
Traceability Support in OpenModelica
Using Open Services for Lifecycle

Collaboration (OSLC)

Alachew Mengist, Adrian Pop,
Adeel Asghar, Peter Fritzson

2017-02-02 1

MODPROD 2017, Linköping

Agenda

2017-02-02 2

 Problem Statement

Motivation and Approach

 Open Services for Lifecycle Collaboration (OSLC)

 Traceability Design and Architecture

 Traceability and Model Management Workflow in
OpenModelica

 Prototype Implementation

 Conclusions and Future Work

Problem Statement
 Large scale system modeling
Heterogeneous models (e.g. requirements models,

architectural models)
 Special purpose modeling tool

 Weak or no integration between tools

 Minimal or no traceability between artifacts

 Seamless tracing of the requirements and
associating them with the models and the
simulation results
Traced artifacts: SysML blocks, requirements, models,

FMUs, connection configuration, simulation results

2017-02-02 3

Motivation and Approach

Why?
 To trace how high level requirements are validated during system

design via simulation,
 Traceability from requirements to models to simulation

executables to simulation results to …
 Documentation of the system development

How?
 All tools are storing information in GIT and sending information

about existing and created artifacts to the global database
 Using OSLC

2017-02-02 4

The INTO-CPS Project and Tooling

2017-02-02 5

 A project about integrated tools for cyber-physical model
development

 Modeling Tools like Overture, 20-sim, OpenModelica are
integrated

 High level system architecture developed in SysML, used e.g. to
generate Modelica models

 Generated Modelica model is completed with behavior for the
SysML block and the final model is exported in the FMU form

 The generated FMU is then used in a whole system simulation
connected according to the SysML connection diagram.

 The COE (the FMU master simulation algorithm) component
performs the simulation via the INTO-CPS App.

INTO-CPS Tool Chain Connections

2017-02-02 6

Open Services for Lifecycle Collaboration (OSLC)

2017-02-02 7

 Enable integration of
development life cycle tools

 Based on Linked Data
 Use URIs as names for things
 Use HTTP URIs so that people

can look up those names
 When someone looks up a URI,

provide useful information
using RDF

 Include links to other URIs. so
that they can discover more
things

 Create using HTTP POST on
creation factory URI

 Query using HTTP GET on
query base URI

Source-
https://en.wikipedia.org/wiki/Open_Services_for_Li

fecycle_Collaboration)

Traceability Design and Architecture

2017-02-02 8

 Modeling Tools
 Send traceability information to

Daemon

 Query (traces to, traces from) via
Daemon

 The Daemon
 Provides an OSLC interface with

RESTful interface

 OSLC triples(Entities, activities and
agents) in JSON format

 Neo4j Database
 Graph database to store the OSLC

triples

2017-02-02 9

Traceability and Model Management
Workflow in OpenModelica

 Commit model file entity to Git
repository and record the Git-
hash

 Create URIs of the activity based
on the Git-hash

 OSLC triples describing the
activity are generated using the
URIs

 OSLC triples are sent to the
traceability Daemon

 Retrieve the traceability
information (traces to and traces
from)

Prototype Implementation

2017-02-02 10

 An extension of the OpenModelica Connection
Editor (OMEdit)
 Implemented in C++ using the Qt graphical user interface

library

 The prototype functionality into three categories:
 Importing model description XML

Model management with Git integration

Traceability support using OSLC

Import Model Description XML File

2017-02-02 11

 Import model description XML interface files (linked
with requirements)

Create Modelica model stub containing the inputs and
outputs specified in modelDescription.xml

Model Management with Git Integration

2017-02-02 12

Traceability Support in OpenModelica
 Sent traceability information through the daemon to

the database via HTTP POST
 http://localhost:8080/traces/push/json

2017-02-02 13

Traceability Support in OpenModelica

2017-02-02 14

 Entities (e.g. Modelica
files, FMUs) are
shown in green

 Activities (e.g. Model
creation, Model
modification, FMU
export) are shown in
red

 Agents (e.g. a user with
the name "Alachew")
are shown in blue

 Their relationships (e.g.
wasGeneratedBy,
wasDerivedFrom,
usedTool, …) are
shown in orange.

An example of traceability information sent from OpenModelica
to the daemon and visualized in the Neo4j database

Model
Robot.mo

Model
Creation

Alachew

Model
Robot.mo

OpenModelica

Model
Modification

wasGeneratedBy

Traceability Support in OpenModelica
Query traceability information (via HTTP GET)
 Traces to (http://localhost:8080/traces/to/<URI>/json)

 Traces from (http://localhost:8080/traces/from/<URI>/json)

2017-02-02 15

The traceability database

2017-02-02 16

Conclusions
 OpenModelica supports traceability Using OSLC

 The Modeling activities that can be recorded
automatically within OpenModelica and traced are
 Creation of models
 Modification of models
 Destruction of Models
 Import of model descriptions in XML
 Export of FMU’s
 Creation of simulation results

 A first prototype to query traceability information
(traces to and traces from models or simulation results)
from the database and display to end-users in JSON
format is also complete.

2017-02-02 17

Future Work
 Extend the OpenModelica tool to support
visualization of the traceability data both in the
form of graphs and trees.

 Fully functional Git integration

 Computing the impact of two different versions of
the same model on simulation results and merging
the models in way that the resulting model can be
valid without modification.

2017-02-02 18

Thank you for your attention!

Questions?

2017-02-02 19

