Rigorous Simulation

Walid Taha - Halmstad University

Illustration Copyright with National Science Foundation. Used by permission.

Our World is Changing

http://spectrum.ieee.org/computing/hardware/transistor-production-has-reached-astronomical-scales

Our World is Changing

http://electronicscomponentsworld.com/test-implications-arising-from-the-advent-of-connected-cars/

Our World is Changing

http://www.popsci.com/software-rising-cause-car-recalls

Problem

- Broadly: design technology is fragmented:
 - Software engineering environments
 - Simulation/Co-simulation
 - Symbolic algebra methods
 - Formal methods
- Specifically: formally correct simulation

Our Approach

"... if thought corrupts language, language can also corrupt thought."

George Orwell, Politics and the English Language, 1946.

Domain-Specific Languages

- Our approach to DSL development:
 - Formalize the **notation** & **semantics**
 - Implement, test, evaluate, and
 - ... repeat
- Ist iteration 2006-2010
- 2nd iteration 2010-2016 Today's focus

(1") $\left(\frac{\partial \psi}{\partial x}\right)^2 + \left(\frac{\partial \psi}{\partial y}\right)^2 + \left(\frac{\partial \psi}{\partial z}\right)^2 - \frac{2m}{K^2}\left(E + \frac{2}{r}\right)\psi^2 = 0$. $r = \sqrt{x^2 + y^2 + z^2}$. Und unser Variationsproblem lautet

Notation & Expressivity

das Integral erstreckt über den ganzen Raum. Man find daraus in gewohnter Weise

$$\begin{split} \frac{1}{2}\delta J &= \int df \,\delta\psi \, \frac{\partial\psi}{\partial n} - \iiint dx \, dy \, dz \,\delta\psi \left[\varDelta \,\psi + \frac{2m}{K^2} \left(E + \frac{e^2}{r} \right) \psi \right] = 0 \end{split}$$

Es muß also erstens

(5)
$$Aall \perp \frac{2m}{E} \left(\frac{e^2}{E} \right) all \rightarrow 0$$

First Iteration Concept

- Two different languages
 - One for embedded controllers (P-FRP)
 - Discrete events & strictly terminating
 - One for physical world outside
 - Time derivatives, partial derivatives, and undirected equations.

Ist Iteration Concept

- After design, several interactions with
 - practitioners
 - other researchers
- Emerging questions:
 - "Why this particular controller language?"
 - "What if we want a continuous controller?"

Discrete+Continuous=Hybrid

if x = >2 then x + = x/2, n + = n+1noelse

 $\mathbf{x}^{\prime\prime} = -\mathbf{x} - \mathbf{x}^{\prime}$

if (x<0 && x'<0) then x'+ = -0.8*x' else x''= -10

Minimal Core Calculi

- MicroAcumen Disjoint guards, no nesting
 - Deno. Sem. (Moggi, Taha, Bartha)
 - Oper. Sem. (Duracz, Taha, Moggi, Bartha)
- <u>MiniAcumen</u> Adds nesting of conditionals
 - Quadratically shorter (Duracz, Taha)
- More on technical details later

Conservative Extensions

- Binding Time Analysis (BTA) and Automatic Differentiation enable two key extensions:
 - Equational constraints
 - Partial derivatives
- The combination is highly expressive
- Key achievement: Significant static checking and modular user feedback (Zeng, Taha)

Expressivity by Example

- Continuous plant, discrete controller
- A mechanical cam
- Exoskeleton arms (w O'Malley)
- Mechanics of bipedal robots (w Ames)
- Bouncing/sliding ball on a continuously varying surface

Semantics and Implementation

Symptoms and Problems

- Symptoms pointing to semantics questions
 - MATLAB/Simulink goes into infinite loop
 - Modelica semantics impl. dependent
- Problems
 - Hybrid systems introduce new pathologies
 - Unlike software and hardware, simulation cannot even be used for falsification

Pieces of the Puzzle

- Validated Numerics
 - Techniques for computing results with rigorous (guaranteed) bounds
 - Available today mainly as "solver" libraries
- Reachability Analysis
 - Most use symbolics, some val. numerics
 - Don't deal well with pathologies

Hybrid Systems Pathologies

- Two main types:
 - Zeno: Infinite events in "finite" time
 - Chattering: Infinite events in zero time
- Cause simulators to either loop infinitely or produce incorrect results
- Cause reachability tools AND semantics to produce incorrect results

Rigorous Simulation of Zeno systems

- Root cause of problem:
 - Simulators AND semantics use "events" as simulation "steps"
- Insight: These pathologies involve infinite events, but they are often "inconsequential"
- Validated methods are about <u>sets</u>, which facilitates checking fixed points (Konecny, Taha, Bartha, Duracz, Duracz, Ames)

Evaluating Emerging Design

Second Iteration

- Sources of user feedback and observation
 - Used in a course on CPS for five years
 - Early domain expert feedback
 - Case study on advanced driving functions
 - Benchmarking support for robust design
- We say a bit more about the last two

Automotive Case Study

Support for Robust Design

Ongoing & Future Work

- Key areas for for third iteration are:
 - Soundness of op./deno. Semantics
 - & of core validated numerics algorithms
 - Minimization (of scalars and functions)
 - Rigorous bounds on prob. distributions

Publications & Acumen

- All papers available online
 - <u>www.effective-modeling.org</u>
- Acumen open source code:
 - <u>www.acumen-language.org</u>
- Most recent dissertation from group:
 - <u>bit.ly/adam-thesis</u>

Conclusions

- Rigorous simulation
 - addresses foundational problems
 - provides fully automated proofs
 - about behavior of hybrid systems
 - which are useful models of many CPSs
- Open source implementation (Acumen)