
Introduction to Object-Oriented

Modeling and Simulation

with Modelica and OpenModelica

2018-02-06

Tutorial, Version Feb 06, 2018
Peter Fritzson

Linköping University, peter.fritzson@liu.se

Director of the Open Source Modelica Consortium

Vice Chairman of Modelica Association

Speaker:

Bernhard Thiele, Ph.D., bernhard.thiele@liu.se

Researcher at PELAB, Linköping University.

Slides
Based on book and lecture notes by Peter Fritzson

Contributions 2004-2005 by Emma Larsdotter Nilsson, Peter Bunus

Contributions 2006-2008 by Adrian Pop and Peter Fritzson

Contributions 2009 by David Broman, Peter Fritzson, Jan Brugård, and

Mohsen Torabzadeh-Tari

Contributions 2010 by Peter Fritzson

Contributions 2011 by Peter F., Mohsen T,. Adeel Asghar,

Contributions 2012, 2013, 2014, 2015, 2016, 2017 by Peter Fritzson,

Lena Buffoni, Mahder Gebremedhin, Bernhard Thiele

mailto:peter.fritzson@liu.se
mailto:bernhard.thiele@liu.se

2 Copyright © Open Source Modelica Consortium

Peter Fritzson
Principles of Object Oriented

Modeling and Simulation with

Modelica 3.3

A Cyber-Physical Approach

Can be ordered from Wiley or Amazon

Wiley-IEEE Press, 2014, 1250 pages

• OpenModelica
• www.openmodelica.org

• Modelica Association
• www.modelica.org

Tutorial Based on Book, December 2014

Download OpenModelica Software

http://www.openmodelica.org/
http://www.modelica.org/

3 Copyright © Open Source Modelica Consortium

September 2011

232 pages

2015 –Translations

available in

Chinese,

Japanese,

Spanish

Wiley

IEEE Press

For Introductory

Short Courses on

Object Oriented

Mathematical Modeling

Introductory

Modelica Book

4 Copyright © Open Source Modelica Consortium

Acknowledgements, Usage, Copyrights

• If you want to use the Powerpoint version of these slides in
your own course, send an email to: peter.fritzson@ida.liu.se

• Thanks to Emma Larsdotter Nilsson, Peter Bunus, David
Broman, Jan Brugård, Mohsen-Torabzadeh-Tari, Adeel
Asghar, Lena Buffoni, for contributions to these slides.

• Most examples and figures in this tutorial are adapted with
permission from Peter Fritzson’s book ”Principles of Object
Oriented Modeling and Simulation with Modelica 2.1”,
copyright Wiley-IEEE Press

• Some examples and figures reproduced with permission
from Modelica Association, Martin Otter, Hilding Elmqvist,
Wolfram MathCore, Siemens

• Modelica Association: www.modelica.org

• OpenModelica: www.openmodelica.org

http://www.modelica.org/
http://www.openmodelica.org/

5 Copyright © Open Source Modelica Consortium

Outline

Part I

Introduction to Modelica and a

demo example

Part II

Modelica environments

Part III

Modelica language concepts
and textual modeling

Part IV

Graphical modeling and the
Modelica standard library

6 Copyright © Open Source Modelica Consortium

Detailed Schedule 09:00-12:30

09:00 - Introduction to Modeling and Simulation
• Start installation of OpenModelica including OMEdit graphic editor

09:10 - Modelica – The Next Generation Modeling Language

09:25 - Exercises Part I (15 minutes)
• Hands-on exercise on graphical modeling using OMEdit– RL Circuit

09:50 – Part II: Modelica Environments and the OpenModelica Environment

10:20 - Exercises Part II (10 minutes)
• Hands-on exercise for exploring features like 3D animation and FMI support

10:30 – Coffee Break

11:00 – Part III: Modelica Textual Modeling

11:10 - Exercises Part IIIa (10 minutes)
• Hands-on exercises on textual modeling using the OpenModelica environment

11:20 - Modelica Discrete Events, Hybrid, Clocked Properties

11:40 - Exercises Part IIIb (5 minutes)
• Short hands-on exercises on textual modeling using the OpenModelica environment

11:45 – Part IV: Components, Connectors and Connections & Modelica Libraries

11:55 - Exercises Part IV (35 minutes)
• Hands-on exercise on graphical modeling using OMEdit – DC Motor

7 Copyright © Open Source Modelica Consortium

Software Installation - Windows

• Start the software installation

• Install OpenModelica-1.12.0 Download or from the

USB Stick

8 Copyright © Open Source Modelica Consortium

Software Installation – Linux (requires internet connection)

• Go to

https://openmodelica.org/index.php/download/down

load-linux and follow the instructions.

https://openmodelica.org/index.php/download/download-linux

9 Copyright © Open Source Modelica Consortium

Software Installation – MAC (requires internet connection)

• Go to

https://openmodelica.org/index.php/download/down

load-mac and follow the instructions or follow the

instructions written below.

• The installation uses MacPorts. After setting up a

MacPorts installation, run the following commands

on the terminal (as root):
• echo rsync://build.openmodelica.org/macports/ >>

/opt/local/etc/macports/sources.conf # assuming you installed into /opt/local

• port selfupdate

• port install openmodelica-devel

https://openmodelica.org/index.php/download/download-mac

10 Copyright © Open Source Modelica Consortium

Part I

Introduction to Modelica and

a demo example

11 Copyright © Open Source Modelica Consortium

Modelica Background: Stored Knowledge

Model knowledge is stored in books and human

minds which computers cannot access

“The change of motion is proportional

to the motive force impressed “
– Newton

12 Copyright © Open Source Modelica Consortium

Modelica Background: The Form – Equations

• Equations were used in the third millennium B.C.

• Equality sign was introduced by Robert Recorde in 1557

Newton still wrote text (Principia, vol. 1, 1686)

“The change of motion is proportional to the motive force

impressed ”
CSSL (1967) introduced a special form of “equation”:

variable = expression

v = INTEG(F)/m

Programming languages usually do not allow equations!

13 Copyright © Open Source Modelica Consortium

What is Modelica?

• Robotics

• Automotive

• Aircrafts

• Satellites

• Power plants

• Systems biology

A language for modeling of complex cyber-physical systems

14 Copyright © Open Source Modelica Consortium

What is Modelica?

A language for modeling of complex cyber-physical systems

Primary designed for simulation, but there are also other

usages of models, e.g. optimization.

15 Copyright © Open Source Modelica Consortium

What is Modelica?

A language for modeling of complex cyber-physical systems

i.e., Modelica is not a tool

Free, open language

specification:
There exist several free and commercial

tools, for example:

• OpenModelica from OSMC

• Dymola from Dassault systems

• Wolfram System Modeler fr Wolfram MathCore

• SimulationX from ITI

• MapleSim from MapleSoft

• AMESIM from LMS

• JModelica.org from Modelon

• MWORKS from Tongyang Sw & Control

• IDA Simulation Env, from Equa

• ESI Group Modeling tool, ESI Group

Available at: www.modelica.org

Developed and standardized

by Modelica Association

16 Copyright © Open Source Modelica Consortium

Declarative language
Equations and mathematical functions allow acausal modeling,

high level specification, increased correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic, hydraulic,

biological, control, event, real-time, etc...

Everything is a class
Strongly typed object-oriented language with a general class

concept, Java & MATLAB-like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, non-proprietary
Efficiency comparable to C; advanced equation compilation,

e.g. 300 000 equations, ~150 000 lines on standard PC

Modelica – The Next Generation Modeling Language

17 Copyright © Open Source Modelica Consortium

What is acausal modeling/design?

Why does it increase reuse?

The acausality makes Modelica library classes more

reusable than traditional classes containing assignment

statements where the input-output causality is fixed.

Example: a resistor equation:

R*i = v;

can be used in three ways:

i := v/R;

v := R*i;

R := v/i;

Modelica Acausal Modeling

18 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

• Multi-Domain Modeling

• Visual acausal hierarchical component modeling

• Typed declarative equation-based textual language

• Hybrid modeling and simulation

19 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Multi-Domain

Modeling

Cyber-Physical Modeling

Physical

Cyber

3 domains

- electric

- mechanics

- control

20 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Multi-Domain

Modeling

Acausal model

(Modelica)

Causal

block-based

model

(Simulink)

Keeps the physical

structure

Visual Acausal

Hierarchical

Component

Modeling

21 Copyright © Open Source Modelica Consortium

inertial

x
y

axis1

axis2

axis3

axis4

axis5

axis6

r3Drive1

1

r3Motor
r3ControlqdRef

1

S

qRef

1

S

k2

i

k1

i

qddRef cut joint

q: angle

qd: angular velocity
qdd: angular acceleration

qd

tn

Jmotor=J

gear=i

spring=c

fr
ic

=
R

v
0

S

rel

joint=0

S

V
s

-

+

diff

-

+

pow er

emf

L
a
=
(2

5
0
/(2

*D
*w

m
))

R
a
=
2
5
0

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200

R
p
2
=
5
0

Rd4=100

h
a
ll2

R
d
3
=
1
0
0

g1

g2

g3

hall1

g4

g5

rw

cut in

iRef

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q
qd

iRefqRef

qdRef

What is Special about Modelica?

Visual Acausal

Hierarchical

Component

Modeling

Multi-Domain

Modeling

Hierarchical system

modeling

Courtesy of Martin Otter

Srel = n*transpose(n)+(identity(3)- n*transpose(n))*cos(q)-

skew(n)*sin(q);

wrela = n*qd;

zrela = n*qdd;

Sb = Sa*transpose(Srel);

r0b = r0a;

vb = Srel*va;

wb = Srel*(wa + wrela);

ab = Srel*aa;

zb = Srel*(za + zrela + cross(wa, wrela));

22 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Multi-Domain

Modeling

Typed

Declarative

Equation-based

Textual Language

A textual class-based language

OO primary used for as a structuring concept

Behaviour described declaratively using

• Differential algebraic equations (DAE) (continuous-time)

• Event triggers (discrete-time)

class VanDerPol "Van der Pol oscillator model"

Real x(start = 1) "Descriptive string for x”;

Real y(start = 1) "y coordinate”;

parameter Real lambda = 0.3;

equation

der(x) = y;

der(y) = -x + lambda*(1 - x*x)*y;

end VanDerPol;

Differential equations

Variable

declarations

Visual Acausal

Hierarchical

Component

Modeling

23 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Hybrid

Modeling

Visual Acausal

Component

Modeling

Multi-Domain

Modeling

Typed

Declarative

Equation-based

Textual Language

time

Continuous-time

Discrete-time

Hybrid modeling =

continuous-time + discrete-time modeling

Clocked discrete-time

24 Copyright © Open Source Modelica Consortium

Block Diagram (e.g. Simulink, ...) or

Proprietary Code (e.g. Ada, Fortran, C,...)

vs Modelica

Proprietary

Code

Block Diagram

Modelica

Systems

Definition

System

Decomposition

Modeling of

Subsystems

Causality

Derivation

(manual derivation of

input/output relations) Implementation Simulation

Modelica – Faster Development, Lower Maintenance

than with Traditional Tools

25 Copyright © Open Source Modelica Consortium

Modelica vs Simulink Block Oriented Modeling

Simple Electrical Model

R1=10

C=0.01 L=0.1

R2=100

G

AC=220

p
n

p

p p

p

p

n

n

n n

-1

 1

sum3

+1

 -1

sum1

+1

+1

sum2

1

s

l2

1

s

l1sinln

1/R1

Res1

1/C

Cap

1/L

Ind

R2

Res2

Modelica:

Physical model –

easy to understand

Simulink:

Signal-flow model – hard to

understand

Keeps the

physical

structure

26 Copyright © Open Source Modelica Consortium

Graphical Modeling - Using Drag and Drop Composition

27 Copyright © Open Source Modelica Consortium

• A DC motor can be thought of as an electrical circuit which

also contains an electromechanical component

model DCMotor

Resistor R(R=100);

Inductor L(L=100);

VsourceDC DC(f=10);

Ground G;

ElectroMechanicalElement EM(k=10,J=10, b=2);

Inertia load;

equation

connect(DC.p,R.n);

connect(R.p,L.n);

connect(L.p, EM.n);

connect(EM.p, DC.n);

connect(DC.n,G.p);

connect(EM.flange,load.flange);

end DCMotor

load

EM

DC

G

R L

Multi-Domain (Electro-Mechanical) Modelica Model

28 Copyright © Open Source Modelica Consortium

Automatic transformation to ODE or DAE for simulation:

(load component not included)

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

29 Copyright © Open Source Modelica Consortium

Model Translation Process to Hybrid DAE to Code

Modelica Model

Flat model Hybrid DAE

Sorted equations

C Code

Executable

Optimized sorted

equations

Modelica

Model

Modelica

Graphical Editor
Modelica

Source code

Translator

Analyzer

Optimizer

Code generator

C Compiler

Simulation

Modelica

Textual Editor

Frontend

Backend

"Middle-end"

Modeling

Environment

30 Copyright © Open Source Modelica Consortium

Modelica in Power Generation

GTX Gas Turbine Power Cutoff Mechanism

Hello

Courtesy of Siemens Industrial Turbomachinery AB

Developed

by MathCore

for Siemens

31 Copyright © Open Source Modelica Consortium

Modelica in Automotive Industry

32 Copyright © Open Source Modelica Consortium

Modelica in Avionics

33 Copyright © Open Source Modelica Consortium

Modelica in Biomechanics

34 Copyright © Open Source Modelica Consortium

Application of Modelica in Robotics Models

Real-time Training Simulator for Flight, Driving

Courtesy of Tobias Bellmann, DLR,

Oberphaffenhofen, Germany

• Using Modelica models

generating real-time

code

• Different simulation

environments (e.g.

Flight, Car Driving,

Helicopter)

• Developed at DLR

Munich, Germany

• Dymola Modelica tool

(Movie demo)

35 Copyright © Open Source Modelica Consortium

• GT unit, ST unit, Drum
boilers unit and HRSG units,
connected by thermo-fluid
ports and by signal buses

• Low-temperature parts

(condenser, feedwater

system, LP circuits) are

represented by trivial

boundary conditions.

• GT model: simple law

relating the electrical load

request with the exhaust gas

temperature and flow rate.

Combined-Cycle Power Plant
Plant model – system level

Courtesy Francesco Casella, Politecnico di Milano – Italy

and Francesco Pretolani, CESI SpA - Italy

36 Copyright © Open Source Modelica Consortium

Attitude control for satellites

using magnetic coils as actuators

Torque generation mechanism:

interaction between coils and

geomagnetic field

Formation flying on elliptical orbits

Control the relative motion of two or more

spacecraft

Modelica Spacecraft Dynamics Library

Courtesy of Francesco Casella, Politecnico di Milano, Italy

37 Copyright © Open Source Modelica Consortium

System Dynamics – World Society Simulation
Limits to Material Growth; Population, Energy and Material flows

• System Dynamics Modelica library by Francois Cellier (ETH), et al in OM distribution.

• Warming converts many agriculture areas to deserts (USA, Europe, India, Amazonas)

• Ecological breakdown around 2080-2100, drastic reduction of world population

• To avoid this: Need for massive investments in sustainable technology and renewable

energy sources

CO2 Emissions per

person:

• USA 17 ton/yr

• Sweden 7 ton/yr

• India 1.4 ton/yr

• Bangladesh 0.3 ton/yr

Left. World3 simulation

with OpenModelica

• 2 collapse scenarios

(close to current

developments)

• 1 sustainable scenario

(green).

38 Copyright © Open Source Modelica Consortium

World3 Simulations with Different Start Years

for Sustainable Policies – Collapse if starting too late

39 Copyright © Open Source Modelica Consortium

40 Copyright © Open Source Modelica Consortium

What Can You Do?
Need Global Sustainability Mass Movement

• Develop smart Cyber-Physical systems for reduced energy and material footprint

• Model-based circular economy for re-use of products and materials

• Promote sustainable lifestyle and technology

• Install electric solar PV panels

• Buy shares in cooperative wind power

20 sqm solar panels on garage roof, Nov 2012

Generated 2700 W at noon March 10, 2013

Expanded to 93 sqm, 12 kW, March 2013

House produced 11600 kwh, used 9500 kwh

Avoids 10 ton CO2 emission per year

41 Copyright © Open Source Modelica Consortium

Example Electric Cars
Can be charged by electricity from own solar panels

Renault ZOE; 5 seat; Range:

22kw (2014) vs 40 kw battery (2017)

• EU-drive cycle 210 km, now 400 km

• Realistic Swedish drive cycle:

• Summer: 165 km, now 300 km

• Winter: 110 km, now 200 km

Cheap fast AC chargers (22kw, 43kw)

Tesla model S

range 480 km

DLR ROboMObil

• experimental electric car

• Modelica models

42 Copyright © Open Source Modelica Consortium

What Can You Do?
More Train Travel – Less Air Travel

• Air travel by Swedish Citizens

– about the same emissions

as all personal car traffic in

Sweden!

• By train from Linköping to

Munich and back – saves

almost 1 ton of CO2e

emissions compared to flight

• Leave Linköping 07.00

in Munich 23.14

More Examples, PF travel 2016:

• Train Linköping-Paris, Dec 3-

6, EU project meeting

• Train Linköping-Dresden,

Dec 10-16, 1 week workshop

Train

travel

Linköping

- Munich

43 Copyright © Open Source Modelica Consortium

Small rectangles – surface needed

for 100% solar energy for humanity

44 Copyright © Open Source Modelica Consortium

Sustainable Society Necessary for Human Survival

Almost Sustainable

• India, recently 1.4 ton C02/person/year

• Healthy vegetarian food

• Small-scale agriculture

• Small-scale shops

• Simpler life-style (Mahatma Gandhi)

Non-sustainable

• USA 17 ton CO2, Sweden 7 ton CO2/yr

• High meat consumption (1 kg beef uses ca

4000 L water for production)

• Hamburgers, unhealthy , includes beef

• Energy-consuming mechanized agriculture

• Transport dependent shopping centres

• Stressful materialistic lifestyle

Gandhi – role model for

future less materialistic

life style

45 Copyright © Open Source Modelica Consortium

Brief Modelica History

• First Modelica design group meeting in fall 1996
• International group of people with expert knowledge in both language design

and physical modeling

• Industry and academia

• Modelica Versions
• 1.0 released September 1997

• 2.0 released March 2002

• 2.2 released March 2005

• 3.0 released September 2007

• 3.1 released May 2009

• 3.2 released March 2010

• 3.3 released May 2012

• 3.2 rev 2 released November 2013

• 3.3 rev 1 released July 2014

• 3.4 released April 2017

• Modelica Association established 2000 in Linköping
• Open, non-profit organization

46 Copyright © Open Source Modelica Consortium

Modelica Conferences

• The 1st International Modelica conference October, 2000

• The 2nd International Modelica conference March 18-19, 2002

• The 3rd International Modelica conference November 5-6, 2003 in Linköping,
Sweden

• The 4th International Modelica conference March 6-7, 2005 in Hamburg, Germany

• The 5th International Modelica conference September 4-5, 2006 in Vienna, Austria

• The 6th International Modelica conference March 3-4, 2008 in Bielefeld, Germany

• The 7th International Modelica conference Sept 21-22, 2009 in Como, Italy

• The 8th International Modelica conference March 20-22, 2011 in Dresden, Germany

• The 9th International Modelica conference Sept 3-5, 2012 in Munich, Germany

• The 10th International Modelica conference March 10-12, 2014 in Lund, Sweden

• The 11th International Modelica conference Sept 21-23, 2015 in Versailles, Paris

• The 12th International Modelica conference May 15-17, 2017 in Prague, Czech
Republic

47 Copyright © Open Source Modelica Consortium

Exercises Part I

Hands-on graphical modeling

(15 minutes)

48 Copyright © Open Source Modelica Consortium

Exercises Part I – Basic Graphical Modeling

• (See instructions on next two pages)

• Start the OMEdit editor (part of OpenModelica)

• Draw the RLCircuit

• Simulate

A
C

R=10

R1

L=0.1

L

G

L=1R=100

SimulationThe RLCircuit

49 Copyright © Open Source Modelica Consortium

Exercises Part I – OMEdit Instructions (Part I)

• Start OMEdit from the Program menu under OpenModelica

• Go to File menu and choose New, and then select Model.

• E.g. write RLCircuit as the model name.

• For more information on how to use OMEdit, go to Help and choose

User Manual or press F1.

• Under the Modelica Library:

• Contains The standard Modelica library components

• The Modelica files contains the list of models you

have created.

50 Copyright © Open Source Modelica Consortium

Exercises Part I – OMEdit Instructions (Part II)

• For the RLCircuit model, browse the Modelica standard library and add

the following component models:

• Add Ground, Inductor and Resistor component models from

Modelica.Electrical.Analog.Basic package.

• Add SineVoltage component model from Modelica.Electrical.Analog.Sources

package.

• Make the corresponding connections between the component models

as shown in the previous slide.

• Simulate the model

• Go to Simulation menu and choose simulate or click on the simulate button in the

toolbar.

• Plot the instance variables

• Once the simulation is completed, a plot variables list will appear on the right side.

Select the variable that you want to plot.

51 Copyright © Open Source Modelica Consortium

Part II

Modelica environments and OpenModelica

52 Copyright © Open Source Modelica Consortium

Courtesy

Wolfram

Research

• Wolfram Research

• USA, Sweden

• General purpose

• Mathematica integration

• www.wolfram.com

• www.mathcore.com

Car model graphical view

Wolfram System Modeler – Wolfram MathCore

Mathematica

Simulation and

analysis

http://www.wolfram.com/
http://www.mathcore.com/

53 Copyright © Open Source Modelica Consortium

• Dassault Systemes Sweden

• Sweden

• First Modelica tool on the market

• Initial main focus on automotive

industry

• www.dymola.com

Dymola

54 Copyright © Open Source Modelica Consortium

Simulation X

• ITI Gmbh (Just bought by ESI

Group)

• Germany

• Mechatronic systems

• www.simulationx.com

55 Copyright © Open Source Modelica Consortium

MapleSim

• Maplesoft

• Canada

• Recent Modelica tool on the

market

• Integrated with Maple

• www.maplesoft.com

56 Copyright © Open Source Modelica Consortium

The OpenModelica Environment

www.OpenModelica.org

http://www.openmodelica.org/

57 Copyright © Open Source Modelica Consortium

OpenModelica – Free Open Source Tool
developed by the Open Source Modelica Consortium (OSMC)

• Graphical editor

• Model compiler

and simulator

• Debugger

• Performance

analyzer

• Dynamic optimizer

• Symbolic modeling

• Parallelization

• Electronic

Notebook and

OMWebbook

for teaching

• Spokentutorial for

teaching

EngineV6 11116

equation model

58 Copyright © Open Source Modelica Consortium

• Advanced Interactive Modelica compiler (OMC)
• Supports most of the Modelica Language

• Modelica and Python scripting

• Basic environment for creating models
• OMShell – an interactive command handler

• OMNotebook – a literate programming notebook

• MDT – an advanced textual environment in Eclipse

58

• OMEdit graphic Editor

• OMDebugger for equations

• OMOptim optimization tool

• OM Dynamic optimizer collocation

• ModelicaML UML Profile

• MetaModelica extension

• ParModelica extension

The OpenModelica Open Source Environment
www.openmodelica.org

http://www.ida.liu.se/~adrpo/mdt/mdt-0.6.8.1/MDT-0.6.8.1-ClassElementsCompletion.JPG

59 Copyright © Open Source Modelica Consortium

Industrial members
• ABB AB, Sweden

• Berger IT-Cosmos, Germany

• Bosch Rexroth AG, Germany

• Brainheart Energy AB, Sweden

• CDAC Centre, Kerala, India

• Creative Connections, Prague

• DHI, Aarhus, Denmark

• Dynamica s.r.l., Cremona, Italy

• EDF, Paris, France

• Equa Simulation AB, Sweden

• Fraunhofer IWES, Bremerhaven

• ISID Dentsu, Tokyo, Japan

Open-source community services

• Website and Support Forum

• Version-controlled source base

• Bug database

• Development courses

• www.openmodelica.org

Code Statistics

• FH Bielefeld, Bielefeld, Germany

• University of Bolivar, Colombia

• TU Braunschweig, Germany

• University of Calabria, Italy

• Univ California, Berkeley, USA

• Chalmers Univ, Control,Sweden

• Chalmers Univ, Machine, Sweden

• TU Darmstadt, Germany

• TU Dresden, Germany

• Université Laval, Canada

• Georgia Inst of Technology, USA

• Ghent University, Belgium

• Halmstad University, Sweden

University members

OSMC – International Consortium for Open Source

Model-based Development Tools, 49 members May 2017

Founded Dec 4, 2007
• Maplesoft, Canada

• RTE France, Paris, France

• Saab AB, Linköping, Sweden

• Scilab Enterprises, France

• SKF, Göteborg, Sweden

• TLK Thermo, Germany

• Siemens Turbo, Sweden

• Sozhou Tongyuan, China

• Talent Swarm, Spain

• VTI, Linköping, Sweden

• VTT, Finland

• Wolfram MathCore, Sweden

• Heidelberg University, Germany

•TU Hamburg/Harburg Germany

• IIT Bombay, Mumbai, India

• KTH, Stockholm, Sweden

• Linköping University, Sweden

• Univ of Maryland, Syst Eng USA

• Univ of Maryland, CEEE, USA

• Politecnico di Milano, Italy

• Ecoles des Mines, CEP, France

• Mälardalen University, Sweden

• Univ Pisa, Italy

• Univ College SouthEast Norway

60 Copyright © Open Source Modelica Consortium

Spoken-Tutorial step-by-step OpenModelica and Modelica

Tutorial Using OMEdit. Link from www.openmodelica.org

61 Copyright © Open Source Modelica Consortium

OMNotebook Electronic Notebook with DrModelica

• Primarily for teaching

• Interactive electronic book

• Platform independent

Commands:

• Shift-return (evaluates a cell)

• File Menu (open, close, etc.)

• Text Cursor (vertical), Cell
cursor (horizontal)

• Cell types: text cells &
executable code cells

• Copy, paste, group cells

• Copy, paste, group text

• Command Completion (shift-
tab)

62 Copyright © Open Source Modelica Consortium

OMnotebook Interactive Electronic Notebook

Here Used for Teaching Control Theory

65 Copyright © Open Source Modelica Consortium

Mathematical Typesetting in OMNotebook

and OMWebbook

OMNotebook supports Latex formatting for mathematics

Latex instructions

can be hidden by

double clicking the

Cell in tree view

Contents in

OMWebbook

Generated from

OMNotebook

66 Copyright © Open Source Modelica Consortium

OpenModelica Environment Demo

67 Copyright © Open Source Modelica Consortium

OpenModelica MDT – Eclipse Plugin

• Browsing of packages, classes, functions

• Automatic building of executables;

separate compilation

• Syntax highlighting

• Code completion,

Code query support for developers

• Automatic Indentation

• Debugger

(Prel. version for algorithmic subset)

68 Copyright © Open Source Modelica Consortium
68

OpenModelica MDT: Code Outline and Hovering Info

Code Outline for
easy navigation within

Modelica files

Identifier Info on

Hovering

69 Copyright © Open Source Modelica Consortium

OpenModelica Simulation in Web Browser Client

OpenModelica compiles

to efficient

Java Script code which is

executed in web browser

MultiBody RobotR3.FullRobot

71 Copyright © Open Source Modelica Consortium

OMPython – Python Scripting with OpenModelica

• Interpretation of Modelica

commands and expressions

• Interactive Session handling

• Library / Tool

• Optimized Parser results

• Helper functions

• Deployable, Extensible and

Distributable

72 Copyright © Open Source Modelica Consortium

PySimulator Package

• PySimulator, a

simulation and

analysis package

developed by DLR

• Free, downloadable

• Uses OMPython to

simulate Modelica

models by

OpenModelica

73 Copyright © Open Source Modelica Consortium

OMEdit 3D Visualization of Multi-Body Systems

• Built-in feature of OMEdit to

animate MSL-Multi-Body

shapes

• Visualization of simulation

results

• Animation of geometric

primitives and CAD-Files

New

Animation

Window

Simulate

with

Animation

74 Copyright © Open Source Modelica Consortium

Visualization using Third-Party Libraries:

DLR Visualization Library

• Advanced, model-integrated

and vendor-unspecific

visualization tool for

Modelica models

• Offline, online and real-time

animation

• Video-export function

• Commercial library, feature

reduced free Community

Edition exists

Courtesy of Dr. Tobias Bellmann (DLR)

75 Copyright © Open Source Modelica Consortium

Extending Modelica with PDEs

for 2D, 3D flow problems – Research

Insulated boundary:

Poorly insulated boundary:

20inf =T

Conducting boundary:
60=u

class PDEModel

HeatNeumann h_iso;

Dirichlet h_heated(g=50);

HeatRobin h_glass(h_heat=30000);

HeatTransfer ht;

Rectangle2D dom;

equation

dom.eq=ht;

dom.left.bc=h_glass;

dom.top.bc=h_iso;

dom.right.bc=h_iso;

dom.bottom.bc=h_heated;

end PDEModel;

Prototype in OpenModelica 2005

PhD Thesis by Levon Saldamli

www.openmodelica.org

Currently not operational

http://www.openmodelica.org/

76 Copyright © Open Source Modelica Consortium

Failure Mode and Effects Analysis (FMEA) in OM

• Modelica models augmented with reliability properties can be used to generate

reliability models in Figaro, which in turn can be used for static reliability analysis

• Prototype in OpenModelica integrated with Figaro tool (which is becoming open-

source)

Modelica Library

Application

Modelica model

Simulation

Figaro Reliability

Library
Reliability model

in Figaro
FT generation FT processing

Automated

generation

77 Copyright © Open Source Modelica Consortium

Model structure Model Variables

Optimized

parameters
Optimized

Objectives

OMOptim – Optimization (1)

78 Copyright © Open Source Modelica Consortium

Problems

Solved problems Result plot Export result data .csv

OMOptim – Optimization (2)

79 Copyright © Open Source Modelica Consortium

Multiple-Shooting and Collocation

Dynamic Trajectory Optimization

• Minimize a goal function subject to model

equation constraints, useful e.g. for NMPC

• Multiple Shooting/Collocation

• Solve sub-problem in each sub-interval

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1 2 4 8 16

MULTIPLE_COLLOCATION

ipopt [scaled] jac_g [scaled]

Example speedup, 16 cores:

80 Copyright © Open Source Modelica Consortium

OpenModelica Dynamic Optimization Collocation

81 Copyright © Open Source Modelica Consortium

General Tool Interoperability & Model Exchange

Functional Mock-up Interface (FMI)

• FMI development was started by ITEA2 MODELISAR project. FMI is a

Modelica Association Project now

• Version 1.0

• FMI for Model Exchange (released Jan 26,2010)

• FMI for Co-Simulation (released Oct 12,2010)

• Version 2.0

• FMI for Model Exchange and Co-Simulation (released July 25,2014)

• > 80 tools supporting it (https://www.fmi-standard.org/tools)

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling
courtesy Daimler

82 Copyright © Open Source Modelica Consortium

Functional Mockup Units

• Import and export of input/output blocks –

Functional Mock-Up Units – FMUs, described by

• differential-, algebraic-, discrete equations,

• with time-, state, and step-events

• An FMU can be large (e.g. 100 000 variables)

• An FMU can be used in an embedded system (small overhead)

• FMUs can be connected together

83 Copyright © Open Source Modelica Consortium

OMSimulator – Integrated FMI and TLM-based

Cosimulator/Simulator

OMSimulator

Integrated TLM & FMI

libOMSimulator

Simulink wrapper

Beast wrapper

ADAMS wrapper

TLM component

C-API

interface

OMEdit

Papyrus

Scripting

…

OMC

FMI component

FMI component

FMI FMU

Modelica model

Composite FMI

component

Unified co-simulation/simulation tool

• FMI 2.0 (model exchange and co-

simulation)

• TLM (transition line modelling)

• Real-time and offline simulation

Standalone open source simulation tool

with rich interfaces

• C/Java

• Scripting languages

Co-simulation framework as a solid base

for engineering tools

• Integration into

OpenModelica/Papyrus

• Open for integration into third-party

tools and specialized applications

(e.g. flight simulators, optimization)

Main Framework Aspects

OMSimulator in OpenModelica 1.12.0

• Supports both FMI and TLM

• TLM connections are mandatory (optional in the future)

• Co-simulation to multiple tools

• Composite model editor operational

• External API interface and scripting not yet finalized

84 Copyright © Open Source Modelica Consortium

OMSimulator Composite Model Editor with 3D Viewer

• Composite model editor with

3D visualization of

connected mechanical

model components which

can be FMUs, Modelica

models, etc., or co-simulated

components

• 3D animation possible

• Composite model saved as

XML-file

85 Copyright © Open Source Modelica Consortium

OpenModelica Functional Mockup Interface (FMI)

86 Copyright © Open Source Modelica Consortium

FMI in OpenModelica

• Model Exchange implemented (FMI 1.0 and FMI 2.0)

• FMI 2.0 Co-simulation available

• The FMI interface is accessible via the OpenModelica scripting

environment and the OpenModelica connection editor

87 Copyright © Open Source Modelica Consortium

OpenModelica Code Generators for

Embedded Real-time Code

• A full-fledged OpenModelica-generated source-code FMU

(Functional Mockup Unit) code generator

• Can be used to cross-compile FMUs for platforms with more

available memory.

• These platforms can map FMI inputs/outputs to analog/digital I/O in

the importing FMI master.

• A very simple code generator generating a small footprint

statically linked executable.

• Not an FMU because there is no OS, filesystem, or shared objects in

microcontrollers.

88 Copyright © Open Source Modelica Consortium

Code Generator Comparison, Full vs Simple

Full Source-code FMU

targeting 8-bit AVR proc

Simple code generator

targeting 8-bit AVR proc

Hello World

(0 equations)

43 kB flash memory

23 kB variables (RAM)

130 B flash memory

0 B variables (RAM)

SBHS Board (real-time

PID controller, LCD, etc)

68 kB flash memory

25 kB variables (RAM)

4090 B flash memory

151 B variables (RAM)

The largest 8-bit AVR processor MCUs (Micro Controller Units) have 16 kB SRAM.

One of the more (ATmega328p; Arduino Uno) has 2 kB SRAM.

The ATmega16 we target has 1 kB SRAM available (stack, heap, and global variables)

89 Copyright © Open Source Modelica Consortium

The Simple Code Generator

Supports only a limited Modelica subset

• No initialization (yet)

• No strongly connected components

• No events

• No functions (except external C and built-in)

• Only parts that OpenModelica can generate good and efficient code

for right now (extensions might need changes in the intermediate

code)

• Unused variables are not accepted (OM usually duplicates all

variables for pre() operators, non-linear system guesses, etc…

but only a few of them are actually used)

• FMU-like interface (but statically linked)

90 Copyright © Open Source Modelica Consortium

• Free library for interfacing hardware drivers

• Cross-platform (Windows and Linux)

• UDP, SharedMemory, CAN, Keyboard,

Joystick/Gamepad

• DAQ cards for digital and analog IO (only Linux)

• Developed for interactive real-time simulations

Communication & I/O Devices:

MODELICA_DEVICEDRIVERS Library

https://github.com/modelica/Modelica_DeviceDrivers/

https://github.com/modelica/Modelica_DeviceDrivers/

91 Copyright © Open Source Modelica Consortium

OpenModelica and Device Drivers Library

AVR Processor Support

● No direct Atmel AVR or Arduino support in the OpenModelica

compiler

● Everything is done by the Modelica DeviceDrivers library

● All I/O is modeled explicitly in Modelica, which makes code

generation very simple

Modelica Device Drivers Library - AVR processor sub-packages:

• IO.AVR.Analog (ADC – Analog Input)

• IO.AVR.PWM (PWM output)

• IO.AVR.Digital.LCD (HD44780 LCD driver on a single 8-pin digital port)

• OS.AVR.Timers (Hardware timer setup, used by real-time and PWM

packages)

• OS.AVR.RealTime (very simple real-time synchronization; one interrupt per

clock cycle; works for single-step solvers)

92 Copyright © Open Source Modelica Consortium

Single board heating system (IIT

Bombay)

• Use for teaching basic control

theory

• Usually controlled by serial

port (set fan value, read

temperature, etc)

• OpenModelica can generate

code targeting the ATmega16

on the board (AVR-ISP

programmer in the lower left).

Program size is 4090

bytes including LCD driver

and PID-controller (out of 16

kB flash memory available).

Use Case: SBHS (Single Board Heating System)

Movie Demo!

97 Copyright © Open Source Modelica Consortium

OpenModelica – ModelicaML UML Profile
SysML/UML to Modelica OMG Standardization

• ModelicaML is a UML Profile for SW/HW modeling
• Applicable to “pure” UML or to other UML profiles, e.g. SysML

• Standardized Mapping UML/SysML to Modelica
• Defines transformation/mapping for executable models

• Being standardized by OMG

• ModelicaML
• Defines graphical concrete syntax (graphical notation for diagram) for

representing Modelica constructs integrated with UML

• Includes graphical formalisms (e.g. State Machines, Activities,

Requirements)

• Which do not exist in Modelica language

• Which are translated into executable Modelica code

• Is defined towards generation of executable Modelica code

• Current implementation based on the Papyrus UML tool + OpenModelica

98 Copyright © Open Source Modelica Consortium

Example: Simulation and Requirements Evaluation

Req. 001 is instantiated 2 times (there
are 2 tanks in the system)

tank-height is 0.6m

Req. 001 for the tank2 is
violated

Req. 001 for the tank1 is not
violated

99 Copyright © Open Source Modelica Consortium

vVDR Method –

virtual Verification of Designs vs Requirements

Formalize
Requirements

Formalize Designs

Formalize
Scenarios

Create Verification
Models

Execute and
Create Report

Analyze Results

RMM
Requirement

Monitor Models

Scenario

Models
SM

Designs

Alternative

Models

DAM

VM Verification Models

AUTOMATED

Task Created Artifact

Goal: Enable on-demand

verification of designs

against requirements

using automated model

composition at any time

during development.

AUTOMATED

Actor

Reports

*

100 Copyright © Open Source Modelica Consortium

• ABB OPTIMAX® provides advanced model based control products

for power generation and water utilities

• ABB: “ABB uses several compatible Modelica tools, including

OpenModelica, depending on specific application needs.”

• ABB: “OpenModelica provides outstanding debugging features that

help to save a lot of time during model development.”

ABB Industry Use of OpenModelica FMI 2.0 and Debugger

101 Copyright © Open Source Modelica Consortium

Recent Large-scale ABB OpenModelica Application
Generate code for controlling 7.5 to 10% of German Power Production

ABB OPTIMAX PowerFit

• Real-time optimizing control of large-
scale virtual power plant for system
integration

• Software including OpenModelica now
used in managing more than 2500
renewable plants, total up to 1.5 GW

High scalability supporting growth

• 2012: initial delivery (for 50 plants)

• 2013: SW extension (500 plants)

• 2014: HW+SW extension (> 2000)

• 2015: HW+SW extension,
incl. OpenModelica generating optimizing
controller code in FMI 2.0 form

Manage 7.5% - 10% of German Power

• 2015, Aug: OpenModelica Exports FMUs
for real-time optimizing control (seconds)
of about 5.000 MW (7.5%) of power in
Germany

102 Copyright © Open Source Modelica Consortium

Industrial Product with OEM Usage of OpenModelica –
MIKE by DHI, WEST Water Quality

• MIKE by DHI, www.mikebydhi.com, WEST Water Quality modeling and

simulation environment

• Includes a large part of the OpenModelica compiler using the OEM license.

• Here a water treatment effluent and sludge simulation.

103 Copyright © Open Source Modelica Consortium

Performance Profiling for faster Simulation
(Here: Profiling equations of Siemens Drum boiler model with evaporator

• Measuring performance of equation blocks to find bottlenecks

• Useful as input before model simplification for real-time applications

• Integrated with the debugger to point out the slow equations

• Suitable for real-time profiling (collect less information), or a complete

view of all equation blocks and function calls

Conclusion from the evaluation:

“…the profiler makes the process

of performance optimization

radically shorter.”

104 Copyright © Open Source Modelica Consortium

OpenModelica MDT Algorithmic Code Debugger

105 Copyright © Open Source Modelica Consortium

The OpenModelica MDT Debugger (Eclipse-based)

Using Japanese Characters

106 Copyright © Open Source Modelica Consortium

OpenModelica Equation Model Debugger

0 = y + der(x * time * z); z = 1.0;

(1) substitution:

y + der(x * (time * z))

=>

y + der(x * (time * 1.0))

(2) simplify:

y + der(x * (time * 1.0))

=>

y + der(x * time)

(3) expand derivative (symbolic

diff):

y + der(x * time)

=>y + (x + der(x) * time)

(4) solve:

0.0 = y + (x + der(x) * time)

=>

der(x) = ((-y) - x) / time

time <> 0

Showing

equation

transformations

of a model:

Mapping run-time error to source model position

107 Copyright © Open Source Modelica Consortium

Transformations Browser – EngineV6 Overview

(11 116 equations in model)

108 Copyright © Open Source Modelica Consortium

Equation Model Debugger on Siemens Model
(Siemens Evaporator test model, 1100 equations)

Pointing out the buggy equation

y = u1/u2;

that gives division by zero

109 Copyright © Open Source Modelica Consortium

Debugging Example – Detecting Source of Chattering

(excessive event switching) causing bad performance

• Lkjlkjlj

• Lkjlkj

• lkjklj

equation

z = if x > 0 then -1 else 1;

y = 2 * z;

…

110 Copyright © Open Source Modelica Consortium

Error Indication – Simulation Slows Down

112 Copyright © Open Source Modelica Consortium

Exercise 1.2: Use 3D Visualization for Robot model

• Open the

Modelica.Mechanics.MultiBody.Examples.Systems.

RobotR3.fullRobot

example in OMEdit

• Press Simulate with Animation

• Replay the animation

• Compare with the plot

113 Copyright © Open Source Modelica Consortium

Exercise 1.3: Visualization using the

DLR Visualization Community Edition (1)

• Unpack

VisualizationCommunityEdition.zip

• Open the library in OMEdit

• Simulate the EMotor example

• The DLR SimVis visualization app should

start automatically

• Export the animation

(File→Export Replay as Video)

Please note: As of OpenModelica

v1.12 support for the library is only

partial and it is not yet as stable, fast

and complete as for the Dymola tool

(work in progress!)

114 Copyright © Open Source Modelica Consortium

Exercise 1.3: Visualization using the

DLR Visualization Community Edition (2)

Goal: Instead of OMEdit, use OMShell for

running the examples

• Enter the Visualization directory in the

accompanying files and use an editor to

open the OpenModelica scripting file

runVisualizationCommunityExamples.mos

• Change the “libraryPath” variable in the

script to the respective library path on

your machine

• Start the OMShell tool

• You can copy-paste the commands from

the scripting file into the OMShell tool

115 Copyright © Open Source Modelica Consortium

Exercise 1.4: FMU export and import (1)

• Open OMEdit and check FMI settings in

Tools->Options

116 Copyright © Open Source Modelica Consortium

Exercise 1.4: FMU export and import (2)

• Find the FMIExercise.mo file in the

tutorial folder and open it in OMEdit

• Goal: (1) Export the PI block as FMU, (2)

import the exported FMU, (3) compare

simulation results of imported PI FMU

block vs. native use of the PI block

• Export PI block by using right-click

context menu as indicated at the right

• The message browser shows where the

FMU was generated on your system

117 Copyright © Open Source Modelica Consortium

Exercise 1.4: FMU export and import (3)

• Import FMU by selecting

FMI->Import FMU from the

menu

• Find and select the FMU in the

directory where it was exported

before as indicated at the right

• The FMU should now appear

in the package browser

118 Copyright © Open Source Modelica Consortium

Exercise 1.4: FMU export and import (4)

• The imported FMU is wrapped inside a standard

Modelica model and can be inserted by drag and drop

into an existing model

• The model TestPIFMU has been prepared so that the

results of the imported FMU can be easily compared to

the native block. Simulate it and compare results.

119 Copyright © Open Source Modelica Consortium

Part III

Modelica language concepts

and textual modeling

Hybrid

Modeling

Typed

Declarative

Equation-based

Textual Language

120 Copyright © Open Source Modelica Consortium

A resistor equation:
R*i = v;

Acausal Modeling

The order of computations is not decided at modeling time

Acausal Causal

Causal possibilities:
i := v/R;

v := R*i;

R := v/i;

Visual

Component

Level

Equation

Level

121 Copyright © Open Source Modelica Consortium

Typical Simulation Process

122 Copyright © Open Source Modelica Consortium

Simple model - Hello World!

model HelloWorld "A simple equation"

Real x(start=1);

parameter Real a = -1;

equation

der(x)= a*x;

end HelloWorld;

Equation: x’ = - x

Initial condition: x(0) = 1

Simulation in OpenModelica environment

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

simulate(HelloWorld, stopTime = 2)

plot(x)

Name of model

Continuous-time

variable

Initial condition

Parameter, constant

during simulation

Differential equation

123 Copyright © Open Source Modelica Consortium

Modelica Variables and Constants

• Built-in primitive data types

Boolean true or false

Integer Integer value, e.g. 42 or –3

Real Floating point value, e.g. 2.4e-6

String String, e.g. “Hello world”

Enumeration Enumeration literal e.g. ShirtSize.Medium

• Parameters are constant during simulation

• Two types of constants in Modelica
• constant

• parameter
constant Real PI=3.141592653589793;

constant String redcolor = "red";

constant Integer one = 1;

parameter Real mass = 22.5;

124 Copyright © Open Source Modelica Consortium

A Simple Rocket Model

()abs

thrust mass gravity
acceleration

mass

mass massLossRate thrust

altitude velocity

velocity acceleration

− 
=

 = − 

 =

 =

class Rocket "rocket class"

parameter String name;

Real mass(start=1038.358);

Real altitude(start= 59404);

Real velocity(start= -2003);

Real acceleration;

Real thrust; // Thrust force on rocket

Real gravity; // Gravity forcefield

parameter Real massLossRate=0.000277;

equation

(thrust-mass*gravity)/mass = acceleration;

der(mass) = -massLossRate * abs(thrust);

der(altitude) = velocity;

der(velocity) = acceleration;

end Rocket;

new model
declaration

comment
parameters (changeable

before the simulation)

name + default value

differentiation with

regards to time

mathematical

equation (acausal)

floating point

type

start value

thrustapollo13

mg

Rocket

125 Copyright © Open Source Modelica Consortium

Celestial Body Class

class CelestialBody

constant Real g = 6.672e-11;

parameter Real radius;

parameter String name;

parameter Real mass;

end CelestialBody;

An instance of the class can be

declared by prefixing the type

name to a variable name

...

CelestialBody moon;

...

A class declaration creates a type name in Modelica

The declaration states that moon is a variable

containing an object of type CelestialBody

126 Copyright © Open Source Modelica Consortium

Moon Landing

class MoonLanding

parameter Real force1 = 36350;

parameter Real force2 = 1308;

protected

parameter Real thrustEndTime = 210;

parameter Real thrustDecreaseTime = 43.2;

public

Rocket apollo(name="apollo13");

CelestialBody moon(name="moon",mass=7.382e22,radius=1.738e6);

equation

apollo.thrust = if (time < thrustDecreaseTime) then force1

else if (time < thrustEndTime) then force2

else 0;

apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;

end MoonLanding;

()2..

..
.

radiusmoonaltitudeapollo

massmoongmoon
gravityapollo

+


=

only access

inside the class

access by dot

notation outside

the class

altitude
CelestialBody

thrust
apollo13

mg

Rocket

127 Copyright © Open Source Modelica Consortium

Simulation of Moon Landing

simulate(MoonLanding, stopTime=230)

plot(apollo.altitude, xrange={0,208})

plot(apollo.velocity, xrange={0,208})

50 100 150 200

5000

10000

15000

20000

25000

30000

50 100 150 200

-400

-300

-200

-100

It starts at an altitude of 59404

(not shown in the diagram) at

time zero, gradually reducing it

until touchdown at the lunar

surface when the altitude is zero

The rocket initially has a high

negative velocity when approaching

the lunar surface. This is reduced to

zero at touchdown, giving a smooth

landing

128 Copyright © Open Source Modelica Consortium

Specialized Class Keywords

• Classes can also be declared with other keywords, e.g.: model, record,
block, connector, function, ...

• Classes declared with such keywords have specialized properties

• Restrictions and enhancements apply to contents of specialized classes

• After Modelica 3.0 the class keyword means the same as model

• Example: (Modelica 2.2). A model is a class that cannot be used as a
connector class

• Example: A record is a class that only contains data, with no equations

• Example: A block is a class with fixed input-output causality

model CelestialBody

constant Real g = 6.672e-11;

parameter Real radius;

parameter String name;

parameter Real mass;

end CelestialBody;

129 Copyright © Open Source Modelica Consortium

Modelica Functions

• Modelica Functions can be viewed as a specialized

class with some restrictions and extensions

• A function can be called with arguments, and is

instantiated dynamically when called

function sum

input Real arg1;

input Real arg2;

output Real result;

algorithm

result := arg1+arg2;

end sum;

130 Copyright © Open Source Modelica Consortium

function PolynomialEvaluator

input Real A[:]; // array, size defined

// at function call time

input Real x := 1.0;// default value 1.0 for x

output Real sum;

protected

Real xpower; // local variable xpower

algorithm

sum := 0;

xpower := 1;

for i in 1:size(A,1) loop

sum := sum + A[i]*xpower;

xpower := xpower*x;

end for;

end PolynomialEvaluator;

Function Call – Example Function with for-loop

Example Modelica function call:

The function
PolynomialEvaluator

computes the value of a

polynomial given two

arguments:
a coefficient vector A and

a value of x.

...

p = polynomialEvaluator({1,2,3,4},21)

{1,2,3,4} becomes

the value of the
coefficient vector A, and

21 becomes the value of

the formal parameter x.

131 Copyright © Open Source Modelica Consortium

Inheritance

record ColorData

parameter Real red = 0.2;

parameter Real blue = 0.6;

Real green;

end ColorData;

class Color

extends ColorData;

equation

red + blue + green = 1;

end Color;

Data and behavior: field declarations, equations, and

certain other contents are copied into the subclass

keyword

denoting

inheritance

restricted kind

of class without

equations

parent class to Color

child class or

subclass

class ExpandedColor

parameter Real red=0.2;

parameter Real blue=0.6;

Real green;

equation

red + blue + green = 1;

end ExpandedColor;

132 Copyright © Open Source Modelica Consortium

Multiple Inheritance

Multiple Inheritance is fine – inheriting both geometry and color

class Point

Real x;

Real y,z;

end Point;

class Color

parameter Real red=0.2;

parameter Real blue=0.6;

Real green;

equation

red + blue + green = 1;

end Color;
multiple inheritance

class ColoredPointWithoutInheritance

Real x;

Real y, z;

parameter Real red = 0.2;

parameter Real blue = 0.6;

Real green;

equation

red + blue + green = 1;

end ColoredPointWithoutInheritance;

Equivalent to

class ColoredPoint

extends Point;

extends Color;

end ColoredPoint;

Extra slide

133 Copyright © Open Source Modelica Consortium

Multiple Inheritance cont’

Only one copy of multiply inherited class Point is kept

class Point

Real x;

Real y;

end Point;

Diamond Inheritance
class VerticalLine

extends Point;

Real vlength;

end VerticalLine;

class HorizontalLine

extends Point;

Real hlength;

end HorizontalLine;

class Rectangle

extends VerticalLine;

extends HorizontalLine;

end Rectangle;

Extra slide

134 Copyright © Open Source Modelica Consortium

Simple Class Definition

• Simple Class Definition
• Shorthand Case of Inheritance

• Example:
class SameColor = Color;

class SameColor

extends Color;

end SameColor;

Equivalent to:

• Often used for

introducing new

names of types:

type Resistor = Real;

connector MyPin = Pin;

inheritance

135 Copyright © Open Source Modelica Consortium

Inheritance Through Modification

• Modification is a concise way of combining inheritance

with declaration of classes or instances

• A modifier modifies a declaration equation in the

inherited class

• Example: The class Real is inherited, modified with a

different start value equation, and instantiated as an

altitude variable:

...

Real altitude(start= 59404);

...

136 Copyright © Open Source Modelica Consortium

The Moon Landing - Example Using Inheritance (I)

model Body "generic body"

Real mass;

String name;

end Body;

model CelestialBody

extends Body;

constant Real g = 6.672e-11;

parameter Real radius;

end CelestialBody;

model Rocket "generic rocket class"

extends Body;

parameter Real massLossRate=0.000277;

Real altitude(start= 59404);

Real velocity(start= -2003);

Real acceleration;

Real thrust;

Real gravity;

equation

thrust-mass*gravity= mass*acceleration;

der(mass)= -massLossRate*abs(thrust);

der(altitude)= velocity;

der(velocity)= acceleration;

end Rocket;

altitude CelestialBody

thrustapollo13

mg

Rocket

Extra slide

137 Copyright © Open Source Modelica Consortium

The Moon Landing - Example using Inheritance (II)

model MoonLanding

parameter Real force1 = 36350;

parameter Real force2 = 1308;

parameter Real thrustEndTime = 210;

parameter Real thrustDecreaseTime = 43.2;

Rocket apollo(name="apollo13", mass(start=1038.358));

CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");

equation

apollo.thrust = if (time<thrustDecreaseTime) then force1

else if (time<thrustEndTime) then force2

else 0;

apollo.gravity =moon.g*moon.mass/(apollo.altitude+moon.radius)^2;

end Landing;

inherited

parameters

Extra slide

138 Copyright © Open Source Modelica Consortium

Inheritance of Protected Elements

class ColoredPointWithoutInheritance

Real x;

Real y,z;

protected Real red;

protected Real blue;

protected Real green;

equation

red + blue + green = 1;

end ColoredPointWithoutInheritance;

If an extends-clause is preceded by the protected keyword,

all inherited elements from the superclass become protected

elements of the subclass

The inherited fields from Point keep

their protection status since that
extends-clause is preceded by

public

A protected element cannot be

accessed via dot notation!

class ColoredPoint

protected

extends Color;

public

extends Point;

end ColoredPoint;

class Color

Real red;

Real blue;

Real green;

equation

red + blue + green = 1;

end Color;

class Point

Real x;

Real y,z;

end Point;

Equivalent to

Extra slide

139 Copyright © Open Source Modelica Consortium

Exercises Part III a
(15 minutes)

140 Copyright © Open Source Modelica Consortium

Exercises Part III a

• Start OMNotebook (part of OpenModelica)
• Start->Programs->OpenModelica->OMNotebook

• Open File: Exercises-ModelicaTutorial.onb from the directory you copied

your tutorial files to.

• Note: The DrModelica electronic book has been automatically opened when

you started OMNotebook.

• (Alternatively: Open the OMWeb notebook

http://omwebbook.openmodelica.org/

• Open Exercises-ModelicaTutorial.pdf (also

available in printed handouts)

http://omwebbook.openmodelica.org/

141 Copyright © Open Source Modelica Consortium

• Open the Exercises-ModelicaTutorial.onb found in the
Tutorial directory you copied at installation.

• Exercise 2.1. Simulate and plot the HelloWorld example. Do
a slight change in the model, re-simulate and re-plot. Try
command-completion, val(), etc.

• Locate the VanDerPol model in DrModelica (link from
Section 2.1), using OMNotebook!

• (extra) Exercise 2.2: Simulate and plot VanDerPol. Do a
slight change in the model, re-simulate and re-plot.

Exercises 2.1 and 2.2 (See also next two pages)

class HelloWorld "A simple equation"

Real x(start=1);

equation

der(x)= -x;

end HelloWorld;

simulate(HelloWorld, stopTime = 2)

plot(x)

142 Copyright © Open Source Modelica Consortium

Exercise 2.1 – Hello World!

A Modelica “Hello World” model
class HelloWorld "A simple equation”

parameter Real a=-1;

Real x(start=1);

equation

der(x)= a*x;

end HelloWorld;

Equation: x’ = - x

Initial condition: x(0) = 1

Simulation in OpenModelica environment

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

simulate(HelloWorld, stopTime = 2)

plot(x)

143 Copyright © Open Source Modelica Consortium

-1 1 2

-2

-1

1

2

-2

(extra) Exercise 2.2 – Van der Pol Oscillator

class VanDerPol "Van der Pol oscillator model"

Real x(start = 1) "Descriptive string for x"; // x starts at 1

Real y(start = 1) "y coordinate"; // y starts at 1

parameter Real lambda = 0.3;

equation

der(x) = y; // This is the 1st diff equation //

der(y) = -x + lambda*(1 - x*x)*y; /* This is the 2nd diff equation */

end VanDerPol;

simulate(VanDerPol,stopTime = 25)

plotParametric(x,y)

144 Copyright © Open Source Modelica Consortium

(extra) Exercise 2.3 – DAE Example

Include algebraic equation
Algebraic equations contain

no derivatives

Simulation in OpenModelica environment

0.2 0.4 0.6 0.8 1

time

0.90

0.95

1.05

1.10

1.15

1.20

1.0

simulate(DAEexample, stopTime = 1)

plot(x)

class DAEexample

Real x(start=0.9);

Real y;

equation

der(y)+(1+0.5*sin(y))*der(x)

= sin(time);

x - y = exp(-0.9*x)*cos(y);

end DAEexample;

Exercise: Locate in DrModelica.

Simulate and plot. Change

the model, simulate+plot.

145 Copyright © Open Source Modelica Consortium

Exercise 2.4 – Model the system below

• Model this Simple System of Equations in Modelica

146 Copyright © Open Source Modelica Consortium

(extra) Exercise 2.5 – Functions

• a) Write a function, sum2, which calculates the sum

of Real numbers, for a vector of arbitrary size.

• b) Write a function, average, which calculates the

average of Real numbers, in a vector of arbitrary
size. The function average should make use of a

function call to sum2.

147 Copyright © Open Source Modelica Consortium

Part III b

Discrete Events and Hybrid Systems

Picture: Courtesy Hilding Elmqvist

148 Copyright © Open Source Modelica Consortium

Modelica Hybrid Modeling

Hybrid modeling = continuous-time + discrete-time modeling

Real x;

Voltage v;

Current i;

Events

discrete Real x;

Integer i;

Boolean b;

• A point in time that is instantaneous, i.e., has zero duration

• An event condition or clock tick so that the event can take place

• A set of variables that are associated with the event

• Some behavior associated with the event,

e.g. conditional equations that become active or are deactivated at

the event

time

Continuous-time

Discrete-time

Clocked discrete-time

149 Copyright © Open Source Modelica Consortium

Event Creation – if

model Diode "Ideal diode"

extends TwoPin;

Real s;

Boolean off;

equation

off = s < 0;

if off then

v=s

else

v=0;

end if;

i = if off then 0 else s;

end Diode;

if <condition> then

<equations>

elseif <condition> then

<equations>

else

<equations>

end if;

if-equations, if-statements, and if-expressions

false if s<0

If-equation choosing
equation for v

If-expression

150 Copyright © Open Source Modelica Consortium

Event Creation – when

when <conditions> then

<equations>

end when; // un-clocked version

when-equations (two kinds: unclocked and clocked)

Only dependent on time, can be
scheduled in advance

Time event

when time >= 10.0 then

...

end when;

time
event 1 event 2 event 3

Equations only active at event times

State event

when sin(x) > 0.5 then

...

end when;

Related to a state. Check for
zero-crossing

when clock then

<equations>

end when; // clocked version

151 Copyright © Open Source Modelica Consortium

Generating Repeated Events by unclocked sample

The call sample(t0,d) returns

true and triggers events at times
t0+i*d, where i=0,1, …

model SamplingClock

Integer i;

discrete Real r;

equation

when sample(2,0.5) then

i = pre(i)+1;

r = pre(r)+0.3;

end when;

end SamplingClock;

time

sample(t0,d)

false

true

t0 t0+d t0+2d t0+3d t0+4d

Variables need to be
discrete

Creates an event

after 2 s, then
each 0.5 s

pre(...) takes the

previous value
before the event.

152 Copyright © Open Source Modelica Consortium

Generating Clock Tick Events using Clock()
(clocked models, Modelica 3.3)

• Clock() – inferred clock

• Clock(intervalCounter, resolution) – clock with

Integer quotient (rational number) interval

• Clock(interval) – clock with a Real value interval

• Clock(condition, startInterval)

• Clock – solver clock

class ClockTicks

// Integer quotient rational number interval clock

Clock c1 = Clock(3,10); // ticks: 0, 3/10, 6/10, ..

// Clock with real value interval between ticks

Clock c2 = Clock(0.2); // ticks: 0.0, 0.2, 0.4, ...

end ClockTicks;

153 Copyright © Open Source Modelica Consortium

Reinit - Discontinuous Changes

model BouncingBall "the bouncing ball model"

parameter Real g=9.81; //gravitational acc.

parameter Real c=0.90; //elasticity constant

Real height(start=10),velocity(start=0);

equation

der(height) = velocity;

der(velocity)=-g;

when height<0 then

reinit(velocity, -c*velocity);

end when;

end BouncingBall;

The value of a continuous-time state variable can be instantaneously
changed by a reinit-equation within a when-equation

Reinit ”assigns”

continuous-time variable
velocity a new value

Initial conditions

154 Copyright © Open Source Modelica Consortium

Exercise 2.6 – BouncingBall

• Locate the BouncingBall model in one of the hybrid

modeling sections of DrModelica (the When-

Equations link in Section 2.9), run it, change it

slightly, and re-run it.

170 Copyright © Open Source Modelica Consortium

Part IV

Components, Connectors and Connections –

Modelica Libraries and Graphical Modeling

171 Copyright © Open Source Modelica Consortium

Software Component Model

A component class should be defined independently of the

environment, very essential for reusability

A component may internally consist of other components, i.e.

hierarchical modeling

Complex systems usually consist of large numbers of

connected components

Component

Interface

ConnectionComponent

Connector

Acausal coupling

Causal coupling

172 Copyright © Open Source Modelica Consortium

Connectors and Connector Classes

Connectors are instances of connector classes

 v +

i

pin

 s

f

flange

connector Pin

Voltage v;

flow Current i;

end Pin;

Pin pin;

connector class

keyword flow

indicates that currents

of connected pins

sum to zero.

electrical connector

an instance pin

of class Pin

connector Flange

Position s;

flow Force f;

end Flange;

Flange flange;

connector class

mechanical connector

an instance flange

of class Flange

173 Copyright © Open Source Modelica Consortium

The flow prefix

Three possible kinds of variables in connectors:
• Potential variables potential or energy level

• Flow variables represent some kind of flow

• Stream variables represent fluid flow in convective transport

Coupling
• Equality coupling, for potential variables

• Sum-to-zero coupling, for flow variables

The value of a flow variable is positive when the current or the

flow is into the component

 v

+ i

pin
positive flow direction:

174 Copyright © Open Source Modelica Consortium

Translational Position Force Linear momentum
Mechanical.

Translational

Physical Connector

• Classes Based on Energy Flow

Domain

Type
Potential Flow Carrier Modelica

Library

Electrical Voltage Current Charge
Electrical.

Analog

Rotational Angle Torque
Angular

momentum

Mechanical.

Rotational

Magnetic
Magnetic

potential

Magnetic

flux rate
Magnetic flux

Hydraulic Pressure Volume flow Volume HyLibLight

Heat Temperature Heat flow Heat HeatFlow1D

Chemical
Chemical

potential
Particle flow Particles

Under

construction

Pneumatic Pressure Mass flow Air PneuLibLight

175 Copyright © Open Source Modelica Consortium

connect-equations

pin1 pin2
+ +

i i

v v

connect(connector1,connector2)

Connections between connectors are realized as equations in Modelica

The two arguments of a connect-equation must be references to

connectors, either to be declared directly within the same class or be

members of one of the declared variables in that class

pin1.v = pin2.v;

pin1.i + pin2.i =0;

Pin pin1,pin2;

//A connect equation

//in Modelica:

connect(pin1,pin2);
Corresponds to

176 Copyright © Open Source Modelica Consortium

Connection Equations

1 2 3 nv v v v= = =

pin1.v = pin2.v;

pin1.i + pin2.i =0;

Pin pin1,pin2;

//A connect equation

//in Modelica

connect(pin1,pin2);
Corresponds to

Each primitive connection set of potential variables is

used to generate equations of the form:

Each primitive connection set of flow variables is used to generate

sum-to-zero equations of the form:

1 2 () 0k ni i i i+ + − + =

connect(pin1,pin2); connect(pin1,pin3); ... connect(pin1,pinN);

Multiple connections are possible:

177 Copyright © Open Source Modelica Consortium

Common Component Structure

The base class TwoPin has

two connectors p and n for

positive and negative pins

respectively

p

p.i

p.v

n.i

n.v
n

i

i i + - TwoPin

electrical connector class

partial model TwoPin

Voltage v

Current i

Pin p;

Pin n;

equation

v = p.v - n.v;

0 = p.i + n.i;

i = p.i;

end TwoPin;

// TwoPin is same as OnePort in

// Modelica.Electrical.Analog.Interfaces

positive pin

negative pin

partial class

(cannot be

instantiated)
connector Pin

Voltage v;

flow Current i;

end Pin;

178 Copyright © Open Source Modelica Consortium

Electrical Components

model Resistor ”Ideal electrical resistor”

extends TwoPin;

parameter Real R;

equation

R*i = v;

end Resistor;

model Inductor ”Ideal electrical inductor”

extends TwoPin;

parameter Real L ”Inductance”;

equation

L*der(i) = v;

end Inductor;

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

model Capacitor ”Ideal electrical capacitor”

extends TwoPin;

parameter Real C ;

equation

i=C*der(v);

end Capacitor;

179 Copyright © Open Source Modelica Consortium

Electrical Components cont’

model Source

extends TwoPin;

parameter Real A,w;

equation

v = A*sin(w*time);

end Resistor;

p.i n.i

p.v n.v

v(t)

+

 p.i p.v

model Ground

Pin p;

equation

p.v = 0;

end Ground;

180 Copyright © Open Source Modelica Consortium

Resistor Circuit

R2 R1

R3

n p p n

p n i3

i2 i1

v1 v2

v3

R1.p.v = R2.p.v;

R1.p.v = R3.p.v;

R1.p.i + R2.p.i + R3.p.i = 0;

model ResistorCircuit

Resistor R1(R=100);

Resistor R2(R=200);

Resistor R3(R=300);

equation

connect(R1.p, R2.p);

connect(R1.p, R3.p);

end ResistorCircuit;

Corresponds to

181 Copyright © Open Source Modelica Consortium

• Modelica Standard Library (called Modelica) is a

standardized predefined package developed by

Modelica Association

• It can be used freely for both commercial and

noncommercial purposes under the conditions of

The Modelica License.

• Modelica libraries are available online including

documentation and source code from

http://www.modelica.org/library/library.html

Modelica Standard Library - Graphical Modeling

http://www.modelica.org/library/library.html

182 Copyright © Open Source Modelica Consortium

Modelica Standard Library cont’

• Blocks Library for basic input/output control blocks

• Constants Mathematical constants and constants of nature

• Electrical Library for electrical models

• Icons Icon definitions

• Fluid 1-dim Flow in networks of vessels, pipes, fluid machines, valves, etc.

• Math Mathematical functions

• Magnetic Magnetic.Fluxtubes – for magnetic applications

• Mechanics Library for mechanical systems

• Media Media models for liquids and gases

• SIunits Type definitions based on SI units according to ISO 31-1992

• Stategraph Hierarchical state machines (analogous to Statecharts)

• Thermal Components for thermal systems

• Utilities Utility functions especially for scripting

The Modelica Standard Library contains components from

various application areas, including the following sublibraries:

183 Copyright © Open Source Modelica Consortium

Modelica.Blocks

Continuous, discrete, and logical input/output blocks

to build block diagrams.

 Library

Continuous

Examples:

184 Copyright © Open Source Modelica Consortium

Modelica.Electrical

Electrical components for building analog, digital, and

multiphase circuits

Library

Analog

Library

MultiPhase

Library

Digital

V1

V2

I1

R1

R2

R3

R4

C1

C4

C5

C2

C3

Gnd1

Gnd9

Gnd3

Gnd2

Gnd6

Gnd7 Gnd8 Gnd5

Gnd4

Transistor1 Transistor2

Examples:

Library

Machines

185 Copyright © Open Source Modelica Consortium

Modelica.Mechanics

Package containing components for mechanical systems

Subpackages:

• Rotational 1-dimensional rotational mechanical components

• Translational 1-dimensional translational mechanical components

• MultiBody 3-dimensional mechanical components

187 Copyright © Open Source Modelica Consortium

Other Free Libraries

• WasteWater Wastewater treatment plants, 2003

• ATPlus Building simulation and control (fuzzy control included), 2005

• MotorCycleDymanics Dynamics and control of motorcycles, 2009

• NeuralNetwork Neural network mathematical models, 2006

• VehicleDynamics Dynamics of vehicle chassis (obsolete), 2003

• SPICElib Some capabilities of electric circuit simulator PSPICE, 2003

• SystemDynamics System dynamics modeling a la J. Forrester, 2007

• BondLib Bond graph modeling of physical systems, 2007

• MultiBondLib Multi bond graph modeling of physical systems, 2007

• ModelicaDEVS DEVS discrete event modeling, 2006

• ExtendedPetriNets Petri net modeling, 2002

• External.Media Library External fluid property computation, 2008

• VirtualLabBuilder Implementation of virtual labs, 2007

• SPOT Power systems in transient and steady-state mode, 2007

• ...

188 Copyright © Open Source Modelica Consortium

Some Commercial Libraries

• Powertrain

• SmartElectricDrives

• VehicleDynamics

• AirConditioning

• HyLib

• PneuLib

• CombiPlant

• HydroPlant

• …

189 Copyright © Open Source Modelica Consortium

Connecting Components from Multiple Domains

model Generator

Modelica.Mechanics.Rotational.Accelerate ac;

Modelica.Mechanics.Rotational.Inertia iner;

Modelica.Electrical.Analog.Basic.EMF emf(k=-1);

Modelica.Electrical.Analog.Basic.Inductor ind(L=0.1);

Modelica.Electrical.Analog.Basic.Resistor R1,R2;

Modelica.Electrical.Analog.Basic.Ground G;

Modelica.Electrical.Analog.Sensors.VoltageSensor vsens;

Modelica.Blocks.Sources.Exponentials ex(riseTime={2},riseTimeConst={1});

equation

connect(ac.flange_b, iner.flange_a); connect(iner.flange_b, emf.flange_b);

connect(emf.p, ind.p); connect(ind.n, R1.p); connect(emf.n, G.p);

connect(emf.n, R2.n); connect(R1.n, R2.p); connect(R2.p, vsens.n);

connect(R2.n, vsens.p); connect(ex.outPort, ac.inPort);

end Generator;

R1

R2

ind

emf

G

ex ac iner vsen

Electrical

domain
Mechanical

domain

Block

domain

1

2

• Block domain

• Mechanical domain

• Electrical domain

190 Copyright © Open Source Modelica Consortium

DCMotor Model Multi-Domain (Electro-Mechanical)

A DC motor can be thought of as an electrical circuit

which also contains an electromechanical component.

model DCMotor

Resistor R(R=100);

Inductor L(L=100);

VsourceDC DC(f=10);

Ground G;

EMF emf(k=10,J=10, b=2);

Inertia load;

equation

connect(DC.p,R.n);

connect(R.p,L.n);

connect(L.p, emf.n);

connect(emf.p, DC.n);

connect(DC.n,G.p);

connect(emf.flange,load.flange);

end DCMotor;

load

emf

DC

G

R L

203 Copyright © Open Source Modelica Consortium

Part Vb

More

Graphical Modeling Exercises

using

OpenModelica

204 Copyright © Open Source Modelica Consortium

Graphical Modeling - Using Drag and Drop Composition

205 Copyright © Open Source Modelica Consortium

Graphical Modeling Animation – DCMotor

206 Copyright © Open Source Modelica Consortium

• A DC motor can be thought of as an electrical circuit which

also contains an electromechanical component

model DCMotor

Resistor R(R=100);

Inductor L(L=100);

VsourceDC DC(f=10);

Ground G;

ElectroMechanicalElement EM(k=10,J=10, b=2);

Inertia load;

equation

connect(DC.p,R.n);

connect(R.p,L.n);

connect(L.p, EM.n);

connect(EM.p, DC.n);

connect(DC.n,G.p);

connect(EM.flange,load.flange);

end DCMotor

load

EM

DC

G

R L

Multi-Domain (Electro-Mechanical) Modelica Model

207 Copyright © Open Source Modelica Consortium

Automatic transformation to ODE or DAE for simulation:

(load component not included)

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

208 Copyright © Open Source Modelica Consortium

Exercise 3.1

• Draw the DCMotor model using the graphic connection

editor using models from the following Modelica

libraries:
Mechanics.Rotational.Components,

Electrical.Analog.Basic,

Electrical.Analog.Sources

J

emf

u

G

R L • Simulate it for 15s and plot the

variables for the outgoing

rotational speed on the inertia

axis and the voltage on the

voltage source (denoted u in the

figure) in the same plot.

209 Copyright © Open Source Modelica Consortium

Exercise 3.2

• If there is enough time: Add a torsional spring to the
outgoing shaft and another inertia element. Simulate
again and see the results. Adjust some parameters to
make a rather stiff spring.

210 Copyright © Open Source Modelica Consortium

Exercise 3.3

• If there is enough time: Add a PI controller to the system
and try to control the rotational speed of the outgoing shaft.
Verify the result using a step signal for input. Tune the PI
controller by changing its parameters in OMEdit.

211 Copyright © Open Source Modelica Consortium

Exercise 3.4 – DrControl

• If there is enough time: Open the DrControl electronic book
about control theory with Modelica and do some exercises.

• Open File: C:OpenModelica1.9.3\share\omnotebook\drcontrol\DrControl.onb

212 Copyright © Open Source Modelica Consortium

Learn more…

• OpenModelica
• www.openmodelica.org

• Modelica Association
• www.modelica.org

• Books
• Principles of Object Oriented Modeling and Simulation with

Modelica 3.3: A Cyber-Physical Approach, Peter Fritzson

2015.

• Modeling and Simulation of Technical and Physical

Systems with Modelica. Peter Fritzson., 2011

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-

111801068X.html

• Introduction to Modelica, Michael Tiller

http://www.openmodelica.org/
http://www.modelica.org/
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-111801068X.html

213 Copyright © Open Source Modelica Consortium

Summary

Hybrid

Modeling

Visual Acausal

Component

Modeling

Multi-Domain

Modeling

Typed

Declarative

Textual Language Thanks for listening!

