Transmission Line Modelling, TLM, for System Simulation

Petter Krus Linköping University

Some Industrial Partners and Applications

Aircaft Saab AB

Construction Machines Volvo CE

Rock drills Atlas Copco

Multi domain dynamic system simulation

- Oil hydraulics
- Gas, pneumatics
- Thermal
- Electrical power
- Mechanical
- Flight dynamics
- Control systems
- Propulsion

- Real systems tend to become very complex and multidisciplinary
- Many systems (e.g. hydraulics) are prone to be numerically stiffness, strong nonlinearites, and discontinuities.

Hopsan Development

- Software for system simulation. Hydraulic, mechanical, electrical, control systems, thermal, etc.
- Work on first Hopsan (in Fortran) began in late 1970s at Linköping University
- Used by industry and for research
- Development of new version called Hopsan NG (in C++) began in 2009
- Longest running simulation software with continous development *in the world* (?)
- Current version: Beta 0.7
- Open source that can be downloaded from http://www.iei.liu.se/flumes/systemsimulation/hopsanng

Hopsan NG

- Genuine team work at Flumes
- Freeware that can be downloaded from http://www.iei.liu.se/flumes/system-simulation/hopsanng

Bilateral Delay Lines or Transmission Line Modelling (TLM)

- D M Auslander, 'Distributed System Simulation with Bilateral Delay-Line Models' Journal of Basic Engineering, Trans. ASME p195-p200, June 1968.
- P. B. Johns and M.O'Brien. 'Use of the transmission line modelling (t.l.m) method to solve nonlinear lumped networks.' The Radio Electron and Engineer. 1980.
- P Krus, A Jansson, J-O Palmberg, K Weddfeldt. 'Distributed Simulation of Hydromechanical Systems'. Presented at 'Third Bath International Fluid Power Workshop', Bath, UK 1990.
- Burton, J. D., Edge, K. A., Burrows, C. R., 1993. Partitioned simulation of hydraulic systems using transmission-line modelling. In: ASME WAM, New Orleans, LA, USA. Publ by ASME, New York, NY, USA. (Using Transputer technology)

Linköping University

Linköpings universitet

The transmission line

$$\begin{array}{c}
\text{Can represent:} \\
\text{Electrical line, hydraulic line, pneumatic line, spring.} \\
\text{Both capacitance and inductance}
\end{array}$$

$$\begin{array}{c}
q_1 & Z_c, T & q_2 \\
\hline
p_1 & p_2 \\
p_1 & p_2 \\
p_1(t) = p_2(t-T) + Z_c \left(q_1(t) + q_2(t-T)\right) \\
p_2(t) = p_1(t-T) + Z_c \left(q_2(t) + q_1(t-T)\right)
\end{array}$$

Alternatively

$$p_{1}(t) = c_{1}(t) + Z_{c}q_{1}(t) \qquad c_{1}(t) = p_{2}(t-T) + Z_{c}q_{2}(t-T)$$
$$p_{2}(t) = c_{2}(t) + Z_{c}q_{2}(t) \qquad c_{2}(t) = p_{1}(t-T) + Z_{c}q_{1}(t-T)$$

Simulation of long transmission line

Pressure

Flows

The transmission line

Capacitance and inductance as a function of chacteristic impedance and delay time

$$C = \frac{T}{Z_c} \qquad Z_c = \sqrt{\frac{L}{C}}$$
$$L = Z_c T \qquad T = \sqrt{LC}$$

If time step and capacitance are known

$$Z_{c} = \frac{T}{C}$$
$$L_{p} = \frac{T^{2}}{C}$$
Parasitic inductance

If time step and inductance are known

Parasitic capacitance

Block Diagram

$$c_{1}(t) = p_{2}(t-T) + Z_{c}q_{2}(t-T)$$

$$c_{2}(t) = p_{1}(t-T) + Z_{c}q_{1}(t-T)$$

$$p_1(t) = c_1(t) + Z_c q_1(t)$$
$$p_2(t) = c_2(t) + Z_c q_2(t)$$

$$c_1(t) = c_2(t - T) + 2Z_c q_2(t - T)$$

$$c_2(t) = c_1(t - T) + 2Z_c q_1(t - T)$$

C-type component Q-type component Transmission line Delay h $2Z_c$ Σ Z_c -- Z_c Z_{c1} $2Z_c$ Delay h q(c,q)

Linköping University

Linköpings universitet

2017-02-10

Si d 11

Relations between p, q and ci, ,cr $c_r = p + Z_c q$ $Z_c q$ $(c_r = \frac{1}{\sqrt{Z_c}} p + \sqrt{Z_c} q)$ Laminar restrictor \boldsymbol{q}_1 $2Z_c$ Delay h C_2 C_{r1} *C*_{*i*2} Z_c р Z_c C_1 $2Z_c$ Delay h Σ q_2 ♦ **C**_{i1} *C*₁₂ $c_i = p - Z_c q$

The Transmission Line as a **General Integrator**

Linköpings universitet

Si

d 13

2017-02-10

Linköping University

Si d 14

Distributed Model Structure

Individual simulation setup

Ideal for using multi-core architectures

Enables interdisciplinary model development and simulation

Efficient for large systems

Relations between distributed and lumped parameter modelling

Example: Pump-motor system

Linköping University

Linköpings universitet

F(y,dy/dt) and y for the transmission

$$F(y, \dot{y}, u, t) = \begin{pmatrix} \dot{\theta}_{p} B_{p} + \frac{P_{a} - P_{b}}{D_{p}} - T_{p} \\ -\dot{\theta}_{p} D_{p} + q_{p1} \\ \dot{\theta}_{p} D_{p} + q_{p2} \\ \dot{p}_{1} - \frac{q_{m1} + q_{p1}}{C_{s1}} \\ \dot{p}_{2} - \frac{q_{m2} + q_{p2}}{C_{s2}} \\ -\dot{\theta}_{m} D_{m} + q_{m2} \\ -\dot{\theta}_{m} D_{m} + q_{m2} \\ -\dot{\theta}_{m} B_{m} + \frac{P_{a} - P_{b}}{D_{m}} - T_{m} \\ \ddot{\theta}_{m} + \frac{B_{m}}{J_{m}} \dot{\theta}_{m} - \frac{P_{a} - P_{b}}{J_{m} D_{m}} + \frac{T_{L}}{J_{m}} \end{pmatrix}$$

Differential algebraic equations

$$F(x, \dot{x}, u, t) = 0$$
$$F\left(y, \frac{dy}{d}, \frac{d^2y}{d}, \dots, \frac{d^2y}{d}, t\right) = 0$$

$$\left(\frac{dy}{dt},\frac{d^2y}{dt^2},\ldots,\frac{d^2y}{dt^2},t\right) = 0$$

$$\frac{d}{dt} = \frac{2\left(1 - q^{-1}\right)}{h\left(1 + q^{-1}\right)}$$
$$qy = y(t+h)$$

Bilinear transform (derived from the trapezoidal rule, second order Runge-Kutta)

q is the time displacement operator

Differential algebraic equations

$$F\left(y,\frac{dy}{dt},\frac{d^2y}{dt^2},\ldots,\frac{d^2y}{dt^2},t\right) = 0$$

can be transformed into:

$$G(y(t), y(t-h), \dots, y(t-nh), u(t), u(t-h), \dots, u(t-nh), t) = 0$$

G(y(t),t) = 0 Use Newton-Rapson

$$y_{k+1} = y_k(t) - J_k(t)^{-1}G(y_k(t))$$

$$J_{ijk} = \frac{\partial G_i(y_k(t))}{\partial y_j}$$

Compare: Differential algebraic equations with lumped parameters

G(y, t) = $DS[1, -h p_{a} + h p_{b} + D_{p} (h T_{p} + 2 B_{p} \theta_{p})] - h p_{a} + h p_{b} + h D_{p} T_{p} - 2 B_{p} D_{p} \theta_{p}$ $DS[1, hq_{pl} + 2D_p\theta_p] + hq_{pl} - 2D_p\theta_p$ $DS[1, hq_{p2} - 2D_p\theta_p] + hq_{p2} + 2D_p\theta_p$ $DS[1, -2C_{s1} p_a - h(q_{m1} + q_{p1})] + 2C_{s1} p_a - h(q_{m1} + q_{p1})$ $DS[1, -2C_{s2}p_b + h(q_{m2} + q_{p2})] + 2C_{s2}p_b + h(q_{m2} + q_{p2})$ $DS[1, hq_{m1} - 2D_m\theta_m] + hq_{m1} + 2D_m\theta_m$ $DS[1, hq_{m2} + 2D_m\theta_m] + hq_{m2} - 2D_m\theta_m$ $DS[1, -h p_a + h p_b + D_m (h T_m - 2 B_m \theta_m)] - h p_a + h p_b + h D_m T_m + 2 B_m D_m \theta_m$ $DS[1, 2(-h^2 p_a + h^2 p_b + D_m (h^2 T_L - 4 J_m \theta_m))] + DS[2, -h^2 p_a + h^2 p_b + D_m (h^2 T_L - 4 J_m \theta_m))]$ $2hB_m\theta_m + 4J_m\theta_m) - h^2p_a + h^2p_b + h^2D_mT_L + 2hB_mD_m\theta_m + 4D_mJ_m\theta_m$

Jacobian of the lumped time discrete algebraic system

Time discrete algebraic system with distributed parameters

$$G(y, t) = \begin{pmatrix} \mathrm{DS}[1, -hp_a + hp_b + D_p(hT_p + 2B_p\theta_p)] - hp_a + hp_b + hD_pT_p - 2B_pD_p\theta_p \\ \mathrm{DS}[1, hq_{p1} + 2D_p\theta_p] + hq_{p1} - 2D_p\theta_p \\ \mathrm{DS}[1, hq_{p2} - 2D_p\theta_p] + hq_{p2} + 2D_p\theta_p \\ -\mathrm{DS}[1, p_{a2}] + p_{a1} + (\mathrm{DS}[1, q_{m1}] - q_{p1})Z_c \\ -\mathrm{DS}[1, p_{b2}] + p_{b1} + (\mathrm{DS}[1, q_{m2}] - q_{p2})Z_c \\ -\mathrm{DS}[1, p_{b1}] + p_{a2} + (\mathrm{DS}[1, q_{p1}] - q_{m1})Z_c \\ -\mathrm{DS}[1, hq_{m1} - 2D_m\theta_m] + hq_{m1} + 2D_m\theta_m \\ \mathrm{DS}[1, hq_{m2} + 2D_m\theta_m] + hq_{m2} - 2D_m\theta_m \\ \mathrm{DS}[1, hq_{m2} + 2D_m\theta_m] - hp_a + hp_b + hD_mT_m + 2B_mD_m\theta_m \\ \mathrm{DS}[1, 2(-h^2p_a + h^2p_b + D_m(h^2T_L - 4J_m\theta_m)]] - hS}[2, -h^2p_a + h^2p_b + D_m(h^2T_L - 2hB_m\theta_m + 4J_m\theta_m)] - h^2p_a + h^2p_b + h^2D_mT_L + 2hB_mD_m\theta_m + 4D_mJ_m\theta_m \end{pmatrix}$$

Jacobian of the distributed time discrete algebraic system

Laminar restrictor with transmission line boundaries

Blockdiagram of laminar restrictor

Blockdiagram of pressure source

Blockdiagram of orifice connected to a line and a pressure source

Q-type component

Blockdiagram of orifice connected to a line and a pressure source (lumped parameters)

Example

Linköping University

Linköpings universitet 2017-02-10

Example

Example

Pressure with times step h=0.001, 0.01, 0.1 [s]

Bode diagram of TLM element with blocked end at 2 and the trapezoidal rule

Filtering of wave variable to supress high frequency oscillations

$$p_{1}(t) = c_{1}(t) + Z_{c}q_{1}(t)$$
$$p_{2}(t) = c_{2}(t) + Z_{c}q_{2}(t)$$

$$c_{1}(t) = p_{2}(t-T) + Z_{c}q_{2}(t-T)$$

$$c_{2}(t) = p_{1}(t-T) + Z_{c}q_{1}(t-T)$$

$$p_{1}(t) = c_{f1}(t) + Z_{c}q_{1}(t)$$
$$p_{2}(t) = c_{f2}(t) + Z_{c}q_{2}(t)$$

$$c_{f1}(t) = \alpha c_{f1}(t - T) + (1 - \alpha)c_1(t)$$

$$c_{f2}(t) = \alpha c_{f2}(t - T) + (1 - \alpha)c_2(t)$$

$$\alpha \approx [0.05, 0.5]$$

Mass with transmission line boundaries Solved for f1 and f2 т $\dot{v}_2 = \frac{c_{x1} - c_{x2}}{m} - (b + Z_{c1} + Z_{c2})v_2$ $\dot{v}_2 = \frac{f_1 - f_2}{m} - b\dot{v}_2$ f_2 т v_2 $v_1 = -v_2$ $\dot{x}_2 = v_2$ $v_2 = -v_2$ $x_2 = \frac{v_2}{2}$ $x_1 = -x_2$ $x_1 = -x_2$ From transmission line $f_{1} = c_{x1} + Z_{cx}v_{1}$ $f_{2} = c_{x2} + Z_{cx}v_{2}$ $f_1 = c_{r1} + Z_{cr} v_1$ $f_2 = c_{x2} + Z_{cx}v_2$ versity

Mass with transmission line boundaries Can be solved $s \rightarrow \frac{2}{h} \frac{1 - q^{-1}}{1 + q^{-1}}$ using biliear

transform

Solved for F1 and F2 $=\frac{C_{x1} - C_{x2}}{ms + b + Z_{c1} + Z_{c2}}$ $V_2 = \frac{F_1 - F_2}{ms + b}$ f_2 v_2 $V_{1} = -V_{2}$ $V_1 = -V_2$ $X_2 = \frac{V_2}{V_2}$ $X_{2} = \frac{V_{2}}{V_{2}}$ S $X_{1} = -X_{2}$ $X_{1} = -X_{2}$ From transmission line $F_1 = C_{x1} + Z_{cx}V_1$ $F_1 = C_{x1} + Z_{cx}V_1$ $F_{2} = C_{r2} + Z_{cr}V_{2}$ $F_2 = C_{x2} + Z_{cx}V_2$

Mass Spring System

Position with times step h=0.001, 0.1, 1 [s]

Linköpings universitet

www.liu.se