
Traceability Support in OpenModelica
Using Open Services for Lifecycle

Collaboration (OSLC)

Alachew Mengist, Adrian Pop,
Adeel Asghar, Peter Fritzson

2017-02-02 1

MODPROD 2017, Linköping

Agenda

2017-02-02 2

 Problem Statement

Motivation and Approach

 Open Services for Lifecycle Collaboration (OSLC)

 Traceability Design and Architecture

 Traceability and Model Management Workflow in
OpenModelica

 Prototype Implementation

 Conclusions and Future Work

Problem Statement
 Large scale system modeling
Heterogeneous models (e.g. requirements models,

architectural models)
 Special purpose modeling tool

 Weak or no integration between tools

 Minimal or no traceability between artifacts

 Seamless tracing of the requirements and
associating them with the models and the
simulation results
Traced artifacts: SysML blocks, requirements, models,

FMUs, connection configuration, simulation results

2017-02-02 3

Motivation and Approach

Why?
 To trace how high level requirements are validated during system

design via simulation,
 Traceability from requirements to models to simulation

executables to simulation results to …
 Documentation of the system development

How?
 All tools are storing information in GIT and sending information

about existing and created artifacts to the global database
 Using OSLC

2017-02-02 4

The INTO-CPS Project and Tooling

2017-02-02 5

 A project about integrated tools for cyber-physical model
development

 Modeling Tools like Overture, 20-sim, OpenModelica are
integrated

 High level system architecture developed in SysML, used e.g. to
generate Modelica models

 Generated Modelica model is completed with behavior for the
SysML block and the final model is exported in the FMU form

 The generated FMU is then used in a whole system simulation
connected according to the SysML connection diagram.

 The COE (the FMU master simulation algorithm) component
performs the simulation via the INTO-CPS App.

INTO-CPS Tool Chain Connections

2017-02-02 6

Open Services for Lifecycle Collaboration (OSLC)

2017-02-02 7

 Enable integration of
development life cycle tools

 Based on Linked Data
 Use URIs as names for things
 Use HTTP URIs so that people

can look up those names
 When someone looks up a URI,

provide useful information
using RDF

 Include links to other URIs. so
that they can discover more
things

 Create using HTTP POST on
creation factory URI

 Query using HTTP GET on
query base URI

Source-
https://en.wikipedia.org/wiki/Open_Services_for_Li

fecycle_Collaboration)

Traceability Design and Architecture

2017-02-02 8

 Modeling Tools
 Send traceability information to

Daemon

 Query (traces to, traces from) via
Daemon

 The Daemon
 Provides an OSLC interface with

RESTful interface

 OSLC triples(Entities, activities and
agents) in JSON format

 Neo4j Database
 Graph database to store the OSLC

triples

2017-02-02 9

Traceability and Model Management
Workflow in OpenModelica

 Commit model file entity to Git
repository and record the Git-
hash

 Create URIs of the activity based
on the Git-hash

 OSLC triples describing the
activity are generated using the
URIs

 OSLC triples are sent to the
traceability Daemon

 Retrieve the traceability
information (traces to and traces
from)

Prototype Implementation

2017-02-02 10

 An extension of the OpenModelica Connection
Editor (OMEdit)
 Implemented in C++ using the Qt graphical user interface

library

 The prototype functionality into three categories:
 Importing model description XML

Model management with Git integration

Traceability support using OSLC

Import Model Description XML File

2017-02-02 11

 Import model description XML interface files (linked
with requirements)

Create Modelica model stub containing the inputs and
outputs specified in modelDescription.xml

Model Management with Git Integration

2017-02-02 12

Traceability Support in OpenModelica
 Sent traceability information through the daemon to

the database via HTTP POST
 http://localhost:8080/traces/push/json

2017-02-02 13

Traceability Support in OpenModelica

2017-02-02 14

 Entities (e.g. Modelica
files, FMUs) are
shown in green

 Activities (e.g. Model
creation, Model
modification, FMU
export) are shown in
red

 Agents (e.g. a user with
the name "Alachew")
are shown in blue

 Their relationships (e.g.
wasGeneratedBy,
wasDerivedFrom,
usedTool, …) are
shown in orange.

An example of traceability information sent from OpenModelica
to the daemon and visualized in the Neo4j database

Model
Robot.mo

Model
Creation

Alachew

Model
Robot.mo

OpenModelica

Model
Modification

wasGeneratedBy

Traceability Support in OpenModelica
Query traceability information (via HTTP GET)
 Traces to (http://localhost:8080/traces/to/<URI>/json)

 Traces from (http://localhost:8080/traces/from/<URI>/json)

2017-02-02 15

The traceability database

2017-02-02 16

Conclusions
 OpenModelica supports traceability Using OSLC

 The Modeling activities that can be recorded
automatically within OpenModelica and traced are
 Creation of models
 Modification of models
 Destruction of Models
 Import of model descriptions in XML
 Export of FMU’s
 Creation of simulation results

 A first prototype to query traceability information
(traces to and traces from models or simulation results)
from the database and display to end-users in JSON
format is also complete.

2017-02-02 17

Future Work
 Extend the OpenModelica tool to support
visualization of the traceability data both in the
form of graphs and trees.

 Fully functional Git integration

 Computing the impact of two different versions of
the same model on simulation results and merging
the models in way that the resulting model can be
valid without modification.

2017-02-02 18

Thank you for your attention!

Questions?

2017-02-02 19

