “exact” (parameters, ...)
u(t) inputs (continuous-time and/or discrete-time)
u y(t) outputs (continuous-time and/or discrete-time)
-] W(t) local variables (continuous-time and/or discrete-time)
z(t) event indicators (continuous-time)

Elements of local vanables w and/or outputs y:
X.(t) continuous-time states (continuous between events)

External Model (FMU Instance)
t

Xe X, Z

Solver

2017-02-07 26

Mathematical Description

« Hybrid ODEs supported by FMI are described as
piecewise continuous-time systems

 Continuous and discrete states

Index | Description
c A continuous-time varable, that is a vanable that is a continuous function of time inside

eachinterval tf =t < Tty
d A discrete-time varable, that is a vanable that changes its value only at an event instant ¢;.
c+d | A setof continuous-time and discrete-time variables

* time t

! S\ :
N Val 1) L Va(ty) t,

27

2017-02-07

Events

« Event instant t; is defined by one of the following conditions,
1. External Events
+ At least one discrete-time input changes its value.
» A continuous-time input has a discontinuous change.
» A tunable parameter changes its value.
2. Time Events
« A predefined time instant t, = (T, .(t_;), 0) that was defined at the
previous event instant t,_; by the FMU.
3. State Events
* When an event indicator z(t) changes its domain from z,>0to z;< 0 or
fromz <0toz>0. .
4. Step Events 2(t)

At every completed step of ; z>0
an integrator. : E /\
. : » time

2017-02-07 28

S
- -

-

(o

Handling of Algebraic Loops

« Dependency information is needed e.g which outputs
depends directly on inputs.

e <ModelStructure> defined in the fmu.

artifical algebraic loop

FMU1
_ sequential calling sequence:
W1 Uy
fmiSetXXX(m2,< u,,>, ...)
Va5 = fmMiGetXXX(m2,)
fmiSetXXX(m1, <uy =y, >, ..}
FMU2 y; = fmiGetXXX(m1,..)
A :
Uz g Yza fmiSetXXX(m2, < uzp =y >,)
ﬁ'lllllllllllllllllllllllllllllllll }rzh e fmiﬁem(mzi ___}
Uzp Yz

2017-02-07 29

Handling of Algebraic Loops

* |terative Newton method.

* In each iteration u4 is provided by the solver and the residue
IS computed and is provided back to the solver. Based on the
residue a new value of u4 is provided. The iteration is
terminated when the residue is close to zero.

“real” algebraic loop
FMU3

iterative calling sequence:

Y3 i3 In every Newton iteration evaluate:
input: uy /I provided by solver
output: residue // provided to solver
fmiSetXXX(m4,<uy>, ...)
ys == fmiGeXX(m4,)
fmiSetXXX(m3, <uz =yy >, ...)
s Va ys == fmiGetXXX(m3,..)

residue == uy — y3

FMUA4

2017-02-07 30

Model Exchange FMU Solution

In order to solve a FMI model we need to split its
solution process into different phases,

e [nitialization Mode

— Compute initial values of states at time t,.

e Continuous-time Mode

— Compute continuous-time variables between events.
— Discrete-time variables remains fixed.

« Event Mode

— Compute new values for continuous-time and discrete-time variables.

2017-02-07

31

Call Sequence State Machine

Abbreviations used in transition labels

F iz one of

~, = fmi2Gel TypesPlatform
fmi2lnstantiate £ MULL * fmi2GetVersion
« fmi2SetDebuglogging
™ « fmi2GatAM U stats
* fmi2Free AU state
instantiated + fmi2Seria ized MU state Size

= fmi2Seris ize AU =tate

fmiZEnter + fmi2DeSeria izeAUztate
Initializ ationM ode = fmi2GetilominalsOfContinuou sStates

fmiZReset .
e

‘modelSetableFM Ustate |

Fr‘rmdelUnderEvaJuatinn l

F -
fmi2SetSEA
fmiZ SetupExperiment

R
fmizSetSE Initialization

fmi2GetiMIT =——

Xizone of

* Real, Integer, Goolean, Siring
= Derivatives

» ContinuousSiates

= Eventindicators

+ Directiona iDerivative

fmziExitinitializationM ode

/~ modelinitialized | M
fmi2EntarEventh ode

SEA is one of Real Integer, BEoolean, String
for a variable with variabily # “constant”
that has initial = "exact” or "spprox”

SE iz one of Real Integer, Boolean, Sting
for a varizble with variabilly # "constant”™
that has initial = "exact” or causaliy="input"

INC is Real for a variable with
causality="input" and varis ity ="continuous"

IN iz one of Real, integer, Boolean, String
for & variable that has either
{varia biliy ="discrete” and causs ity="Tnput")

Eil or vanabiliy="tunabie"™

-~ INIT is one of

. A * Real, ir_ireger, Bpﬂfean, E_tr{ng

fmi2Terminate a function call for this forvariables with causality="output,

| : . continuoustime states and state derivatives
v instance returns fmi2Error « ContinuousStates

T3
= + Directiona iDerivative
\ fmi2Getx fmi2Getx) TS: terminateSimulation
iz returned by at least one AU
4.. fmiZFreelnstance [a function call for this or or the simulstion run ended successfully
fatal |

ary other instance of this EM: newDiscreteStatesNeedead
(@< FMU returns fmi2Fatal is returned by at least one AMU and
no AMU retum s terminate S imulation

v

F

fmi2 Geti
fmi2SetiM
fmi2SetiMNC

F

fmi2 Getx

fmi2SetiMC

fmi2SetTime
fmiz5etContinuousstates

- fmiZMew
fmizCompleted ntegratorStep DiscreteStates

fmiZEnterContinuousTimeM ode /y\
L

i25etTim e (discrete FhLD

s

nat EM

;‘:\ alels uaab ay] 0] SUOYSUEL} SIS MM J18 ST

2017-02-07 32

FMI for Co-Simulation

FMI for Co-Simulation

 Master/slave architecture

« Support of simple and sophisticated coupling
algorithms:

— lterative and straight forward algorithms
— Constant and variable communication step size

 Allows (higher order) interpolation of continuous
Inputs

« Support of local and distributed co-simulation
scenarios

« FMI for Co-Simulation does not define:

— Co-simulation algorithms
— Communication technology for distributed scenarios

2017-02-07 34

FMI for Co-Simulation Coupling

* Its been designed both for coupling with
subsystem models, which have been exported
by their simulators together with its solvers as
runnable code,

Executable FMU
Slave
Master —O- ‘Model | Solver
FMI
Process
* And for coupling of simulation tools,
Executable FMU Simulation tool
FMI) Slave
ste _CFN?_ Wrapper (-(() Model | Solver
Process 1 Process 2

2017-02-07 35

FMI for Co-Simulation Distributed

 Distributed Co-Simulation Scenario
— Data exchange is handled by some network communication technology.
— Communication layer not part of the FMI standard.
— Master is responsible for the communication layer implementation.

Executable Executable/Service FMU Simulation tool
~ S
T\ Application | FMI
RaSteL C Server ale Wrapper
\ FMI
Computerl Computer2

2017-02-07 36

FMI for Co-Simulation Export FMU
with Solver

Export: Subsystem description is exported from its simulation tool

— Preparation as FMU-archive containing
« model description (xml-file), describes also solver/tool capabilities

« reference to executable dll-file as, wrapper which provides a tool
specific implementation of the co-simulation slave interface

Simulation Tool 1: Slave

. R
User Interface : N
<xml />
Sub-system 1
3 7
L
i)
Wrapper Tool 1
—
Solver
Solver Tool 1
| sowerroor | £

2017-02-07 37

FMI for Co-Simulation Import Stand-
alone

Import: Subsystem description is imported into simulation system

for system simulation
— Reading FMU-archive
* model information from xml-file
« connecting subsystem variables

Simulation Tool 2: Master

User Interface

n
N
<xml /> .
Sub-system 2 :
i) :
Wrapper T ool 1
fmu

2017-02-07 38

FMI for Co-Simulation Tool coupling

 Run simulation on same host
— Master subsystem is connected with wrapper dll via co-simulation interface
— Subsystem 2 is called via wrapper of tool 2 as if it would have been directly
imported into master simulation tool

Host 1

Simulation Tool 1: Master Simulation Tool 2

User Interface User Interface

Solver Tool 1

Sub-system
2

/(:)/(»

Wrapper'TooI 2

Solver Tool 2

2017-02-07

39

FMI for Co-Simulation distributed tool
coupling

 Run simulation on different hosts
— Master subsystem is connected via a generic adapter with a communication
tool
« Adapter provides co-simulation slave interface
— Communication tool uses wrapper dlls of slave tools

Host 1 Host 2 Simulation Tool 2

User Interface

Simulation Tool 1: Master

User Interface (:}
C
i

Sub-

system 2
Sub-system :-‘ € i Wrapper Tool 2
1 0
Generic Master Adapter Solver Tool 2

Solver Tool 1

2017-02-07 40

FMI for Co-Simulation Interface

tn,P,‘-"uI tv

Co-Simulation Master ‘v

Solver

Co-Simulation Slave (FMU Instance)

2017-02-07 41

Mathematical Description

For co-simulation two basic groups of functions have
to be realized:

1. functions for the data exchange between
subsystems and

2. functions for algorithmic issues to synchronize the
simulation of all subsystems and to proceed in
communication steps tc; — tc,., from initial time

{Co = Lot tO €N time tCy 1= Ly,

2017-02-07 42

Common Master Algorithm

« Stops at each communication point of all slaves
» Collects the output from all slaves
« Evaluates the slaves inputs

 Distributes the inputs to the slaves and continue
simulation with the next communication step with
fixed communication step size

« Slave’s solver is used for integration

FMI for Co-Simulation is designed to support a very
general class of master algorithms but it does not
define the master algorithm itself.

2017-02-07 43

Sophisticated Master Algorithm
Capability flags,
* Variable communication step size

* Repeat a rejected communication step tc; — tc,,,
with reduced communication step size

* Provide derivatives w.r.t. time of outputs to allow
interpolation

 Provides Jacobians.

2017-02-07 44

Co-Simulation FMU Solution

In order to solve a FMI co-simulation model we need
to split its solution process into two phases,

e [nitialization Mode

— Compute initial values of internal variables of the slave at time t,.

« Step Mode

— Compute the values of all (real) continuous-time variables at communication
points.

2017-02-07 45

2017-02-07

FMI for Co-Simulation

fmi2Reset .
(" slaveSstableFMUstate | fmi2instantiate £ NULL)
(" slaveUnderEvaluation | V ll'.l)
. F instantiated frm QSEtFM_LJ state
fmi2SetiMI transﬁm_ns
fmi2SetupExperiment fmi2Enterintialzationi ade tothe given
state
F -
fmizSetin Initialization
fmi2SetiNIE Mode
fmi2GetiNIT fmi2Exttinitializationh ode
(slavelnitialized -)
fmiz Gety fmi2DoStep = fmi2Pending
fmi2Setii step
fmi20DoStep = fr.'rIEDK. Complete Compuiation done
fmi2Terminate fmi2DcoStep Status = mi2OK
F =fmi2Discard
micets (= | [sten
computation done [In Progress
fmiZTerminate status = fmiZDiscard .!".
Fr——=| step |_|
fmi2Getx I__ Canceled fmi2Cancelstep W
. A
e v
| afunction call for this
"...l‘ e V instance returns fmiZError
. F
terminated fmi2Gety .
fmi2Gets fmizGetx _
" computation
- - done, status
. a function call for this or !
|meFreeInstance | any other instance of this =fmiZError
'.'u' FMU returns fmi2Fatal computation
done, status
®< fatal < = TmioF atal

Abbreviations used in transition labels

F iz one of

+ [mi2GetTypesPlatform, fmi2GetVersion
« [mi2SetDebuglogging

* fmi2GetFMU state, fmiFreeFMU state

+ fmi2Seriz izedAMU state Size

« fmi2Seria lizeF\MU state

+ imi2DeSeria ize R Ustate

Sizone of
Slatus, RealStalus, Integersialus,
BooleansStatus, StingStatus

Xizone of

+ Real, integer, Boolean, String,

* RealCutputDervatives

+ Directiona iDerivative

1N iz one of

+ Real, Integer, Boolean, Siring
for & variable with variabilly £ "constant”
that has initisl = "exsct” or "spprox™

+ ReallinputDerivatives

INIE iz Real Integer, Boolkean, String
for & variable with variabilly £ "constant”
that has initial = exact”

IN iz one of
+ Real, Integer, Boolean, Siring
for & variable that has either
(causaliy = "input”) or
(causalily = pammeterand
variabilly = “tunabie”)
* ReallnputDerivatives

IMNIT iz one of
* Real, Integer, Boolean, Siring

forvariables with causality="ouiput”,

if =Dernvatives> present

continuoustime states and stale derivatives
« ConfinuousStates (F =Derivativess present)
+ Directiona iDerivative

W is one of

* fmi2GetTypesPlatform, fmi2GetVersion
+ fmi2SetDebuglogging

+ fmiGets

46

FMI
OpenModelica Implementation
and Applications

FMI in OpenModelica

* Full Model Exchange support (FMI 1.0 & FMI 2.0)
« Co-simulation Export (FMI 2.0)
* Co-Simulation Import (under development)

2017-02-07 48

OpenModelica Compiler and Code
Generators Including New SimCodeFMU
for FMI Export

"\
k1 Y
LY
k‘ *‘ *\ L
T
Absyn SCode
Parse |r————p Jexplode
Exp.Exp
(Env, mme)

OMC Module Connections
& Data Flows

2017-02-07

DAE

* Dump

DAELow

Inst

]

Flat Modelica

Static

l

T

(Exp.Exp.
sC ﬂdﬂ-EKPl Twvpes. Type)

\Y

| I

SimCode

I

i

SimCodeC

|

C Code

i

SimCodeC#

|

C# Code

—p

Ceval

A

SimCodeFMU

|

FMU

Package

FMI Export in OpenModelica
OpenModelica scripting API

function translateModelFMU

input TypeName className "the class that should translated";

input String version = "2.0" "FMU version, 1.0 or 2.0.";

input String fmuType = "me" "FMU type, me (model exchange), cs (co-simulation), me cs
(both model exchange and co-simulation)";
end translateModelFMU;

Creates an FMU of the model

Version parameter specifies the version of the
FMU

Type parameter specifies the type of the FMU

Export FMUs for different platforms.

2017-02-07 50

FMI Export in OpenModelica

o OMEdit - Options 7 X
| General S
g Libraries UEETY
Text Editor O 1o
Modelica Editor ® 20
MetalModelica Editor Type
MetalModel Editor (®) Model Exchange
C/C++ Editor (D) Co-Simulation
HTML Editor (O) Model Exchange and Co-Simulation
Graphical Views FMU Mame: |<defau|t>
9 Simulation Platforms
g Messages Mote: The list of platforms is created by searching for programs in the PATH
Notifications matching pattern **-*-*-*cc",
"\, LineStyle Static M
47 Fillstyle
ﬂ Plotting
' Figaro
* Debugger
B e
92 TLm
*The changes will take effect after restart. OK I | Cancel

2017-02-07

FMI Import iIn OpenModelica
OpenModelica scripting API

function importFMU

input String filename "the fmu file name";

input String workdir = "<default>" "The output directory for imported FMU files.

<default> will put the files to current working directory.";

input Integer loglevel = 3 "loglevel nothing=0; loglevel fatal=1; loglevel error=2;
loglevel warning=3; loglevel info=4; loglevel verbose=5;

loglevel debug=6";

input Boolean fullPath = false "When true the full output path is returned otherwise

only the file name.";
input Boolean debuglogging = false "When true the FMU's debug output is printed.";

input Boolean generateInputConnectors = true "When true creates the input connector
pins.";
input Boolean generateOutputConnectors = true "When true creates the output

connector pins.";
output String generatedFileName "Returns the full path of the generated file.";
end importFMU;

Imports the FMU

Automatically detects the FMU version and
generates a Modelica code to simulate the FMU
model

2017-02-07

Modelica Code of Imported FMU

. | OMEdit - OpenModelica Connection Editor - [BouncingBall_me_FMU] - o IEH|
B File Edit View Simulation FMI Export Jools Help [=][=]x]

JeBB ~ 0B \OHOTHR < B -5H-9-

Libraries Browser g X ‘l.l nﬁo Writeable ‘Model Text View ‘C:,ﬂ)sa's;‘adeasﬁl,mpp...mci@al_me_%.mc ||_'ne:4ﬁ, Cal: 0 | ﬁ‘
Libraries 37 initial equation ~
[}[:] OpenModelica 3 flowStartTime = fmilFunctions.fmilSetTime (fmilme, time, 1);
flowInitialized = fmilFunctions.fmilInitialize (fmilme,
[}[:] Modelicaervices flowParamsStart + flowInitInputs + flowStartTime):
[}- Complex 40 fmi x = fmilFunctions.fmilGetContinuousStates (fmilme,
nunkberCfContinuousStates, flowParamsStart + flowInitialized)
E}@] Modelica 41 initial algorithm
. 42 flowParamsStart := 1;
_|E| BouncingBall 4% flowParamsStart := fmilFunctions.fmilSetRealParameter (fmilme,
[}[:] BouncingBall_rme_FMU i%.0, 8.0k, {e, gi):
44 flowInitInputs := 1;
45 initial equation
46
47 equation
48 flowTime = fmilFunctions.fmilSetTime (fmilme, time,
flowInitialized);
49 flowStatesInputs = fmilFunctions.fmilSetContinuousStates (fmilme,
fmi_ x, flowParamsStart + flowTime);
S0 der (fmi_x) = fmilFunctions.fmilGetDerivatives (fmilme,

nunkerCfContinuousStates, flowStatesInputs):
51 fmi z = fmilFunctions.fmilGetEventIndicators (fmilme,
nunberCfEventIndicators, flowStatesInputs):

for i in l:zize(fmi =z, 1) loop
53 fmi z pogitive[i] = if not terminal() then fmi z[i] > 0 els=e
pre(fmi z positive[i])}:

end for;

callEventlUpdate =
fmilFunctions. fmilCompletedIntegratorStepn (fmilme,
flowStatesInputs) ; hd
£ >

¥:-98.37 Y: 105.59 &L Modeling Plotting

2017-02-07 53

FMI Import Process in OpenModelica

Call to FMI interface via the

Modelica external functions

2017-02-07

\ 4

OpenModelica
Compiler

Code Generation

Modelica Code

* FMU Parsing.

* Validate the FMU according to
specification.

* Check FMU version.

* Check FMU type.

* Collect variables information.
* Etc....

54

ABB OPTIMAX — OpenModelica
Industrial Use Case

 ABB OPTIMAX® provides advanced model based
control products for power generation and water
utilities.

2017-02-07 55

ABB OPTIMAX — OpenModelica
Industrial Use Case

* Model-based optimization of power plants using
OpenModelica FMI 2.0.

 Plant models are formulated in Modelica and
deployed through FMI 2.0

* Link : http://new.abb.com/power-generation/power-
plant-optimization

2017-02-07 56

http://new.abb.com/power-generation/power-plant-optimization

