
Functional Mockup Interface (FMI)

A General Standard for Model

Exchange and Simulator Coupling

Adeel Asghar and Willi Braun

Linköping University

University of Applied Sciene Bielefeld

2017-02-07

2017-02-07 2

• Need to SOLVE large integrated modeling and simulation

engineering problems

• Hundreds of simulation tools, different model formats

• Exchange dynamic models between different tools and define

tool coupling for dynamic system simulation environments.

• Two main approaches:

– 1. Export models from some tools,

import into other tools for simulation

– 2. Co-simulation of models in different tools

• Implementation Package Format: Functional Mockup Unit

(FMU)

• Solution: Functional Mockup Interface (FMI) standard

www.fmi-standard.org

FMI – Motivation 1

2017-02-07 3

• Problems / Needs
– Component development by

supplier

– Integration by OEM

– Many different simulation tools

FMI – Motivation 2

?

supplier1 supplier2 supplier3 supplier4 supplier5

OEM

supplier1

tool 1

supplier2 supplier3 supplier4 supplier5

tool 2 tool 3 tool 4 tool 5

FMI OEM

!supplier1

supplier2

supplier3

OEM

• Solution
– Reuse of supplier models by

OEM:

• DLL (model import) and/or

• Tool coupling (co-

simulation)

• Added Value
– Early validation of design

– Increased process efficiency and

quality

2017-02-07 4

• FMI development was started by ITEA2 MODELISAR project. FMI is a

Modelica Association Project now.

• Version 1.0
– FMI for Model Exchange (released Jan 26,2010)

– FMI for Co-Simulation (released Oct 12,2010)

• Version 2.0
– FMI for Model Exchange and Co-Simulation (released July 25,2014)

• 73 tools supporting it (https://www.fmi-standard.org/tools)

Functional Mock-up Interface (FMI) –

Overview

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling
courtesy Daimler

2017-02-07 5

FMI – Main Design Idea

• A component which implements the interface is

called

Functional Mockup Unit (FMU)

• Separation of

– Description of interface data (XML file)

– Functionality (C code or binary)

• A FMU is a zipped file (*.fmu) containing the XML

description file and the implementation in source or

binary form

• Additional data and functionality can be included

2017-02-07 6

Functional Mockup Units

• Import and export of input/output blocks –

Functional Mock-Up Units – FMUs

• described by
– differential-, algebraic-, discrete equations,

– with time-, state, and step-events

• An FMU can be large (e.g. 100 000 variables)

• An FMU can be used in

an embedded system

(small overhead)

• FMUs can be connected

together

2017-02-07 7

Model Distribution as a Zip-file (.fmu file)

A model is distributed as one zip-file with extension ".fmu“, containing:

• XML model description file

All model information that is not needed during integration of

model, e.g., signal names and attributes. Advantage:

– No overhead for model execution.

– Tools can read this information with their preferred language (C/C++, C#,

Java, ...)

• Model equations defined by a small set of C-functions. In zip-

file:
– C source code and/or

– Binary code (DLL) for one or more platforms (Windows, Linux, ...)

• Resources
– Documentation (html files)

– Model icon (bitmap file)

– Maps and tables (read by model during initialization)

2017-02-07 8

Simulator with GUI and Solver

Executing Imported Model = FMU

(Functional Mockup Unit)

Introduction to FMI 10/02/2017 9

FMU

Functional Mockup Unit

in more detail

2017-02-07 10

Structure of an FMU zip-file

1. modelDescription.xml // Description of model (required file)

2. model.png // Optional image file of model icon

3. documentation // Optional directory containing the model
// documentation

_main.html // Entry point of the documentation

<other documentation files>

4. sources // Optional directory containing all C-
sources

// all needed C-sources and C-header files to compile and link the model

// with exception of: fmiModelTypes.h and fmiModelFunctions.h

5. binaries // Optional directory containing the binaries
win32 // Optional binaries for 32-bit Windows

<modelIdentifier>.dll // DLL of the model interface implementation

VisualStudio8 // Microsoft Visual Studio 8 (2005)

<modelIdentifier>.lib // Binary libraries

gcc3.1 // Binaries for gcc 3.1.

win64 // Optional binaries for 64-bit Windows

...

linux32 // Optional binaries for 32-bit Linux

...

6. resources // Optional resources needed by the model
< data in model specific files which will be read during initialization >

2017-02-07 11

Model Description Schema
• Model information

not needed for

execution is stored

in one xml-file

(modelDescription.x

ml in zip-file)

defined by xml

schema (.xsd)

files.

2017-02-07 12

guid is a globally unique identifier

("fingerprint" of all releveant information

in the xml file) that is also stored in the

C-functions to gurantee consisteny

Number of event indicators; numbers

are fixed

(numberofContinuousStates have

been removed in FMI 2.0 because it

can be deduced from other information

in the xml file.)

Model Attributes

2017-02-07 13

Unit Definitions

7 SI base units “kg”, “m”, “s”, “A”, “K”, “mol”, “cd”,

and SI derived unit “rad”.

BaseUnit_value = factor*Unit_value + offset

2017-02-07 14

Type Definitions

2017-02-07 15

Log Categories

• unordered set of category strings that can be

utilized to define the log output via function “logger”

2017-02-07 16

Default Experiment

2017-02-07 17

Vendor Annotations

2017-02-07 18

ordered set of scalar

variables

(arrays, records, etc. must

be mapped to scalars when

generating code).

data types

Model Variables

2017-02-07 19

...

unique name

handle to identify

variable in C-

functions

Attributes of Model Variables

2017-02-07 20

Data types allow to

store all (relevant)

Modelica attributes,

including units.

Defaults from

TypeDefinitions

Data Types

2017-02-07 21

Model Structure

2017-02-07 22

Example Model Description XML File
<?xml version="1.0" encoding="UTF8"?>

<fmiModelDescription

fmiVersion=“2.0"

modelName="Modelica.Mechanics.Rotational.Examples.Friction"

modelIdentifier="Modelica_Mechanics_Rotational_Examples_Friction"

guid="{8c4e810f-3df3-4a00-8276-176fa3c9f9e0}"

...

numberOfEventIndicators="34"/>

<UnitDefinitions>

<Unit name="rad">

<BaseUnit rad="1"/>

<DisplayUnit name="deg" factor="57.2957795130823"/>

</Unit>

</UnitDefinitions>

<TypeDefinitions>

<SimpleType name="Modelica.SIunits.Inertia">

<Real quantity="MomentOfInertia" unit="kg.m2" min="0.0"/>

</SimpleType>

</TypeDefinitions>

<ModelVariables>

<ScalarVariable

name="inertia1.J"

valueReference="1073741824"

description="Moment of load inertia"

causality="parameter"

variability="fixed">

<Real declaredType="Modelica.SIunits.Inertia" start="1"/>

</ScalarVariable> <!—index="1" -->

...

</ModelVariables>

</fmiModelDescription>

Introduction to FMI 10/02/2017 23

FMI for Model Exchange

2017-02-07 24

FMI for Model Exchange Export

• Export: Subsystem model is exported from its simulation tool

• Preparation as FMU-archive containing

– model description (xml-file)

– executable dll-file containing model equations

– optionally C source code

Sub-system 1

User Interface

Simulation Tool 1

Solver Tool 1

Sub-system 1

.fmu

2017-02-07 25

FMI for Model Exchange Import

• Import: Subsystem model is imported into simulation system for system

simulation

– Reading FMU-archive

– model information from xml-file

– connecting subsystem variables

– executable model equations (dll)

– running system simulation

User Interface

Sub-system 2

Simulation Tool 2

Solver Tool 2

Sub-system
1

.fmu

2017-02-07 26

FMI for Model Exchange Interface

• Interfaces to Simulation Tool

2017-02-07 27

Mathematical Description

• Hybrid ODEs supported by FMI are described as

piecewise continuous-time systems

• Continuous and discrete states

2017-02-07 28

Events

• Event instant ti is defined by one of the following conditions,
1. External Events

• At least one discrete-time input changes its value.

• A continuous-time input has a discontinuous change.

• A tunable parameter changes its value.

2. Time Events

• A predefined time instant ti = (Tnext(ti-1), 0) that was defined at the

previous event instant ti-1 by the FMU.

3. State Events

• When an event indicator zj(t) changes its domain from zj > 0 to zj ≤ 0 or

from zj ≤ 0 to zj > 0.

4. Step Events

• At every completed step of

an integrator.

2017-02-07 29

Handling of Algebraic Loops

• Dependency information is needed e.g which outputs
depends directly on inputs.

• <ModelStructure> defined in the fmu.

2017-02-07 30

Handling of Algebraic Loops

• Iterative Newton method.

• In each iteration 𝑢4 is provided by the solver and the residue

is computed and is provided back to the solver. Based on the

residue a new value of 𝑢4 is provided. The iteration is

terminated when the residue is close to zero.

2017-02-07 31

Model Exchange FMU Solution

In order to solve a FMI model we need to split its

solution process into different phases,

• Initialization Mode
– Compute initial values of states at time t0.

• Continuous-time Mode
– Compute continuous-time variables between events.

– Discrete-time variables remains fixed.

• Event Mode
– Compute new values for continuous-time and discrete-time variables.

2017-02-07 32

Call Sequence State Machine

Introduction to FMI 10/02/2017 33

FMI for Co-Simulation

2017-02-07 34

FMI for Co-Simulation
• Master/slave architecture

• Support of simple and sophisticated coupling

algorithms:
– Iterative and straight forward algorithms

– Constant and variable communication step size

• Allows (higher order) interpolation of continuous

inputs

• Support of local and distributed co-simulation

scenarios

• FMI for Co-Simulation does not define:
– Co-simulation algorithms

– Communication technology for distributed scenarios

2017-02-07 35

FMI for Co-Simulation Coupling
• Its been designed both for coupling with

subsystem models, which have been exported

by their simulators together with its solvers as

runnable code,

• And for coupling of simulation tools,

2017-02-07 36

FMI for Co-Simulation Distributed

• Distributed Co-Simulation Scenario
– Data exchange is handled by some network communication technology.

– Communication layer not part of the FMI standard.

– Master is responsible for the communication layer implementation.

2017-02-07 37

• Export: Subsystem description is exported from its simulation tool
– Preparation as FMU-archive containing

• model description (xml-file), describes also solver/tool capabilities

• reference to executable dll-file as, wrapper which provides a tool

specific implementation of the co-simulation slave interface

FMI for Co-Simulation Export FMU

with Solver

Sub-system 1

User Interface

Simulation Tool 1: Slave

Solver Tool 1
.fmu

Wrapper Tool 1

Solver

2017-02-07 38

FMI for Co-Simulation Import Stand-

alone

• Import: Subsystem description is imported into simulation system

for system simulation
– Reading FMU-archive

• model information from xml-file

• connecting subsystem variables

User Interface

Sub-system 2

Simulation Tool 2: Master

Solver Tool 2

.fmu

Wrapper Tool 1

Solver

2017-02-07 39

• Run simulation on same host
– Master subsystem is connected with wrapper dll via co-simulation interface

– Subsystem 2 is called via wrapper of tool 2 as if it would have been directly

imported into master simulation tool

FMI for Co-Simulation Tool coupling

Host 1

User Interface

Sub-system 1

Simulation Tool 1: Master

Solver Tool 1

Sub-system
2

User Interface

Simulation Tool 2

Solver Tool 2

Wrapper Tool 2

2017-02-07 40

FMI for Co-Simulation distributed tool

coupling
• Run simulation on different hosts

– Master subsystem is connected via a generic adapter with a communication

tool

• Adapter provides co-simulation slave interface

– Communication tool uses wrapper dlls of slave tools

Host 2Host 1

User Interface

Sub-system
1

Simulation Tool 1: Master

Solver Tool 1 Communication Layer Tool

Generic Master Adapter

Sub-
system 2

User Interface

Simulation Tool 2

Solver Tool 2

Wrapper Tool 2

2017-02-07 41

FMI for Co-Simulation Interface

2017-02-07 42

Mathematical Description

For co-simulation two basic groups of functions have

to be realized:

1. functions for the data exchange between

subsystems and

2. functions for algorithmic issues to synchronize the

simulation of all subsystems and to proceed in

communication steps tci → tci+1 from initial time

tc0 := tstart to end time tcN := tstop.

2017-02-07 43

Common Master Algorithm

• Stops at each communication point of all slaves

• Collects the output from all slaves

• Evaluates the slaves inputs

• Distributes the inputs to the slaves and continue

simulation with the next communication step with

fixed communication step size

• Slave’s solver is used for integration

FMI for Co-Simulation is designed to support a very

general class of master algorithms but it does not

define the master algorithm itself.

2017-02-07 44

Sophisticated Master Algorithm

Capability flags,

• Variable communication step size

• Repeat a rejected communication step tci → tci+1

with reduced communication step size

• Provide derivatives w.r.t. time of outputs to allow

interpolation

• Provides Jacobians.

2017-02-07 45

Co-Simulation FMU Solution

In order to solve a FMI co-simulation model we need

to split its solution process into two phases,

• Initialization Mode
– Compute initial values of internal variables of the slave at time t0.

• Step Mode
– Compute the values of all (real) continuous-time variables at communication

points.

2017-02-07 46

FMI for Co-Simulation

Introduction to FMI 10/02/2017 47

FMI

OpenModelica Implementation

and Applications

2017-02-07 48

• Full Model Exchange support (FMI 1.0 & FMI 2.0)

• Co-simulation Export (FMI 2.0)

• Co-Simulation Import (under development)

FMI in OpenModelica

2017-02-07 49

OpenModelica Compiler and Code

Generators Including New SimCodeFMU

for FMI Export

2017-02-07 50

• OpenModelica scripting API
function translateModelFMU

input TypeName className "the class that should translated";

input String version = "2.0" "FMU version, 1.0 or 2.0.";

input String fmuType = "me" "FMU type, me (model exchange), cs (co-simulation), me_cs

(both model exchange and co-simulation)";

end translateModelFMU;

• Creates an FMU of the model

• Version parameter specifies the version of the

FMU

• Type parameter specifies the type of the FMU

• Export FMUs for different platforms.

FMI Export in OpenModelica

2017-02-07 51

FMI Export in OpenModelica

2017-02-07 52

• OpenModelica scripting API
function importFMU

input String filename "the fmu file name";

input String workdir = "<default>" "The output directory for imported FMU files.

<default> will put the files to current working directory.";

input Integer loglevel = 3 "loglevel_nothing=0; loglevel_fatal=1; loglevel_error=2;

loglevel_warning=3; loglevel_info=4; loglevel_verbose=5;

loglevel_debug=6";

input Boolean fullPath = false "When true the full output path is returned otherwise

only the file name.";

input Boolean debugLogging = false "When true the FMU's debug output is printed.";

input Boolean generateInputConnectors = true "When true creates the input connector

pins.";

input Boolean generateOutputConnectors = true "When true creates the output

connector pins.";

output String generatedFileName "Returns the full path of the generated file.";

end importFMU;

• Imports the FMU

• Automatically detects the FMU version and

generates a Modelica code to simulate the FMU

model

FMI Import in OpenModelica

2017-02-07 53

Modelica Code of Imported FMU

2017-02-07 54

FMI Import Process in OpenModelica

FMU

OpenModelica
Compiler

Code Generation

Modelica Code

• FMU Parsing.

• Validate the FMU according to
specification.

• Check FMU version.

• Check FMU type.

• Collect variables information.

• Etc….

Simulation

Call to FMI interface via the
Modelica external functions

2017-02-07 55

• ABB OPTIMAX® provides advanced model based

control products for power generation and water

utilities.

ABB OPTIMAX – OpenModelica

Industrial Use Case

2017-02-07 56

• Model-based optimization of power plants using

OpenModelica FMI 2.0.

• Plant models are formulated in Modelica and

deployed through FMI 2.0

• Link : http://new.abb.com/power-generation/power-

plant-optimization

ABB OPTIMAX – OpenModelica

Industrial Use Case

http://new.abb.com/power-generation/power-plant-optimization

