
PAPYRUS TOOL SUPPORT FOR FMI
TUTORIAL

MODPROD 2016

Linköping, Sweden, February 7-8, 2017

ITEA European project

Sahar GUERMAZI, Sébastien REVOL, Arnaud CUCCURU, Saadia 

DHOUIB, Jérémie TATIBOUET, Sébastien GERARD

CEA LIST / DILS / LISE



CEA key figures

Direction of CEA

T
e
c
h

n
o

lo
g

y
 

S
c

ie
n

c
e

Defense

Security

Military

Applications 

Division

Nuclear

Energy

Nuclear Energy

Division

Key Enabling

Technologies

CEA-Tech

Fundamental research

Physical Sciences Division

Life Sciences Division

CEA is a major actor in research and innovation.

 16 000 people
 16 centers in France

 Budget : 4,3€ bilions

 1 600 patents

 4 000 publications / year
 150 startup created since 1984

http://www-aladen.cea.fr/Images/astImg/464_2.jpg
http://www-aladen.cea.fr/Images/astImg/464_2.jpg


~50 persons

30 permanent members + 17 non-permanent members including PhD 
students, post-docs … (2015)

The LISE labs in a nutshell

Correct-by-construction design of safe CPS

Modeling Language Engineering

Model-based Formal Analysis (e.g., auto gen. of tests)

Run-time Formal Verification and Monitoring

Model-based Simulation

Model-based Security & Safety Engineering

Archi. Exploration, Configuration & Deployment

Process, Requirement and Variant Engineering

Main 

research 

concerns





• Synergy of two complementary standards for Complex system modeling and 

simulation

• FMI (Functional Mockup Interface) 

• Emerging standard for co-simulation

• Enables multiple compliant modeling and simulation tools to interoperate 

• Particularly interesting for designing CPS (Cyber Physical Systems) 

• UML in the FMI eco-system 

• UML (and its variants) can be used to design parts of CPS 

• E.g., the high-level control logic of an embedded software

• Would be nice to have the possibility to assess the relevance of the UML-based parts with respect 

to their (simulated) environment

• Scenario exploration, early error detections.

• Papyrus now provides FMI tool support

• Based on Moka, the Papyrus module for model execution

• Early results, still in incubation phase

FMI FOR PAPYRUS / PAPYRUS FOR FMI



OVERVIEW OF PAPYRUS TOOL SUPPORT FOR FMI

Moka

Moka FMU

import

export

FMU (model + 
solver) 

exported from

Composite 
structures 
assembly

Master algorithm

Simulation 
outputs. Can be 
opened in new 

XY diagram kind 
provided by 

Papyrus

…



• Papyrus MOKA overview

• Short Reminder on FMI/FMU

• Papyrus as FMI  co-simulation Master :
• FMU modelling in Papyrus

• Import of a simple FMU in Papyrus

• Run a simple simulation

• Visualize results

• Papyrus as FMU provider :
• Reminder on OMG standards for Executable Modeling

• Study and debug a simple UML-based FMU model 

• Export FMU

• Analysis of generated FMU

• Integration :
• Integration and co-simulation of the newly exported FMU 

• Perspectives

TUTORIAL OUTLINE



• Papyrus is based on Eclipse
• Most common platforms are supported (Windows/Linux/Mac…)

• Requires JAVA 8

• Papyrus for FMI cosimulation

• JAVA imposes restrictions on 32bits/64bits  DLL loading 

• DLL should have the same architecture as the running JVM

•  64 bits JVM can only load 64 bits FMUs (and 64 bits eclipse distributions)

• Running mix of 32 bits/64 bits FMUs is not possible

• But running 32 bits FMUs on a 64 bits machine is possible

 Install 32 bits JVM and Eclipse/Papyrus distribution

• Papyrus as FMU provider :
• Generated FMUs can run on Linux 32/64 bits and Windows 64 bits

• Other architectures may be supported on-demand

• Generated FMUs may requires a JVM on the running machine

• For this tutorial

• We only provide a Windows 64 bits Papyrus distribution and FMU example

SYSTEM REQUIREMENTS



• Papyrus.zip : papyrus distribution to unzip on your machine
• Includes pre-installed MOKA FMI plugins

• Run Papyrus.exe after unzip

• Select a workspace where your projects will be saved

• TutorialProjects.zip : zipped projects
• No need to unzip

• In eclipse : File Import … Existing project … select archive

TUTORIAL SETUP



PART I

–

OVERVIEW OF MOKA, THE PAPYRUS 

MODULE FOR MODEL EXECUTION



• Papyrus module for model execution

• Help designers to understand/orient their design choices

• Basis for a straightforward, simulation-driven design process:

• (Model / Execute / Observe / Refine)+

• Front-end for integration of simulation tools and techniques

• Model Debugging capabilities

• Control (start/stop, suspend/resume, breakpoints)

• Observation (diagram animation, variables, threads)

• Complies with standard OMG semantics of UML

• Implements the fUML and PSCS execution models (PSSM coming)

• Experimental tool support for Alf, the standard textual notation of fUML

• Flexible/extendible

• New execution engines can be plugged (to support multiple semantics and UML 

profiles)

• Extension points to inject control/execution model libraries (to trigger the execution 

of external functions and procedures directly from a UML model)

MOKA: OVERVIEW



• Controlling and Observing executions

CONNECTION WITH THE ECLIPSE DEBUG FRAMEWORK



• Multiple execution engines can be registered

CONNECTION WITH THE ECLIPSE DEBUG FRAMEWORK



• Papyrus plug-in for model execution

• Help designers to understand/orient their design choices

• Basis for a straightforward, simulation-driven design process:

• (Model / Execute / Observe / Refine)+

• Front-end for integration of simulation tools and techniques

• Model Debugging capabilities

• Control (start/stop, suspend/resume, breakpoints)

• Observation (diagram animation, variables, threads)

• Complies with standard OMG semantics of UML

• Implements the fUML and PSCS execution models (PSSM coming)

• (Tool support for Alf, the standard textual notation of fUML)

• Flexible/extendible

• New execution engines can be plugged (to support multiple semantics and UML profiles)

• Extension points to inject control/execution model libraries (to trigger the execution of external functions and 

procedures directly from a UML model)

• NEW : Support for FMI Co-Simulation standard

• Export of FMUs from executable UML models

• Ability to import and assemble FMUs, co-simulate them with the built-in Moka master, and visualize 

simulation traces on XY charts.

MOKA: OVERVIEW



Allows to export each executable model as a standalone unit (FMU)

• An FMU has to implement a standard binary interface as a shared library ( dll/.so)

• Set Inputs

• Get outputs

• Do Step (stepSize)

The simulation Master synchronizes and orchestrates the FMUs

FUNCTIONAL MOCK-UP INTERFACE (FMI)

Co-simulation Environment

Master Algorithm

Model

Solver
FMU

Model

Solver
FMU

tc1

tcn=tstop

tc0=tstart tc2 tci tci+1

Communication 

points

hc1 hci

- get outputs Y(tci)

- set inputs U(tci)

- doStep hci (tci -> tci+1)

- advance time to tci+1

Step sizes



PART II

–

PAPYRUS AS FMI CO-SIMULATION 

MASTER



FMU loading/saving integrated in Eclipse Modeling Framework

• FMUs are considered as « Models » 

• Automatically unzip/zip FMU archive

• FMUs can be used as inputs or outputs of model transformation techniques

FMU MODELING IN ECLIPSE/PAPYRUS



FMUs can be edited with default Ecore Reflective editor

EXERCISE 1: OPEN AN FMU IN ECLIPSE



EXERCISE 1: OPEN AN FMU IN ECLIPSE

complete

modelDescription.xml 

editor

Additionnal files are 

listed



EXERCISE 1: ADD AN ARCHIVE IN RESOURCE

FOLDER OF FMU…



EXERCISE 1: ADD AN ARCHIVE IN RESOURCE

FOLDER OF FMU…



Result after saving : open the FMU file as an Archive (out of eclipse)

-a new folder named « test » is created inside FMU resource folder

- It contains the contents of the archive

EXERCISE 1: ADD AN ARCHIVE IN RESOURCE

FOLDER OF FMU…



• Papyrus first class citizen are UML model elements
• We must provide a mechanism to represent FMUs as UML model elements

• This is the purpose of the FMI profile

• A profile allows to extend standard UML concepts with domain 

specific attributes

• FMI profile : 
• Adds to UML elements FMI  specific concepts

• Not a full one to one translation : only useful concepts for UML display/handling 

• Includes a direct link to in-memory original FMU model

• FMU import in Papyrus 
• model transformation from FMU metamodel to UML + FMI profile

• FMU generation 

• model transformation from UML + FMI profile to FMU metamodel

• generation according Moka computation mechanism

• Ex : only discrete variables

REPRESENTING FMU IN UML: THE FMI PROFILE



FMI PROFILE OVERVIEW

• FMUs are represented as a special kind of Class



FMI PROFILE OVERVIEW

• Scalar Variables are represented as a special kind of 

Class attributes



THE FMI MASTER FUNCTIONNALITY

• Key features:

• Ability to import FMUs from FMI 2.0 compliant tools

• Definition of the co-simulation graphs (i.e., assembly of FMUs + 
configuration of simulation runs)

• Master algorithm specified by an executable UML model, along with a 
dedicated model library

• Fixed step size, no usage of rollbacks, but we have some plans to go further…

• Visualization of co-simulation results with XY charts



Create a new Papyrus project

EXERCISE 2 : PAPYRUS FMU IMPORT



Select UML -> next -> name the poject and the model 

file

EXERCISE 2 : PAPYRUS FMU IMPORT



EXERCISE 2 : PAPYRUS FMU IMPORT

Select FMI simulator  model 

template and finish

predefined « ready to run » 

Simulator model



EXERCISE 2 : PAPYRUS FMU IMPORT

Open Simulator architecure diagram



EXERCISE 2 : PAPYRUS FMU IMPORT

Empty composite 

structure diagram

CS_Graph stereotype

allows to configure 

simulator settings

Exercise: set 

simulation step to 

0.01



EXERCISE 2 : PAPYRUS FMU IMPORT

From model explorer root : right click, Moka, FMI, 

Import FMU for co-simulation



Model Library is useful to group several FMUs

Select generator.fmu from

workspace/PapyrusFMITutorial/input

EXERCISE 2 : PAPYRUS FMU IMPORT



We obtain a new Class named « generator » with an 

ouput port called « Out1 »

EXERCISE 2 : PAPYRUS FMU IMPORT



Drag and drop the class into the diagram, and select 

FMU-specific Papyrus drop strategy

We get a new FMU instance

EXERCISE 2 : PAPYRUS FMU IMPORT



EXERCISE 2 : PAPYRUS FMU IMPORT

Create a new  Moka Run configuration



If everything is ok….

A new simulation trace appears in project explorer 

(after refresh, press F5)

EXERCISE 2 : PAPYRUS FMU IMPORT



Import CSV into Papyrus Model

A new « DataSource » appears in model explorer

EXERCISE 2 : PAPYRUS FMU IMPORT



Create a new graph from the data source

Select the traces to display

EXERCISE 2 : PAPYRUS FMU IMPORT



XY graphes are new kinds of Papyrus Diagrams

EXERCISE 2 : PAPYRUS FMU IMPORT



PART III

–

PAPYRUS AS FMU DESIGNER



EXECUTABLE UML OMG SPECIFICATIONS

UML

fUML

Execution

Model

Syntax Semantics

Semantic

mapping

fUML

Alf (Action Language for fUML):

- Textual surface notation for the fUML subset

PSSM

PSCS

PSSM

Execution

Model

PSCS

Execution

Model



Structure

Behavior

1. Class diagram (~ BDD)

2. Composite structure diagram (~ IBD)

3. Activity diagrams

Instantiation of 

an active class 

implies starting 

of its behavior

Instantiation of a 

composite structure 

implies instantiation of 

its constituents

AcceptEventActions

enable to specify 

reactive behaviors

SendSignalAction enable to 

specify asynchronous 

communications, which will flow 

through ports and connectors

Event dispatching occurs at Run 

To Completion (RTC) steps

KEY SEMANTIC ASPECTS



MODELING AND SIMULATION OF REACTIVE ASPECTS

THE FMU EXPORT FUNCTIONNALITY

Introduced Change 

Event and Time Event 

as fUML extensions

An FMU is an fUML Active Object 

with a classifier behavior

described with and Activity 

diagram

(state-machine support on-going)



EXERCISE 3 : : PAPYRUS FMU DESIGN

Open PapyrusFMITutorial/input/SimpleFMU UML model

FMU structure can be

described in a 

Composite Structure 

diagram



EXERCISE 3 : : PAPYRUS FMU DESIGN

• FMU Class key aspects :

• Should be an active class

• Should be stereotyped with FMIProfile::CS_FMU stereotype

• No need to feel stereotypes attributes, they will be filled by Moka at export time

• Can own several behaviors 

• Only one should be referenced as Classifier behavior

• Other behaviors can be called from the Classifier behavior



EXERCISE 3 : : PAPYRUS FMU DESIGN

• FMU Port key aspects 

• Should be stereotyped with FMIProfile::Port stereotype

• direction (in/out) and valueReference (unique ID) should be specified

• Other attributes will be generated at FMU export 

• Ports should have a type

• Only UML standard primitive types (Integer, Boolean, String, Real)

• Ports should have a default value

• Only UML primitive types values (LiteralInteger, LiteralBoolean, LiteralString, LiteralReal)

• Multplicity must be set to 1



EXERCISE 3 : : PAPYRUS FMU DESIGN

• Simple FMU behavior

• Unfinite loop

• Waiting on input changes

• And comparing the input versus 0

• Write true on output if input greater or equals to 0

AcceptEvent Action

Triggered by a 

ChangeEvent

CallBehaviorAction

ReadSelfAction

ReadStructural

FeatureAction

ValueSpecification

Action

CallBehaviorAction

(to fUML standard library)

AddStructuralFeature

ValueAction



EXERCISE 3 : : PAPYRUS FMU DESIGN

• Switch to Moka Debug Perspective



EXERCISE 3 : PAPYRUS FMU EXPORT

• Create new Moka run configuration

Select the FMU Class (not 

the activity!)

Select the FMU debug

engine



EXERCISE 3 : PAPYRUS FMU DESIGN

• FMU controller allows to :

• Change inputs

• Configure size and run FMI steps



PART IV 

–

FMU GENERATION



THE FMU EXPORT FUNCTIONNALITY

• Architecture of exported FMUs

• No code generation

• Only the modelDescription.xml is generated

• The generated FMU includes the UML model a minimal Moka interpreter

• And a generic DLL implementing the FMI interface and interacting with Moka



EXERCISE 4 : PAPYRUS FMU GENERATION

• From the FMU Class : right click, Moka, FMI, Export FMU for co-simulation



EXERCISE 4 : PAPYRUS FMU GENERATION

• Provide an FMU name (FMI model identifier)

• Select the target directory

• Select the target platform 

• Currently only win64, Linux32 and Linux64 are supported

• Other platforms can be supported on demand

• Optionally : a JRE can be embedded in the FMU

• Can be a minimal JRE (example Linux Embedded )

• Useful if target platform doesn’t have a JRE installed



EXERCISE 4 : PAPYRUS FMU GENERATION

• FMU structure and

modelDescription.xml



EXERCISE 4 : PAPYRUS FMU GENERATION

• Import generated FMU in first co-simulation model (cf exercise 2)

• Connect generator output to SimpleFMU input 



EXERCISE 4 : PAPYRUS FMU GENERATION

• Re-run simulation 

• Re-import new CSV



REMAINING WORK

• On Master Side :

• FMU parameters configuration (almost there!)

• Simulation debug (breakpoints at time, at port value, step by step simulation, runtime values 

visualization…)

• Delegation to external master (Cosim or Model exchange)

• Improve logging interface (select values to be logged, direct graph generation without CSV import)

• .mat file simulation trace support 

• On Slave Side :

• State machine support (almost there!)

• Rollback support

• Performance improvement 

• New target platform support

• Part of these features will be developed in OpenCPS ITEA project



GETTING STARTED WITH MOKA:

HTTPS://WIKI.ECLIPSE.ORG/PAPYRUS/

USERGUIDE/MODELEXECUTION

VIDEO TUTORIALS : 

HTTPS://WWW.YOUTUBE.COM/CHANN

EL/UCXYPOBLZC_RKLS7_K2DTWYA

Acknowledgments to 

the LISE team for 

their direct and 

indirect contributions 

to this presentation.

https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://www.youtube.com/channel/UCxyPoBlZc_rKLS7_K2dtwYA

