

www.cea.fr

COUPLING EXECUTABLE UML MODELS WITH FMI

MODPROD 2017 Linköping, Sweden, February 7-8, 2017

Sahar GUERMAZI, <u>Sébastien REVOL</u>, Arnaud CUCCURU, Saadia DHOUIB, Jérémie TATIBOUET, Sébastien GERARD CEA LIST / DILS / LISE

FMI FOR PAPYRUS / PAPYRUS FOR FMI

Synergy of two complementary standards for Complex system modeling and simulation

• FMI (Functional Mockup Interface)

- Emerging standard for co-simulation
- Enables multiple compliant modeling and simulation tools to interoperate
- Particularly interesting for designing CPS (Cyber Physical Systems)

• UML in the FMI eco-system

- UML (and its variants) can be used to design parts of CPS
 - E.g., the high-level control logic of an embedded software
- Would be nice to have the possibility to assess the relevance of the UML-based parts with respect to their (simulated) environment
 - Scenario exploration, early error detections.

• Papyrus now provides FMI tool support

Based on Moka, the Papyrus module for model execution

Papyrus is the official open-source Eclipse UML2 modeling tool: www.eclipse.org/papyrus

- Papyrus provides a complete graphical editor for both UML and SysML standards based on the MDT::UML2 component for its repository.
- Papyrus addresses the two key features expected from a UML2 graphical editor: modeling and profiling.
- Papyrus is highly customizable and extensible enabling DSML definitions based on standard UML profiles!
 - Papyrus provides a support to MARTE 1.1 (including a rich text editor for VSL).

MOKA: OVERVIEW

Papyrus module for model execution

- Help designers to understand/orient their design choices
- Basis for a straightforward, simulation-driven design process:
 - (Model / Execute / Observe / Refine)+
- Front-end for integration of simulation tools and techniques
- Model Debugging capabilities
 - Control (start/stop, suspend/resume, breakpoints)
 - Observation (diagram animation, variables, threads)
- Complies with standard OMG semantics of UML
 - Implements the fUML execution model (State Machine extension coming)
 - Tool support for Alf, the standard textual notation of fUML
- Flexible/extendible
 - New execution engines can be plugged (to support multiple semantics and UML profiles)
 - Extension points to inject control/execution model libraries (to trigger the execution of external functions and procedures directly from a UML model)

Cea

DE LA RECHERCHE À L'INDUSTRI

Cea

FUML IN A NUTSHELL

KEY SEMANTIC QUESTION FOR FMI SUPPORT

What is the meaning of an FMI co-simulation step in fUML?

Allows to export each executable model as a standalone unit (FMU)

- An FMU has to implement a standard binary interface as a shared library (dll/.so)
 - · Set Inputs
 - · Get outputs
 - · Do Step (stepSize)

The simulation Master synchronizes and orchestrates the FMUs

•

• **Proposal one : an FMU is a finished activity**

- Replayed at each simulation step
- Drawback : can't preserve internal states between simulation steps
- → Need to be able to suspend the behavior between two co-simulation steps!

FUML EXTENSIONS FOR FMI

• In fUML : only one kind of wait

- On signal event
- Should be sent by another active object

Our proposal : add to fUML two new ways to suspend/resume behaviors

- Wait for delays (Time Event)
- Wait for FMU input changes (Change Event)

• Time is managed by a central Discrete Event scheduler

With its own event pool

• An FMI to UML interface generates events at each simulation steps

- A StepEnd event @(currentTime + stepSize)
- Change events for any new FMU input value

list

Valve = false

list

DE Scheduler Current time = 0.1 Current event = NONE **Scheduler Events** Time stamp Time Event 0.5

Valve = false

list

DE Scheduler Current time = 0.4 Current event = NONE Scheduler Events Time Event 0.5

Scheduler Events	Time stamp
Time Event	0.5

Valve = false

list

FMI Master

li/t

self

2

result

result

target

threshold

callCompare

result

setY

object

value

result

2

target

threshold

callCompare

result

setY

value

⇒

result

self

result

result

2

target

threshold

callCompare

result

DE Scheduler

Current time = 0.0

Current event = NONE

Scheduler Events	Time stamp

setY

⇒

result

object

value

list

list

self

2

result

result

target

threshold

callCompare

result

setY

⇒

result

object

value

2

result

target

threshold

callCompare

result

⇒

result

value

list

self

2

result

result

target

threshold

callCompare

result

setY

⇒

result

object

value

li/t

2

result

callCompare

threshold

result

⇒

result

list

self

2

result

result

target

threshold

Я

callCompare

result

DE Scheduler Current time = 0.5 Current event = Time event **Scheduler Events** Time stamp Step end 0.5

$$X = 4$$

Y = false

setY

value

⇒

result

list

X = 4 Y = **True**

doStep (0.1)

result

threshold

⇒

result

self

2

result

result

target

threshold

callCompare

result

setY

⇒

result

object

value

FMI Master

X = 4Y = True

X = 4 Y = True

$$X = 4$$

 $Y = True$

list

RESULTING SIMULATION TRACE

Values observed by the master

• FMI is not fully satisfying for Discrete Event simulations

- With a 0,4 step size, an event that occurs at T=0,5 will only be visible by other FMUs at T=0,8
 - Even worse : an other opposite event can occur at T=0,6 ...

Should we reject the step and ask for a smaller one?

- Requires rollback support
- Potentially : 0-time simulation steps : other FMUs would be stuck

• Try to group all the Discrete Event (UML) control in a single FMU

- Inside the FMU, during a simulation step, rely on well defined DE execution model
- Implies to generate FMU from a fUML hierarchical model

• Need for FMI standard API evolutions

• On-going works :

J. P. Tavella *et al.*, "Toward an accurate and fast hybrid multi-simulation with the FMI-CS standard," *2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)*, Berlin, 2016, pp. 1-5.

- Specific Discrete FMUs implementing a new hybridDoStep
- Presented to FMI standard consortium

THANK YOU

Acknowledgments to the LISE team for their direct and indirect contributions to this presentation.

GETTING STARTED WITH MOKA: <u>HTTPS://WIKI.ECLIPSE.ORG/PAPYRUS/</u> <u>USERGUIDE/MODELEXECUTION</u>

VIDEO TUTORIALS : <u>HTTPS://WWW.YOUTUBE.COM/CHANN</u> <u>EL/UCXYPOBLZC_RKLS7_K2DTWYA</u>

- Textual surface notation for the fUML subset

