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• Need to SOLVE large integrated modeling and simulation 

engineering problems

• Hundreds of simulation tools, different model formats

• Exchange dynamic models between different tools and define 

tool coupling for dynamic system simulation environments.

• Two main approaches:

– 1. Export models from some tools,  

import into other tools for simulation

– 2. Co-simulation of models in different tools

• Implementation Package Format: Functional Mockup Unit

(FMU)

• Solution: Functional Mockup Interface (FMI) standard

www.fmi-standard.org

FMI – Motivation 1
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• Problems / Needs
– Component development by 

supplier

– Integration by OEM

– Many different simulation tools

FMI – Motivation 2
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• Solution
– Reuse of supplier models by 

OEM:

• DLL (model import) and/or

• Tool coupling (co-

simulation)

• Added Value
– Early validation of design

– Increased process efficiency and 

quality
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• FMI development was started by ITEA2 MODELISAR project. FMI is a 

Modelica Association Project now.

• Version 1.0
– FMI for Model Exchange (released Jan 26,2010)

– FMI for Co-Simulation (released Oct 12,2010)

• Version 2.0
– FMI for Model Exchange and Co-Simulation (released July 25,2014)

• 73 tools supporting it (https://www.fmi-standard.org/tools)

Functional Mock-up Interface (FMI) –

Overview

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling
courtesy Daimler
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FMI – Main Design Idea

• A component which implements the interface is 

called

Functional Mockup Unit (FMU)

• Separation of 

– Description of interface data (XML file) 

– Functionality (C code or binary)

• A FMU is a zipped file (*.fmu) containing the XML 

description file and the implementation in source or 

binary form

• Additional data and functionality can be included
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Functional Mockup Units

• Import and export of input/output blocks –

Functional Mock-Up Units – FMUs

• described by
– differential-, algebraic-, discrete equations,

– with time-, state, and step-events

• An FMU can be large (e.g. 100 000 variables)

• An FMU can be used in 

an embedded system 

(small overhead)

• FMUs can be connected 

together
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Model Distribution as a Zip-file (.fmu file)

A model is distributed as one zip-file with extension ".fmu“, containing:

• XML model description file

All model information that is not needed during integration of 

model, e.g., signal names and attributes. Advantage:

– No overhead for model execution.

– Tools can read this information with their preferred language (C/C++, C#, 

Java, ...)

• Model equations defined by a small set of C-functions. In zip-

file:
– C source code and/or

– Binary code (DLL) for one or more platforms (Windows, Linux, ...) 

• Resources
– Documentation (html files)

– Model icon (bitmap file)

– Maps and tables (read by model during initialization)
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Simulator with GUI and Solver 

Executing Imported  Model = FMU 

(Functional Mockup Unit)
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FMU

Functional Mockup Unit

in more detail 
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Structure of an FMU zip-file

1. modelDescription.xml    // Description of model (required file) 

2. model.png               // Optional image file of model icon

3. documentation           // Optional directory containing the model
// documentation 

_main.html                 // Entry point of the documentation 

<other documentation files>

4. sources                 // Optional directory containing all C-
sources 

// all needed C-sources and C-header files to compile and link the model

// with exception of: fmiModelTypes.h and fmiModelFunctions.h

5. binaries                // Optional directory containing the binaries 
win32 // Optional binaries for 32-bit Windows

<modelIdentifier>.dll // DLL of the model interface implementation

VisualStudio8           // Microsoft Visual Studio 8 (2005)

<modelIdentifier>.lib   // Binary libraries

gcc3.1               // Binaries for gcc 3.1.

win64    // Optional binaries for 64-bit Windows

...

linux32  // Optional binaries for 32-bit Linux

...

6. resources  // Optional resources needed by the model
< data in model specific files which will be read during initialization >
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Model Description Schema
• Model information

not needed for 

execution is stored 

in one xml-file

(modelDescription.x

ml in zip-file) 

defined by xml 

schema (.xsd) 

files.
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guid is a globally unique identifier

("fingerprint" of all releveant information

in the xml file) that is also stored in the

C-functions to gurantee consisteny

Number of event indicators; numbers 

are fixed

(numberofContinuousStates have 

been removed in FMI 2.0 because it 

can be deduced from other information 

in the xml file.)

Model Attributes



2017-02-07 13

Unit Definitions

7 SI base units “kg”, “m”, “s”, “A”, “K”, “mol”, “cd”, 

and SI derived unit “rad”.

BaseUnit_value = factor*Unit_value + offset
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Type Definitions
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Log Categories

• unordered set of category strings that can be 

utilized to define the log output via function “logger”
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Default Experiment
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Vendor Annotations
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ordered set of scalar 

variables

(arrays, records, etc. must 

be mapped to scalars when 

generating code).

data types

Model Variables



2017-02-07 19

...

unique name

handle to identify

variable in C-

functions

Attributes of Model Variables
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Data types allow to 

store all (relevant) 

Modelica attributes, 

including units.

Defaults from 

TypeDefinitions

Data Types
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Model Structure
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Example Model Description XML File
<?xml version="1.0" encoding="UTF8"?>

<fmiModelDescription

fmiVersion=“2.0"

modelName="Modelica.Mechanics.Rotational.Examples.Friction"

modelIdentifier="Modelica_Mechanics_Rotational_Examples_Friction"

guid="{8c4e810f-3df3-4a00-8276-176fa3c9f9e0}"

...

numberOfEventIndicators="34"/>

<UnitDefinitions>

<Unit name="rad">

<BaseUnit rad="1"/>

<DisplayUnit name="deg" factor="57.2957795130823"/>

</Unit>

</UnitDefinitions>

<TypeDefinitions>

<SimpleType name="Modelica.SIunits.Inertia">

<Real quantity="MomentOfInertia" unit="kg.m2" min="0.0"/>

</SimpleType>

</TypeDefinitions>

<ModelVariables>

<ScalarVariable

name="inertia1.J"

valueReference="1073741824"

description="Moment of load inertia"

causality="parameter"

variability="fixed">

<Real declaredType="Modelica.SIunits.Inertia" start="1"/>

</ScalarVariable> <!—index="1" -->

...

</ModelVariables>

</fmiModelDescription>
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FMI for Model Exchange
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FMI for Model Exchange Export

• Export: Subsystem model is exported from its simulation tool

• Preparation as FMU-archive containing

– model description (xml-file)

– executable dll-file containing model equations

– optionally C source code

Sub-system 1

User Interface

Simulation Tool 1

Solver Tool 1

Sub-system 1

.fmu
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FMI for Model Exchange Import

• Import: Subsystem model is imported into simulation system for system 

simulation

– Reading FMU-archive

– model information from xml-file

– connecting subsystem variables

– executable model equations (dll)

– running system simulation

User Interface

Sub-system 2

Simulation Tool 2

Solver Tool 2

Sub-system 
1

.fmu
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FMI for Model Exchange Interface

• Interfaces to Simulation Tool
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Mathematical Description

• Hybrid ODEs supported by FMI are described as 

piecewise continuous-time systems

• Continuous and discrete states
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Events

• Event instant ti is defined by one of the following conditions,
1. External Events

• At least one discrete-time input changes its value.

• A continuous-time input has a discontinuous change.

• A tunable parameter changes its value.

2. Time Events

• A predefined time instant ti = (Tnext(ti-1), 0) that was defined at the 

previous event instant ti-1 by the FMU.

3. State Events

• When an event indicator zj(t) changes its domain from zj > 0 to zj ≤ 0 or 

from zj ≤ 0 to zj > 0.

4. Step Events

• At every completed step of 

an integrator.
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Handling of Algebraic Loops

• Dependency information is needed e.g which outputs 
depends directly on inputs.

• <ModelStructure> defined in the fmu.



2017-02-07 30

Handling of Algebraic Loops

• Iterative Newton method.

• In each iteration 𝑢4 is provided by the solver and the residue 

is computed and is provided back to the solver. Based on the 

residue a new value of 𝑢4 is provided. The iteration is 

terminated when the residue is close to zero.
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Model Exchange FMU Solution

In order to solve a FMI model we need to split its 

solution process into different phases,

• Initialization Mode
– Compute initial values of states at time t0.

• Continuous-time Mode
– Compute continuous-time variables between events.

– Discrete-time variables remains fixed.

• Event Mode
– Compute new values for continuous-time and discrete-time variables.
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Call Sequence State Machine
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FMI for Co-Simulation



2017-02-07 34

FMI for Co-Simulation
• Master/slave architecture

• Support of simple and sophisticated coupling 

algorithms:
– Iterative and straight forward algorithms

– Constant and variable communication step size

• Allows (higher order) interpolation of continuous 

inputs

• Support of local and distributed co-simulation 

scenarios

• FMI for Co-Simulation does not define:
– Co-simulation algorithms

– Communication technology for distributed scenarios
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FMI for Co-Simulation Coupling
• Its been designed both for coupling with 

subsystem models, which have been exported 

by their simulators together with its solvers as 

runnable code,

• And for coupling of simulation tools,
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FMI for Co-Simulation Distributed

• Distributed Co-Simulation Scenario
– Data exchange is handled by some network communication technology.

– Communication layer not part of the FMI standard.

– Master is responsible for the communication layer implementation.
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• Export: Subsystem description is exported from its simulation tool
– Preparation as FMU-archive containing

• model description (xml-file), describes also solver/tool capabilities

• reference to executable dll-file as, wrapper which provides a tool 

specific implementation of the co-simulation slave interface

FMI for Co-Simulation Export FMU 

with Solver

Sub-system 1

User Interface

Simulation Tool 1: Slave

Solver Tool 1
.fmu

Wrapper Tool 1

Solver
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FMI for Co-Simulation Import Stand-

alone

• Import: Subsystem description is imported into simulation system 

for system simulation
– Reading FMU-archive

• model information from xml-file

• connecting subsystem variables

User Interface

Sub-system 2

Simulation Tool 2: Master

Solver Tool 2

.fmu

Wrapper Tool 1

Solver



2017-02-07 39

• Run simulation on same host
– Master subsystem is connected with wrapper dll via co-simulation interface

– Subsystem 2 is called via wrapper of tool 2 as if it would have been directly 

imported into master simulation tool

FMI for Co-Simulation Tool coupling

Host 1

User Interface

Sub-system 1

Simulation Tool 1: Master

Solver Tool 1

Sub-system 
2

User Interface

Simulation Tool 2

Solver Tool 2

Wrapper Tool 2
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FMI for Co-Simulation distributed tool 

coupling
• Run simulation on different hosts

– Master subsystem is connected via a generic adapter with a communication 

tool

• Adapter provides co-simulation slave interface

– Communication tool uses wrapper dlls of slave tools

Host 2Host 1

User Interface

Sub-system 
1

Simulation Tool 1: Master

Solver Tool 1 Communication Layer Tool

Generic Master Adapter

Sub-
system 2

User Interface

Simulation Tool 2

Solver Tool 2

Wrapper Tool 2
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FMI for Co-Simulation Interface
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Mathematical Description

For co-simulation two basic groups of functions have 

to be realized:

1. functions for the data exchange between 

subsystems and

2. functions for algorithmic issues to synchronize the 

simulation of all subsystems and to proceed in 

communication steps tci → tci+1 from initial time  

tc0 := tstart to end time tcN := tstop.
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Common Master Algorithm

• Stops at each communication point of all slaves

• Collects the output from all slaves

• Evaluates the slaves inputs

• Distributes the inputs to the slaves and continue 

simulation with the next communication step with 

fixed communication step size

• Slave’s solver is used for integration

FMI for Co-Simulation is designed to support a very 

general class of master algorithms but it does not 

define the master algorithm itself.
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Sophisticated Master Algorithm

Capability flags,

• Variable communication step size

• Repeat a rejected communication step tci → tci+1

with reduced communication step size

• Provide derivatives w.r.t. time of outputs to allow 

interpolation

• Provides Jacobians.
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Co-Simulation FMU Solution

In order to solve a FMI co-simulation model we need 

to split its solution process into two phases,

• Initialization Mode
– Compute initial values of internal variables of the slave at time t0.

• Step Mode
– Compute the values of all (real) continuous-time variables at communication 

points.
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FMI for Co-Simulation
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FMI

OpenModelica Implementation 

and Applications
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• Full Model Exchange support (FMI 1.0 & FMI 2.0)

• Co-simulation Export (FMI 2.0)

• Co-Simulation Import (under development)

FMI in OpenModelica
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OpenModelica Compiler and Code 

Generators Including New SimCodeFMU

for FMI Export
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• OpenModelica scripting API
function translateModelFMU

input TypeName className "the class that should translated";

input String version = "2.0" "FMU version, 1.0 or 2.0.";

input String fmuType = "me" "FMU type, me (model exchange), cs (co-simulation), me_cs

(both model exchange and co-simulation)";

end translateModelFMU;

• Creates an FMU of the model

• Version parameter specifies the version of the 

FMU

• Type parameter specifies the type of the FMU

• Export FMUs for different platforms.

FMI Export in OpenModelica
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FMI Export in OpenModelica
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• OpenModelica scripting API
function importFMU

input String filename "the fmu file name";

input String workdir = "<default>" "The output directory for imported FMU files. 

<default> will put the files to current working directory.";

input Integer loglevel = 3 "loglevel_nothing=0; loglevel_fatal=1; loglevel_error=2; 

loglevel_warning=3; loglevel_info=4; loglevel_verbose=5; 

loglevel_debug=6";

input Boolean fullPath = false "When true the full output path is returned otherwise 

only the file name.";

input Boolean debugLogging = false "When true the FMU's debug output is printed.";

input Boolean generateInputConnectors = true "When true creates the input connector 

pins.";

input Boolean generateOutputConnectors = true "When true creates the output 

connector pins.";

output String generatedFileName "Returns the full path of the generated file.";

end importFMU;

• Imports the FMU

• Automatically detects the FMU version and 

generates a Modelica code to simulate the FMU 

model

FMI Import in OpenModelica
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Modelica Code of Imported FMU
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FMI Import Process in OpenModelica

FMU

OpenModelica 
Compiler

Code Generation

Modelica Code

• FMU Parsing.

• Validate the FMU according to 
specification.

• Check FMU version.

• Check FMU type.

• Collect variables information.

• Etc….

Simulation

Call to FMI interface via the 
Modelica external functions
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• ABB OPTIMAX® provides advanced model based 

control products for power generation and water 

utilities.

ABB OPTIMAX – OpenModelica 

Industrial Use Case
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• Model-based optimization of power plants using 

OpenModelica FMI 2.0.

• Plant models are formulated in Modelica and 

deployed through FMI 2.0

• Link : http://new.abb.com/power-generation/power-

plant-optimization

ABB OPTIMAX – OpenModelica 

Industrial Use Case

http://new.abb.com/power-generation/power-plant-optimization

