
Feature-oriented automation programming with Bloqqi

NIKLAS FORS, GÖREL HEDIN, LUND UNIVERSITY, MODPROD, 2017-02-07

Bloqqi: data-flow programming
for control systems

diagramtype Tank(setLevel: Int, tolerance: Int
=> level: Int, withinRange: Bool) {

upperValve: Valve;
lowerValve: Valve;
levelSensor: Sensor;
...
connect(setLevel, Sub_1.in1);
connect(levelSensor.out, Sub_1.in2);
connect(levelSensor.out, level);
...

}

Visual view

Textual view

Real world

Control system

1. Read
liquid
level

3. Open/
close
valves

2. Compute control signal

Runs in

Actuators
Sensor

Bloqqi program

Problem

Diagram variant: a combination of features (on a base diagram)

Example optional features:
• For Tank: heating, agitation, etc.
• For Proportional controller: derivative part, integral part, etc.

How to handle variants?
• With modular libraries
• Easy programming for automation engineer

Alternative solutions

Alternative solutions
• Copy-paste

– Problem: code duplication
• Template

– Problem: not extensible and complex diagrams

Our solution:
• Bloqqi

Template: Diagram with all anticipated features that are turned
on/off using parameters

The Bloqqi language

Some inspiration from Modelica
• Inheritance (and redeclare)
• Both textual and visual syntax

New language constructs for variants
• Connection interception
• Wirings
• Recommendations

Specialize diagram

Describe features

Inheritance and Connection Interception
A

B extends A

Inherited Local
C extends B

Connection
interception

diagramtype A {
s1: S;

}

diagramtype C extends B {
s3: S;
intercept s2.in with s3.in,s3.out;

}

diagramtype B extends A {
s2: S;
connect(s1.out, s2.in);

}

Visual syntax:

Example: Proportional controller

Input
parameter

Output
parameter

Block
(defined by other diagram)

Data-flow connection

Port

P (base diagram)
Reference value

Measured value

Proportional
constant

Control
value

4 controller variants

P + integralP + derivative

P + derivative + integral

Corresponds to
feature model

P (base diagram)

We want:
wizard that automatically wires features

Feature wizard for P

Automatic wiring of features

How can we compute feature wizard from library code?

P + derivative + integral

Recommendations – simple example
Base diagram A with mandatory features

diagramtype A {
s1: S;
s2: S;
connect(s1.out, s2.in);

}

recommendation A {
f: F[s2.in];

}

A has an optional feature f,
that is inserted before s2

Recommendations – optional features

Feature
name

Feature
type
(another
diagram)

How the wiring is done

Recommendations – simple example
Base diagram A with mandatory features

diagramtype A {
s1: S;
s2: S;
connect(s1.out, s2.in);

}

recommendation A {
f: F[s2.in];

}

A has an optional feature f,
that is inserted before s2

Recommendations – optional features

Computed feature wizard for A

f is before s2

Wirings
Base diagram A with mandatory features

diagramtype A {
s1: S;
s2: S;
connect(s1.out, s2.in);

}

recommendation A {
f: F[s2.in];

}

f: F;
intercept s2.in with f.in, f.out;

Recommendations – optional features

diagramtype F(in: Int => out: Int) {
...

}
wiring F[=>v: Int] {

intercept v with F.in, F.out;
}

Wiring – how features are connected

What does this mean? Interpreted as

P example again
P (base diagram)

recommendation P {
derivative: DPart[e.out, kD: Int, u];
integral: IPart[e.out, kI: Int, u];

}

Results in the features for P

Both will intercept u

P example again
If we select both derivative and integral then we get:

recommendation P {
derivative before integral;

}

Answer: the order is defined by a before statement

Why???

A larger example: Control Loop

Two controllers!

Subclasses->
alternatives!

Demo

Experimentation with AC 800M and Modelica

0.0

0.5

1.0

1.5

0 50 100 150 200
Time (s)

Le
ve

l (
m

)

Running Bloqqi on controller hardware
(ABB AC800M)

Running Bloqqi with simulated models
(Modelica models exported using FMI)

Conclusion
• New language constructs

– Connection interception,
recommendations and wirings

– Feature wizards computed based
on modular library specification

• Future work
– Combine with state-based languages

Features modularly defined

Computed from library

Read more

• Bloqqi: modular feature-based block diagram programming
@ Onward 2016
By Niklas Fors, Görel Hedin

• The Design and Implementation of Bloqqi –
A Feature-Based Diagram Programming Language
PhD thesis, 2016
By Niklas Fors

• See bloqqi.org for pdf files

