The Need for Comprehensive Whole-life-cycle
Systems Engineering Tool Support for Cyber-
Physical Systems

Maintenance

rpductverification and
loyment

Preliminary feature desig
&5 Bubsystem level integration test
= aflop calibration and verification

" Subsystem level integration and
0 - -
verification

Architectural desig
system functional de o
Detailed feature design 3

implementation Component verification

Realization

Documentation, Version and Configuration Management

3

Al

Linkopings universitet

MODPROD 2017, LinkGping
February 8, 2017

Daniel Bouskela, EDF, France
daniel.bouskela@edf.fr

Peter Fritzson, LIU, Sweden
peter.fritzson@liu.se

Lena Buffoni, LIU, Sweden
lena.buffoni@liu.se

MODELICA

mailto:daniel.bouskela@edf.fr
mailto:peter.fritzson@liu.se
mailto:plena.buffoni@liu.se

Industrial Challenges for Complex Cyber-Physical
System Products of both Software and Hardware

Increased Software Fraction

Shorter Time-to-Market

Higher demands on effective
strategic decision making

Increased number of stakeholders = increased uncertainties on ji
the system and difficulties in reaching a common agreement

Cyber-Physical (CPS) — Cyber
(software) Physical (hardware)
products

VLl

MoOELTICA

Need for Comprehensive Approach to Systems Engineering
of Whole Cyber-Physical Systems Products

¢ommmmemmmmpmooomoooo-oooo-oo-oo-_-_ Feedback
v v v System
) Simulation
E:’ch::ggzs Requirements | | ModelDriven Compilation
Capture Design & Code Gen

Reog#firements Prgt / Platform
gfodels models
Unifigll Modeling: Metanmydeling& Mo

Level of Abgtraction M
N ,

System Maintenance
e [/
&

Process
models

i

requirementg
Pr§duct verification and
debloyment

(7)
\ /
N
S

Preliminary feature desly
Fubsystem level integration test
calibration and verification

Architectural desigglfang
system functional design

Detailed feature design a
implementation

Subsystem level integration and
verification

Component verification

Realization

O o

. . . . MODELICA
Documentation, Version and Configuration Management

Overview of this Talk

* Need of whole product systems engineering

« Taking into account the assumptions about the
environment of the system

* Industrie 4.0 background
 Requirement engineering, debugging and verification

* Integrating requirement engineering into CPS systems
engineering

 The whole picture — what is needed for
comprehensive systems engineering

/772

MoOELTICA

Industrie 4.0 — The Fourth Industrial Revolution
(also called digitalization)

Mechanization, Mass prod uthn. Computer and Cyber Physical
water power, steam assembly line, :
i automation Systems
power electricity

/772

MoOELTICA

https://en.wikipedia.org/wiki/File:Industry_4.0.png
https://en.wikipedia.org/wiki/Automation
https://en.wikipedia.org/wiki/File:Industry_4.0.png
https://en.wikipedia.org/wiki/File:Industry_4.0.png

Industrie 4.0 Reference Architecture

* Provides a global picture of the engineering needs in terms of MBSE. Only a tiny
fraction is achieved today.

* Missing in particular:

1.

Bridging physical (asset) layer (e.g., Modelica) to the functional layer (e.g., SysML)
(OPENCPS)

Modelling, debugging, verifying requirements upstream detailed design (Need for
new requirement modeling language?)

Modelling and simulation, large systems with mode switching (follow-up of MODRIO)

7 ,_.,...,_...,,,. ot Lam A .,I.'
| n gz S

k Cepy

torg ™

VLl

MoOELTICA

Industrie 4.0 Design Principles

« Interoperability — ability of machines, devices, sensors, and people to
communicate with each other via the Internet of Things

* Information transparency — ability of information systems to create a
virtual model of the physical world e.g. by enriching digital plant models
with sensor data

« Technical assistance — ability of assistance systems to support humans
by aggregating and visualizing information comprehensibly for making
iInformed decisions

« Decentralized decisions — ability of cyber physical systems to make
decisions on their own and to perform their tasks as autonomously as
possible.

/772

MoOELTICA

Some Industrie 4.0 Challenges

« IT security issues — aggravated by need to open up
previously closed production

« Reliability and stability — needed for critical machine-to-
machine communication

* Protect industrial knowhow — e.g. contained in industrial
automation equipment and software

« Lack of adequate skill-sets — needed for the new technology

« Loss of jobs — to automatic and IT-controlled processes

/772

MoOELTICA

Three Roles in Value Chain of CPS Development

End-users — building

and operation of CPS Provide methodologi>es

. |
Technology providers
_ provide and distribute | Methodology | ¢ | End-Users
tools Developers Provide use cases
Methodology Provide Provide
de\iﬁlzpefrs - dgvlelop requirements rules
methods for model-

Provide
tools Regulatory
Authorities

based systems

engineering Technology

Regulatory authorities Providers
— provide rules to
operators for ensuring
the stability of large
distributed systems

/772

MoOELTICA

System Co-Design via Requirements Modeling

* Need for a new neutral language to coordinate all engineering disciplines
via the formal expression of requirements and assumptions (formal == that
may be analyzed/simulated at each step of the engineering process)

Hazards &
Safety Analysis
- Vulnerability &

Security
Analysis

Safety &

Security

Analyses

Operation &
Maintenance
Concepts

Procedures

Socio
Organisational
& Human
Factors
Engineering

Cross-
Disciplinary

* Requirements &

Assumptions
¢ Design decisions
* Models

Instrumentation

& Control

Disciplinary
methods, models

and tools
Probabilistic

Reliability and
Risk Analysis

Buildings
Architectural
Design

Thermohydraulics,
Electricity,
Chemistry, ...

Thematic
Verifications

Multi-physics simulation
Physics-I&C-Procedures simulation
Probabilistic Safety Analyses
Resilience analyses, FMECA
Safety justification,
Security justification
Human factors analyses
Construction planning
Cost estimations, ...

10

VLl

MoOELTICA

OpenModelica — Free Open Source Tool
developed by the Open Source Modelica Consortium (OSMC)

. . ’v& OMEdit - OpenModelica Connection Editor - —-—— EE
° G rap h |Ca| ed |t0r File Edit View Simulation FMI Export Tools Help
PeBB K .0 Be0e \SHOTHEK EQ9%rs5 ¢S5 BH- 95 X[©}
. | Libraries Browser = |Z Plot 11 | Variables Browser B X
[] M d I p I ! Liraries “||'[zoom) P Fit in Vi sa print | Grid [Detaled Grid | No Grid |[[] LogX [l Log ¥ = Set
O e CO m I er H_} MultlBOdy m 'an in View ve TN’ i Detailed Gri 0 Gri 0g 0g etup D S —
and simulator & @ UsersGuide T deloadu bl e
[}m World 1,200] . -~ Variables : al
=[] Examples L 1 En g I n eV() 11 I [_I |Sﬁuz1.5zm &8 Debug...entsl
Elementary 1,000 | = Modeli...gineVé
- Debugger - o - -
E]_Loops] n eq u atl O n m O d (EI ~ [Clanimation @
r nginela i * bearing
- () Enginelb 800 i # cylinderl
® P e rfo rm an Ce r ngine...alytic b j | | I # cylinder2
" 1 B cylinder3
. . & cylinderd
analyzer rae.aic| || _
& cylinder
) Fourbarl 400 1 & cylindere
. . . r ourbar2] - [lengin..d_rpm 53
* Dynamic optimizer - Founa.ai - Hengictorue 77
~ (») Planar..alytic 200 1 H | HHilter
& Utilities - 4 - [Cfilter..Torque 10:
- - & (] Rotatio.. Effects 1 # load
« Symbolic modeling P] !
& (] Systems] - Ctime 1.0
B . # [+] Forces -200 ! l & torqueSensor
« Parallelization) rames |
| & [Interfaces 400
. 4] Joints 0 0.2 0.4 06 0.8 1 12 ||y :
b E I ectro n I C Ei @ parts Messages Browser 8 X
@ Sensors [5] 13:35:25 Translation Warning -
=8 Visualizers Ahgs set wth several free start values * candidate: cyhnderz.cyhnder.s(;mrt = -0.3) * candidate: cylinder2.gasFarce.s_rel(start = -0.0) => select value from
N Ote boo k cylinder2.Cylinders(start = -0.3) because its component reference (or |ts binding component reference) is closer to the top level scope with depth: 3. If we have equal Il
[Types component reference depth for several components choose the one with non zero binding. -
= 4 v <
for te aCh 18] g | %6106 ;10482 | @ Wekome | of Modeing | 5 piotting |

11 11 Ve

MODELICA

Model-based Failure Mode and Effects Analysis

« Modelica models augmented with reliability properties can be used to generate
reliability models in Figaro, which in turn can be used for static reliability analysis

» Prototype in OpenModelica integrated with Figaro tool

Automated
generation

Figaro Reliability g=sir Reliability model : :
Library " in Figaro FT generation FT processing

VLl

12 MoDELi"CA

Dynamic Verification/Testing of

Requirements vs Usage Scenario Models

& DoubleLaneChangeAndBraking (ehicles. Experiments. Examples. Do.

Fle ccr Smubton Pet Adoton Commands Widow Hep
EHAS Wie® i

BeyO0R @:88R BOH £-
g Spesd | 02 %

Pl HMa» Time 33
&

Vanables

<
Actvanced

b medisiend of cLass wih

ud

e e e o, e e o, Pl Beveis 1
expaticn. costsiing 0l drpenders ot defiae he

() = = e laskdatid - weity
e Tanbestals

1 Simulation of Van der Pol

|
ot i Ve Pl ol --ml

wimslate (TanDucbol, siactios=0, sicpPisesds |

Burtorm a peramessplot

Plotby Gperiteduica

~E@s 8 ads

I
e ot ‘

13

MOD

E

L

CA

OpenModelica and Papyrus Based Model-Based
Development Environment to Cover Product-Design V

e ______[leedback ____
v v i, System
. irgulation
Egg(':gg:s Requirements || | ModelDriven Compilation
Capturg Design & pode Gen
/

Process
models

Regliirements Pghduct ' Platfor
odels #iodels ' modelg

[]

Level of Ab
N

System
requireﬁmgnt

Prgduct verification and
debloyment

4

Preliminary feature desly

bubsystem level integration test

calibration and verification
Architectural desigglang

system functional design

Detailed feature design a
implementation

Subsystem level integration and
verification

Component verification

Realization

14 O e

. . . . MODELICA
Documentation, Version and Configuration Management

Business Process Control and Modeling

Feedback

v v v System
Simulation

VTT Simantics

Eusiness Requirements [l . | ModelDriven Compilation Business process modeler
C'(')?;erzsl Capture Design & Code Gen

Software &
System Produc

Process
models

Requirements Product Platform
models models models

Unifie§Modeling: Meta modeling& Modelica& UML

OpenModelica
compiler & simulator

OpenModelica based simulation

Metso Business model & simulation
I A VTT Simantics Graphic Modeling Toa

S i N
s Simulation of 3 strategies with
. v ¥
+ Y . . . STRATEGY 2 STRATEGY 3
Pry M | mWasted (change requests) mWasted (Errors) O Profit |
: : 1400 000 € 1400 000 € 1400 000 €
e + Remforcmg Y N 1200000 € 1200000 € — 1200 000 €
Pricing Demand - Orders B Average Schedule \“ 1000000 € 1000000 € —— Jtoooo00 €
P erformance 800 000 € 800 000 € —— | 800000 €
+ + Averaze Ouali 600000 € —_— 600000 € —— | so0000€
Saleq P ;’g Quality 400000 € +—— — 400000 € 1 —— | 400000¢€
EfTOrmance
Proceed‘; 200 000 € +—— 200000 € | 200000¢
Project Start Rate o o o
Wasted work Total Profit Wasted work Total Profit Wasted work Total Profit
P fi Completuon Rate
r0 lt so 75 9= I oo sove 75 9 I oo sovs 759 95 I oo I
‘Total Profit ‘Total Profit ‘Total Profit smooth
4M 4M 4M
Iaterial ' W I i
--'b QI M Process
Costs Balancing p 2n o ou
+ 2M 2M 2M I
Labour. Avalable Resource am ax am
-—_____—h‘R N Ad 50 %5 15 1295 136 50 %5 103 1295 156
ESCUICES s RESOWCES + Equacy (Week) Time (Week) ‘Time (Week)

MOUOUOELTLA

Requirement Capture

Feedback

System
Simulation

Business ; .. S
Requirements ModelDriven Compilation . e .
FroEzs et e o o G VVDR (virtual Verification of

Designs against Requirements)

Software &
System Produc

in ModelicaML UML/Modelica
Profile, part of OpenModelica

Process Requiremerfgs Product Platform
models models models models

Unified Modeling: | Meta modeling& Modelica& UML

OpenModelica based simulation

= Class Components Tree 07 GO E||%|) o~ = B

= g instantiated "WeM Far: k=1 - Fill and Drain Tank'

del 1 [F+-E=] sm_spws_environment ())

#-= ws_ts1__ Ffill_and_drain_tank (%) Provider from

Desig n Mddel « %= req_002_fil_mode_behavior (5) d esig n model
o= req_003_idle_mode_behavior (4)

=

Verification M

y Ed req_001_tank_Filling_time (7)

el [Z* violation_Monitor | Binding

Scenario Mo

=18 mand. client), inpu tankIsEmpty = sm_spws_environment,spis, k;
Requ irement Ed (mand. client), input tankl: SeingFilled = sm_spws_environment, spws, tank, pLiguidFillDr ain. massFlowR ate =0
Models | Ed (mand. client), input tankIzFull = sm_spws_environment. spres. kank, level = 0,93
[Real timeLimit = 300
el output vinlated Client from requirement model

Ed output evaluationstarted

= _reqverificationverdict (4)

7
Moo ELi A

Example: Simulation and Requirements Evaluation
(using the ModelicaML UML/Modelica prototype)

gmaodels
[TwoTankabystemExample: SystemSimulations)
TankSystemSimulation

@ Plot Window =1E3
File Edit Insert Tools Help

= «companents dm: TanksCaonnectedP|
= grequirementinstances 001 _tank1: Max level of liquid in a tank

EN~equirementinstances 01 tank?: Max level of liquid in 2 tank | Open Save Prink | Select | Zoom | Pan | Grid | Hold | Preferences | Active | Image
= wgrmentlnstances 02 tank1: %olume of the tank

Plot by OpenModelica

J

Req. 001 is instantiated 2 times @ cin.kanki b
(there are 2 tanks in the system) 0.8

_ @ dm.tankz.h

[tank-height is 0.6m J/ \/_}\l O ro01_tankl . violated

S ol T s R @001 _tankz, violated
Req. 001 for the tank2 is

violated

a0 100 150 200 250 300 350

\/ time
Req. 001 for the tank1 is
not violated

17 Moo ELI A

vVDR Method —

virtual Verification of Designs vs

Requirements

Actor

%.’D %.’D %.’D

%.’D

Task

Formalize
Requirements

Formalize Designs

Formalize
Scenarios

*
Create Verification

Models

Execute and
Create Report

Analyze Results

Created Artifact

BN II Requirement

Monitor Models

Designs
Alternative
Models
|| Scenario
Models

Verification Models

...........

Reports

=

Analyze Modify

’ Verify

Goal: Enable on-demand
verification of designs
against requirements
using automated model
composition at any time
during development.

18

VLl

MoOELTICA

Challenge

We want to verify different design alternatives against sets of requirements

using different scenarios. Questions:

1) How to find valid combinations of design alternatives, scenarios and requirements in
order to enable an automated composition of verification models?

2) Having found a valid combination: How to bind all components correctly?

Models Models

SM

sM |

SM

*
Create Verification
Models

1. Verification
Model

2. Verification
Model

n. Verification
Model

Designs Alternative Scenario Requirement

Models

o E2 g 3
s B

SM

19

VLl

MoOELTICA

Composing Verification Models

main idea

« Collect all scenarios, requirements, import mediators
« (Generate/compose verification models automatically:

« Select the system model to be verified

« Find all scenarios that can stimulate the selected system model (i.e., for
each mandatory client check whether the binding expression can be inferred)

« Find requirements that are implemented in the selected system model (i.e.,
check whether for each requirement for all mandatory clients binding
expressions can be inferred)

* Present the list of scenarios and requirements to the user

« The user can select only a subset or scenarios or requirements he/she
wishes to consider

20

/772

MoOELTICA

Verification Report Generation, from Simulation of
Verification Models (fr Requirements, Designs, appl scenarios)

Verification models are
simulated.

The generated Verification
Report is a prepared summary of:
« Configuration, bindings

» Violations of requirements

« efc.

Plot by OpenModelica

0.5
0.6

04 \’Zj \/\k

0.z ™

P

time

21

Werification models number (3), (0), failed (3)

Failed VeM for: s1-Fill and Drain Tank {Plot)
Failed WeM for: s2-Fill tank (Plot)
Failed WeM for: s3-Drain tank (Plot)

Failed VeM for: si-Fill and Drain Tank (Plot)
(ModelicaMLModel: : GenWeMs for: SPWS Environment_1::VeM for: s1-Fill and Drain Tank]

Settings: startTime = 0, stopTime = 1500, tolerance = default, intervals = 0, outputFormat = plt

verdict allRequirementsEvaluated : yes
verdict someRequirementsViolated : yes

Meodel to be verified: SPWS Environment
[MeodelicaMLMedal: : Design:: SPWS Environment)

Verification Scenario: s1-Fill and Drain Tank
(ModelicaMLMedel: : Verification Scenarios::s1-Fill and Drain Tank)

madantory client: vs s1 fill and drain tank.tankHeight (changed its value)

Type = ModelicaReal
Wariability = continuous
Binding code : = sm_spws_environment.spws.tank.height

Viclated Requirement: Drain mode behavior (ID 004)

(MeodelicaMLMedal: : Requiremeants: :Drain mods behavier)
Text: When the system is drained only the fill/drain valve shculd be open, zll cther valves should be closed.

verdict evaluated : yes
verdict violated : yes

madantory client: req 004 drain _mode behavior.fillDrainValveIsOpen (changed its value)

Type = ModelicaBoolean
Wariability = continuous
Binding code : = sm_spws_environment.spws.fillDrainValve.isFullyOpen

madantory client: req 004 drain _mode behavior.otherValvesAreClosed (changed its value)

Type = ModelicaBoolean

Wariability = continuous

Binding = if sm_spws_environment.spws.overFlowValve.isFullyClosed and sm_spws_environment.spws.supplyVavle.isFullyClosed
code then true else false

VL

MODELICA

Support of vVDR Iin Modelica within OMEdit
In OpenModelica

Libraries
VE] Mediators 5 record operatingPumps
@ operatingpumps extends Mediator (mType = "Boolean",
\ clients = {Client (modelID = "ToyExample.PumpR", component = "inOperation")},
% cavitating providers = {Provider (modelID = "ToyExample.PA", template = "if %getPath.on then 1 else 0"),
.] Provider (modellID = "ToyExample.PB", template = "if (%getPath.volFlowRate) > 0 then 1 else 0")}
(5 breakMediator):
VIF ToyExample | end operatingPumps;
M| PA
m—
M| PB
ﬁ PumpR within ToyExample;
et
M SystemModel model VerifScenariol
M Scenario1 4 ToyExample.SystemModel md;
M VerifScenariot ; ToyExample.Scenariol sl;
i ‘ ToyExample.PumpR rl;
'M‘ Scenario2 7 end VerifScenariol;
M| SystemModelBetter
v|P| VVDRDefinitions
D] Sosnallo VVDR concepts in standard Modelica
M| Requirement .
M| Des « mediators mapped to records
esign
v[P| BindingDefinition = ° requwements, de5|gn, scenarios mapped
Client I
=2 to Modelica classes
== Provider
== Mediator
E Preferred
—

22 o

MODELICA

Single Scenario Generation

®°e@ |
:O (5] Libraries

>

| Filter Classes

Libraries

» 7% Modelica

| v[P] Mediators

i
1
i

updates the bindings

5 operatingPum|

8 cavitating

£ breakMediator
v|P| ToyExample

PA

PB

PumpR
SystemModel
Scenario1
VerifScenario1
Scenario2
SystemModelE

Scenario
Requirement

Design

v BindingDefinition
@ Client
(5 Provider
E Mediator

‘ j' New Modelica Class

o
“{; Order

» Simulate with Transformational Debugger

» Simulate with Algorithmic Debugger

r

S Simulation Setup

Export Figaro

Update Bindings 9.1

A

M2 s

within ToyExample;

model VerifScenariol
ToyExample.SystemModel md;
ToyExample.Scenariol sl;

6 ToyExample.PumpR rl;

7 end VerifScenariol;

18 W N -

1 within ToyExample;
L
model VerifScenariol
ToyExample.SystemModel md autogen bind 0(timeBreak = sl.timeFailure);
ToyExample.Scenariol sl;
ToyExample.PumpR rl_autogen bind 0(cavitate = md autogen_bind_ 0.pa.cavitating):
ToyExample.PumpR rl autogen bind 1 (cavitate = md autogen_bind 0.pb.cavitating):
end VerifScenarPbl;

Generating correct
number of
requirement
Instances

Connecting the
design model and
the requirement

23

VL

MODELICA

Batch Scenario Generation

®°e@ o4 OME(i —_— =
1 . Oﬁ Open Class [v @dsindingDeﬁnition

o | o View Documentation f g5 Client
1 £ Provider

Filter Class Mod
PRl 2 el | Text Viev :
D' New Modelica Class £5] Mediator
Libraries ;
! 2 Preferred
B! = | |
=] Save riol v|P| GenerateTests
e odael m autot —
| temModel md_aut
= nariol sl; verif_...ogen_1
m ﬂ_/é Save As oR rl_autogen_ bil .
M| | Save Total ®R rl_autogen bi verif_...ogen_2
51;
e "
Ml | verif_...ogen_3
ﬁ | E Instantiate Model
oy
M| Check Model
M
|
\
p— i @ Check All Models | package GenerateTests
M 2 model verif model_autogen_l "Autogenerated verification model"
pom— 3 ToyExample.PumpR _agen_ PumpR2_autogen bind 0(cavitate = _agen_SystemModelBetterO.pa.cavitating);
M ! 5 A ToyExample.PumpR _agen_ PumpR2_autogen_bind_l(cavitate = _agen_SystemModelBetter0O.pb.cavitating);
o # Dupllcate ' 5 ToyExample.Scenariol _agen_Scenarioll;
M 3 ToyExample.SystemModelBetter _agen SystemModelBetterO_autogen_bind 0(timeBreak = _agen_Scenarioll.timeFailure);
/ end verif model_autogen_l1;
v P VvV Unload (£33 8 model verif model_autogen_2 "Autogenerated verification model”
) ToyExample.PumpR _agen_ PumpR2_autogen bind 0 (cavitate = _agen_SystemModelO.pa.cavitating);
M ! 1 ToyExample.PumpR _agen_ PumpR2_autogen_bind_l(cavitate = _agen_SystemModelO.pb.cavitating);
FMU 11 ToyExample.Scenario2 _agen_Scenario2l;
| EX rt FMU 2 ToyExample.SystemModel _agen SystemModel0O autogen_bind O (timeBreak = _agen_Scenario2l.timeFailure);
po ; ~agen_. - -bind -agen_
* end verif model_autogen_2;
M | 14 model verif model autogen_3 "Autogenerated verification model"
<./> Export XML 1 ToyExample.PumpR _agen_PumpR2_autogen bind 0O(cavitate = _agen_SystemModelO.pa.cavitating);
w P Bir » pO £ ToyExample.PumpR _agen PumpR2_autogen_bind_1(cavitate = _agen_SystemModel0O.pb.cavitating);
1 ToyExample.Scenariol _agen_Scenarioll;
. B ToyExample.SystemModel _agen_SystemModelO_autogen_bind O (timeBreak = _agen_Scenarioll.timeFailure);
@ { EXpOl't Flgaro 19 end verif model_autogen_3;
| 20 end GenerateTests;
" enerate Verification Scenarios
Generates the verification scenarios X: -3¢

24 VLl

MODELICA

EDF SRI Case Study of vWDR Method
Conclusion and Lessons Learnt

Showed applicability of vWDR method to realistic industrial
applications

ModelicaML is a promising prototype implementation of the vWDR
method, needs improved usability and stability

Lessons learnt:

 Formalized requirements should be tested separately in order to
ensure correctness

 Model validity asserts must be included

« Parameterized requirement monitors can be re-used as library
components (later realized in MODRIO project)

Later work, now ongoing

« Stochastic aspects (model uncertainties, tolerances in
requirements, ...) should be taken into account

25

/772

MoOELTICA

What is Missing in our Systems Engineering
Tool Support?

« We already have many parts of the desired environment:
* Business process modeling

Requirement modeling (related to design properties)

Design modeling

Model simulation and product generation

Verification based on simulations

* Perhaps missing: expressing and verification of general
requirements in an early phase, independent of design
choices

26 o

MoOELTICA

What vs How and a Possible Requirement Language

* Desirable for requirements to be independent of particular
design architectures

« A Design model expresses How to solve a problem

« A Requirement should express What conditions should be
satisfied

« Desirable for requirements to be able to express
guantifiers, temporal constraints, related to (sets of)
objects that satisfy certain conditions

« A natural/neutral rule language for requirements? Close to
natural language? or borrow many elements from an
existing modeling language, e.g. Modelica?

27 s

MoOELTICA

Conclusions

« First step of a requirements language — bridge/unification

of UML/SysML and Modelica (ModelicaML), for design
verification versus requirements on application scenarios

Second step, requirements library in Modelica and
OpenModelica prototype for design verification versus
requirements on application scenarios

Third step (to be realized), a formal requirement language
to express basic requirement rules, for early requirement
debugging and verification without the need for a
(detailed) system architecture

28

/772

MoOELTICA

