
MODPROD 2017, Linköping

February 8, 2017

Daniel Bouskela, EDF, France

daniel.bouskela@edf.fr

Peter Fritzson, LIU, Sweden

peter.fritzson@liu.se

Lena Buffoni, LIU, Sweden

lena.buffoni@liu.se

The Need for Comprehensive Whole-life-cycle

Systems Engineering Tool Support for Cyber-

Physical Systems

mailto:daniel.bouskela@edf.fr
mailto:peter.fritzson@liu.se
mailto:plena.buffoni@liu.se

2

Industrial Challenges for Complex Cyber-Physical

System Products of both Software and Hardware

• Increased Software Fraction

• Shorter Time-to-Market

• Higher demands on effective

strategic decision making

• Increased number of stakeholders increased uncertainties on

the system and difficulties in reaching a common agreement

• Cyber-Physical (CPS) – Cyber

(software) Physical (hardware)

products

3

Need for Comprehensive Approach to Systems Engineering

of Whole Cyber-Physical Systems Products

Product

models

Requirements

models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business

Process

Control

Requirements

Capture

Model-Driven

Design

(PIM)

Compilation

& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform

models

Process

models

Product

models

Requirements

models

Unified Modeling: Meta-modeling& Modelica& UML

Business

Process

Control

Requirements

Capture
Model

-
Driven

Design

Compilation

& Code Gen

System

Simulation

Software &

System Product
Platform

models
Process

models

Specification

Design

Design
Refinement

Component verification

Subsystem level integration and

verification

Subsystem level integration test

calibration and verification

Product verification and

deployment

Maintenance

Realization

Detailed feature design and

implementation

Architectural design and

system functional design

Preliminary feature design

System

requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

4

Overview of this Talk

• Need of whole product systems engineering

• Taking into account the assumptions about the

environment of the system

• Industrie 4.0 background

• Requirement engineering, debugging and verification

• Integrating requirement engineering into CPS systems

engineering

• The whole picture – what is needed for

comprehensive systems engineering

5

Industrie 4.0 – The Fourth Industrial Revolution
(also called digitalization)

Industrial revolutions and future view

Industry 4.0 is the current trend of automation and data exchange in manufacturing technologies. It includes

https://en.wikipedia.org/wiki/File:Industry_4.0.png
https://en.wikipedia.org/wiki/Automation
https://en.wikipedia.org/wiki/File:Industry_4.0.png
https://en.wikipedia.org/wiki/File:Industry_4.0.png

6

Industrie 4.0 Reference Architecture

• Provides a global picture of the engineering needs in terms of MBSE. Only a tiny

fraction is achieved today.

• Missing in particular:

1. Bridging physical (asset) layer (e.g., Modelica) to the functional layer (e.g., SysML)

(OPENCPS)

2. Modelling, debugging, verifying requirements upstream detailed design (Need for

new requirement modeling language?)

3. Modelling and simulation, large systems with mode switching (follow-up of MODRIO)

1

2

3

7

Industrie 4.0 Design Principles

• Interoperability – ability of machines, devices, sensors, and people to

communicate with each other via the Internet of Things

• Information transparency – ability of information systems to create a

virtual model of the physical world e.g. by enriching digital plant models

with sensor data

• Technical assistance – ability of assistance systems to support humans

by aggregating and visualizing information comprehensibly for making

informed decisions

• Decentralized decisions – ability of cyber physical systems to make

decisions on their own and to perform their tasks as autonomously as

possible.

8

Some Industrie 4.0 Challenges

• IT security issues – aggravated by need to open up

previously closed production

• Reliability and stability – needed for critical machine-to-

machine communication

• Protect industrial knowhow – e.g. contained in industrial

automation equipment and software

• Lack of adequate skill-sets – needed for the new technology

• Loss of jobs – to automatic and IT-controlled processes

9

Three Roles in Value Chain of CPS Development

• End-users – building

and operation of CPS

• Technology providers

– provide and distribute

tools

• Methodology

developers – develop

methods for model-

based systems

engineering

• Regulatory authorities

– provide rules to

operators for ensuring

the stability of large

distributed systems

Methodology

Developers

End-Users

Technology

Providers

Regulatory

Authorities

Provide methodologies

Provide use cases

Provide

rules

Provide

requirements

Provide

tools

10

System Co-Design via Requirements Modeling

• Need for a new neutral language to coordinate all engineering disciplines

via the formal expression of requirements and assumptions (formal == that

may be analyzed/simulated at each step of the engineering process)

11

OpenModelica – Free Open Source Tool
developed by the Open Source Modelica Consortium (OSMC)

• Graphical editor

• Model compiler

and simulator

• Debugger

• Performance

analyzer

• Dynamic optimizer

• Symbolic modeling

• Parallelization

• Electronic

Notebook

for teaching

11

EngineV6 11116

equation model

12

Model-based Failure Mode and Effects Analysis

• Modelica models augmented with reliability properties can be used to generate

reliability models in Figaro, which in turn can be used for static reliability analysis

• Prototype in OpenModelica integrated with Figaro tool

Modelica Library
Application

Modelica model

Simulation

Figaro Reliability

Library
Reliability model

in Figaro
FT generation FT processing

Automated

generation

13

Dynamic Verification/Testing of

Requirements vs Usage Scenario Models

14

OpenModelica and Papyrus Based Model-Based

Development Environment to Cover Product-Design V

Product

models

Requirements

models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business

Process

Control

Requirements

Capture

Model-Driven

Design

(PIM)

Compilation

& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform

models

Process

models

Product

models

Requirements

models

Unified Modeling: Meta-modeling& Modelica& UML

Business

Process

Control

Requirements

Capture
Model

-
Driven

Design

Compilation

& Code Gen

System

Simulation

Software &

System Product
Platform

models
Process

models

Specification

Design

Design
Refinement

Component verification

Subsystem level integration and

verification

Subsystem level integration test

calibration and verification

Product verification and

deployment

Maintenance

Realization

Detailed feature design and

implementation

Architectural design and

system functional design

Preliminary feature design

System

requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

15

Business Process Control and Modeling

Product

models

Requirements

models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business

Process

Control

Requirements

Capture

Model-Driven

Design

(PIM)

Compilation

& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform

models

Process

models

Product

models

Requirements

models

Unified Modeling: Meta-modeling& Modelica& UML

Business

Process

Control

Requirements

Capture
Model

-
Driven

Design

Compilation

& Code Gen

System

Simulation

Software &

System Product
Platform

models
Process

models

Metso Business model & simulation

VTT Simantics Graphic Modeling Tool

OpenModelica based simulation

Simulation of 3 strategies with

outcomes

VTT Simantics

Business process modeler

OpenModelica

compiler & simulator

16

Requirement Capture

Product

models

Requirements

models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business

Process

Control

Requirements

Capture

Model-Driven

Design

(PIM)

Compilation

& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform

models

Process

models

Product

models

Requirements

models

Unified Modeling: Meta-modeling& Modelica& UML

Business

Process

Control

Requirements

Capture
Model

-
Driven

Design

Compilation

& Code Gen

System

Simulation

Software &

System Product
Platform

models
Process

models

OpenModelica based simulation

vVDR (virtual Verification of

Designs against Requirements)

in ModelicaML UML/Modelica

Profile, part of OpenModelica

Design Model

Scenario Model

Requirement

Models

Verification Model

Binding

Provider from

design model

Client from requirement model

17

Example: Simulation and Requirements Evaluation
(using the ModelicaML UML/Modelica prototype)

Req. 001 is instantiated 2 times
(there are 2 tanks in the system)

tank-height is 0.6m

Req. 001 for the tank2 is
violated

Req. 001 for the tank1 is
not violated

18

vVDR Method –

virtual Verification of Designs vs Requirements

Formalize
Requirements

Formalize Designs

Formalize
Scenarios

Create Verification
Models

Execute and
Create Report

Analyze Results

RMM
Requirement

Monitor Models

Scenario

Models
SM

Designs

Alternative

Models

DAM

VM Verification Models

AUTOMATED

Task Created Artifact

Goal: Enable on-demand

verification of designs

against requirements

using automated model

composition at any time

during development.

AUTOMATED

Actor

Reports

*

19

Challenge

We want to verify different design alternatives against sets of requirements

using different scenarios. Questions:

1) How to find valid combinations of design alternatives, scenarios and requirements in

order to enable an automated composition of verification models?

2) Having found a valid combination: How to bind all components correctly?

…

Create Verification
Models

… RMM

1. Verification

Model
VM DAM SM

2. Verification

Model
VM …

…

Requirement

Models

Scenario

Models

Designs Alternative

Models

DAM
SM

DAM

DAM
SM

SM

SM
SM

SM
RMM

1

RMM

RMM

RMM

RMM
SM

RMM

RMM

RMM

RMM

… …

n. Verification

Model

*

20

Composing Verification Models
main idea

• Collect all scenarios, requirements, import mediators

• Generate/compose verification models automatically:
• Select the system model to be verified

• Find all scenarios that can stimulate the selected system model (i.e., for

each mandatory client check whether the binding expression can be inferred)

• Find requirements that are implemented in the selected system model (i.e.,

check whether for each requirement for all mandatory clients binding

expressions can be inferred)

• Present the list of scenarios and requirements to the user
• The user can select only a subset or scenarios or requirements he/she

wishes to consider

21

Verification Report Generation, from Simulation of
Verification Models (fr Requirements, Designs, appl scenarios)

Verification models are

simulated.

The generated Verification

Report is a prepared summary of:

• Configuration, bindings

• Violations of requirements

• etc.

22

Support of vVDR in Modelica within OMEdit

in OpenModelica

vVDR concepts in standard Modelica

• mediators mapped to records

• requirements, design, scenarios mapped

to Modelica classes

23

Single Scenario Generation

Connecting the

design model and

the requirement

Generating correct

number of

requirement

instances

24

Batch Scenario Generation

25

EDF SRI Case Study of vVDR Method

Conclusion and Lessons Learnt

• Showed applicability of vVDR method to realistic industrial

applications

• ModelicaML is a promising prototype implementation of the vVDR

method, needs improved usability and stability

• Lessons learnt:

• Formalized requirements should be tested separately in order to

ensure correctness

• Model validity asserts must be included

• Parameterized requirement monitors can be re-used as library

components (later realized in MODRIO project)

• Later work, now ongoing

• Stochastic aspects (model uncertainties, tolerances in

requirements, ...) should be taken into account

26

What is Missing in our Systems Engineering

Tool Support?

• We already have many parts of the desired environment:

• Business process modeling

• Requirement modeling (related to design properties)

• Design modeling

• Model simulation and product generation

• Verification based on simulations

• Perhaps missing: expressing and verification of general

requirements in an early phase, independent of design

choices

27

What vs How and a Possible Requirement Language

• Desirable for requirements to be independent of particular

design architectures

• A Design model expresses How to solve a problem

• A Requirement should express What conditions should be

satisfied

• Desirable for requirements to be able to express

quantifiers, temporal constraints, related to (sets of)

objects that satisfy certain conditions

• A natural/neutral rule language for requirements? Close to

natural language? or borrow many elements from an

existing modeling language, e.g. Modelica?

28

Conclusions

• First step of a requirements language – bridge/unification

of UML/SysML and Modelica (ModelicaML), for design

verification versus requirements on application scenarios

• Second step, requirements library in Modelica and

OpenModelica prototype for design verification versus

requirements on application scenarios

• Third step (to be realized), a formal requirement language

to express basic requirement rules, for early requirement

debugging and verification without the need for a

(detailed) system architecture

