Aircraft Systems Engineering

Ingo Staack 11th MODPROD Workshop 7-8 February, 2017

Why (Conceptual) Aircraft Systems Engineering?

More Electrical Airplane: Power Electronics

"....the most significant common lessons learned are within the EMI/EMC discipline and could become showstoppersif not identified or applied."

source: Michel Todeschi and Frédéric Salas, Airbus, 2016

- a possible showstopper?
- workarounds?
- can this be addressed during the conceptual aircraft design process? if yes, how?

Nine-Passenger Hybrid Turboprop May Be On The

Way source: Aviation Week, 2017-02-02

PE technical issues dispatched by discipline

http://www.jobyaviation.com/LEAPT ech/ (accessed 2016-09-07)

Model Types, Model Transformations and Model Implementations

Model Fidelity and Integration

One Dataset – Different Tool-Fidelity Geometry Representation

Implementation

- change from risk management to management of complexity & details?
- from pure mechanical engineering towards software (data) engineering, systems engineering and project management
- conventional (eventual OOP), graph based, causal/acausal....

Framework Design: Information Model

- XML based a good (low-level) solution
- parametric design
- several standards: CPACS, TEI (literature), Ecl@ss (acquisition, components), ISO/EC 81346 (construction building), etc.

XML Based Tool Integration

- Strict design space limitation (robustness counts!)
- CATIA model topology different from the XML data setup
 → complex data translations required

Example: Airfoil Representation

- unified parametric airfoil description (T. Melin, 2011):
- airfoil representation by four 2nd-order Beziér curves:

 $\overline{x}(t) = (1-t)^3 \overline{p}_0 + 3(1-t)^2 t \overline{p}_1 + 3(1-t)t^2 \overline{p}_2 + t^3 \overline{p}_3$ Parameters

- very robust format
- name describing the geometry → perfect condition for (binary) optimization algorithms
- only drawback: S-shaped trailing edge airfoils are are not representable

			Ē
Name	Var	Range	2 u -
Leading edge			- 50.0 Cordin
Upper Nose fraction	k ₁	[01]	s, effe
Lower Nose fraction	k ₂	[01]	ē 0
Upper side			*
Upper thickness	Η _υ	[01]	Ξ
Upper thickness position	Ρ _U	[01]	.ig 0.05 -
Upper forward fraction	k ₃	[01]	δ, 0-
Upper rearward fraction	K ₄	[01]	Profile
Lower side			
Lower thickness	H	[01]	
Lower thickness position	PL	[01]	
Lower forward fraction	k ₅	[01]	
Upper rearward fraction	K ₆	[01]	0.1
Trailing edge			
Trailing edge gap	g	[01]	
Boat tail angle	β	$[-\pi\pi]$	
Release angle	α	$[-\pi\pi]$	
Upper trailing edge fraction	k ₇	[01]	
Lower trailing edge fraction	k ₈	[01]	

System Architecture Automation

System Architecture Automation

Modelling Trends: Unified Modelling or/and Semantic Handling Capabilities?

- Cyber-Physical Systems
- unified modelling or enabled model interpretation?
- *"the right tool/method for the right topic"* (efficiency, transparency, effort)

 $\ensuremath{\textit{Different}}$ (analytical) models of a hydraulic power supply

The semantic web approach (source: Bernes Lee)

Closing the Gap by KBE

KBE: System Architecture and Integration of Simulation Models

- KBS: System Knowledge Base
- **<u>KBE</u>**: Element Knowledge Base
- serve for the translation from meta-components towards the simulation components in the library

Req. & project related data \rightarrow (total) system simulation

Project data

Requirements

Certification Requirement Simulation

Model Code

(standard)

Simulation

Program

-71

Design

KBS

Example Result: Simulation Model

Complexity – How to maintain a **TRANSPARENT** process?

- how to maintain the overview?
- how to maintain flexibility?
- how to present/visualize huge data and complex dependencies (network/graph) structure
- tool efficiency (e.g. build-up and maintenance of KBE tools)

Complexity – How to maintain a **TRANSPARENT** process?

- how to maintain the overview?
- how to maintain flexibility?
- how to present/visualize huge data and complex dependencies (network/graph) structure

Unified OOP Modelling Approach

Project Outcomes

- Object-oriented implementation and a parametric, central dataspace with a matching fidelity; preferably in XML format is a good, easy (streamlined) solution
- KBE (excluding AI) is a way to enhance (generate) simulation model based on incomplete project-related information with limited increase of spend effort.
- By interpreting a system as a multi-domain graph network and appropriate modelling techniques, different system design aspects can be addressed. In combination with OOP and XML/XSD/XSLT model transformation forth an back are supported.

Thank you! ingo.staack@liu.se

www.liu.se

