
January 29, 2018

Getting Started With TLM-based Co-simulation

Introduction
With transmission line modelling (TLM), models can be decoupled using physically motivated time
delays. Hence, the time delay can be seen as a physical property of the model. This elliminates the
need for numerical delays. Thereby, no numerical errors will be introduced. The TLM equations for
a mechanical coupling in one dimension is shown below:

F1(t) = c1(t) + Zcq1(t)
F2(t) = c2(t) + Zcq2(t)

A framework for asynchronous TLM-based co-simulation has been developed by SKF for multi-body
simulation of roller bearings. A graphical user interface in OpenModelica Connection Editor has been
developed in cooperation with Linköping University. Lately the framework has been extended with
support for directional connetions, 1D interfaces, other physical domains and sub-model parameters.
Socket communication is used for communication between the master and the external tools.

Master

Tool 1 Tool 2 Tool 3 Tool 4

TLMPlugin

TLMPlugin TLMPlugin TLMPlugin TLMPlugin

TCP/IP

This tutorial will demonstrate the framework with two examples. First, two models will be coupled
with a rotational 1D connection. Second, two multi-body models will be connected between two 3D
interfaces.

System Configuration
The "TLMPlugin" files will be distributed during the tutorial.
OpenModelica is a free open-source Modelica environment developed at Linköping University. Install
the latest nightly build, which contain support for composite modeling:

http://www.openmodelica.org
You will also need the latest version of Hopsan, an open-source TLM-based system simulation tool
developed at Linköping University:

http://flumes.iei.liu.se/hopsan/files/releases/official/
OpenModelica Connection Editor (OMEdit) is used a the graphical interface. It must know the path
to the TLMPlugin files.

1. Start OpenModelica Connection Editor

2. Open "Tools → Options → TLM"

3. Make sure all three paths are corrrect

1

http://www.openmodelica.org
http://flumes.iei.liu.se/hopsan/files/releases/official/

January 29, 2018

Exercise 1: 1D Connection
The TLM method requires hard typed physical interfaces. For 1D rotational connections, three vari-
ables are required:

Variable Unit Dimensions
Angle [rad] 1
Speed [rad/s] 1
Torque [Nm] 1

Similar variables are used for other 1D domains such as linear mechanics (position, velocity & torque)
and hydraulics (volume, flow and pressure).

1. Build the Hopsan model
The Hopsan model will consist of a hydraulic circuit. A pump, driven by the OpenModelica
motor model, is used to pressurize a volume. The volume is connected to a turbulent orifice,
representing the load, and a pressure relief valve. Use a step source to reduce the orifice area
from 10 mm2 to 1 mm2 after 3 seconds. Set the inertia of the pump to 1 Nms2. The following
components are used in the model:
Connectivity → Mechanic Rotational Interface of Q-type
Hydraulic → Pumps&Motors → Q-type Variable Machine
Hydraulic → Restrictors → Turbulent Orifice
Hydraulic → Sources & Sinks → C-type Tank
Hydraulic → Valves → PressureControlValves → Adjustable Pressure Relief Valve
Hydraulic → Volumes&Lines → Hydraulic Volume Multi Port
Mechanic → Rotational → Rotational Inertia
Signal → Source & Sinks → Step
When done, save the model as "signal.hmf".

y_0 = 1e-5
y_A = -9e-6
t_step = 3

J = 1
B_m = 10

2. Export the Hopsan model as FMU
Click on the Export Functional Mockup Unit toolbar button. Use FMI 2.0 for co-simulation
and export to an empty folder.

Export Functional Mockup Unit

2

January 29, 2018

3. Write the OpenModelica model
The Modelica model will be written by hand. It will consist of a torque with a proportional
speed control, representing a simple motor. The speed control will generate a torque, acting
on an inertia with damping. A counteracting torque will be received from the Hopsan model.
Below is an example of how the code could look like. Here w, phi and t2 are the TLM variables;
speed and angle as output and torque as input. Furthermore, t1 is the torque generated by the
controller. Finally, Kp is the controller gain and w_ref the reference (desired) speed.

model motor
output Rea l w(s t a r t =0) ;
output Rea l ph i (s t a r t =0) ;
i nput Rea l t2 ;
Rea l t1 (s t a r t =0) ;
parameter Rea l J=1 " I n e r t i a " ;
parameter Rea l B=10 " V i s cou s f r i c t i o n " ;
parameter Rea l w_ref=−200 " Re f e r en c e speed " ;
parameter Rea l Kp=50 " C o n t r o l l e r ga i n " ;

equat ion
der (w) ∗J+der (ph i) ∗B = t1−t2 ;
w=der (ph i) ;
t1=Kp∗(w_ref−w) ;

end motor ;

Create a new model in OMEdit, name it "motor", write the code and save it.

4. Export the OpenModelica model as FMU
Open "Tools → Options → FMI". Change the settings to export FMI 2.0 for Model Exchange.
Close the dialog. Click on "FMI → Export FMU" to start the export.

5. Create the composite model
Click on "File → New MetaModel" to create a new composite model. Right-click on the
workspace and rename the model to "MotorSystemModel". Save the composite model to a
new empty folder.

6. Load FMUs as external models
Load the two FMUs by clicking on "File → Load External Model". The files should appear in
the library on the left side.

7. Add the FMUs to the composite model
Add the FMUs to the composite model by dragging and dropping. Save the composite
model. Each FMU is now copied to a new folder in the composite model directory.

8. Write FMI configuration files
It is necessary to define ports and point out the TLM variables in each FMU. This is done by a
small configuration file. Create a file called fmi.config in each external model folder. Open
each file in a text editor and enter the following text:

substeps,10
name,tlm
domain,Rotational
dimensions,1
causality,Bidirectional
position,1
speed,2
force,3

3

January 29, 2018

The number after "substeps" is used with FMI for co-simulation. It specifies the number
of substeps taken during each TLM step. A higher number improves stability, but has a
negative effect on performance. The "name", "domain", "dimensions" and "causality" entries
are the interface specifications. The numbers after position, speed and force represent the value
references of the variables in the FMU. Hence, they must be modified to match the contents of
each FMU. Open each FMU with a zip tool. Then open modelDescription.xml in a text editor.
For the motor FMU, locate the variables named "phi", "w" and "t2". For the system FMU,
look for variables ending with "_P1_a", "_P1_w" and "_P1_c". Identify the value reference as
shown below:

<ScalarVariable
name="phi"
valueReference ="0"
variability =" continuous "
causality =" output "
initial ="exact">
<Real start="0.0"/>

</ ScalarVariable >

Name
Value reference

9. Fetch interface data
Yet, OpenModelica has no knowledge about the interfaces or parameters in the external models.
To obtain these information, click on the "Fetch interface data" button.

Fetch Interface Data

10. Connect interfaces
Now one interface should have appeared on each external model. Connect them by dragging a
connector from one interface to the other. Use the following connection parameters:
Variable Value
Delay 1e-4
Zf 100
alpha 0.9

11. Simulate
Open the "Simulation Parameters" dialog and set stop time to 5 seconds.

Simulation Parameters

Now click on the "TLM Co-Simulation Setup" icon. A dialog with simulation settings appear.
Click on "Simulate".

TLM Co-Simulation Setup

12. Plot results
When simulation is complete, the plotting perspective should open automatically. You can plot
the interface variables from the variables tree.
CSV files with internal variables in each FMU has also been generated. Look in the external
model folders for "logdata.csv".

4

January 29, 2018

Exercise 2: 3D Connections
Mechanical 3D connections consist of 24 variables, representing 6 degress of freedom:

Variable Unit Dimensions
Position [m] 3
Orientation [-] 3x3
Speed [m/s] 3
Angular speed [rad/s] 3
Force [N] & [Nm] 3+3

The second tutorial will demonstrate how to connect and simulate two existing 3D models. The
external models represent the upper and the lower half of a swinging pendulum arm.

shaft1.mo

shaft2.mo

1. Create a new composite model

Click on "File → New MetaModel" to create a new composite model. Right-click on the
workspace and rename the model to "PendulumModel". Save the composite model to a
new empty folder.

2. Load the shaft models as external models
Choose "File → Load External Model" and load "shaft1.mo" and "shaft2.mo". Since
these are pure Modelica models, you can open them and view them directly in OMEdit.
As you can see, there is one missing icon in each model. Load "OM_TLM.mo" from the
".../TLMPlugin/bin/OpenModelica" folder to resolve this.

5

January 29, 2018

3. Add the shafts to the composite model
Drag each external model to the composite model. 3D animation will require a geometry file.
Double-click on each model and browse for the geometry files. Use "shaft1.stl" for the first
shaft and "shaft2.stl" for the second. Save the composite model.

4. Fetch interface data
Click on the "Fetch Interface Data" icon to fetch information about interfaces and parameters.
The two arms should now appear in the 3D viewer.

Fetch Interface Data

5. Connect interfaces
Connect the two interfaces to each other by dragging a connector between them.

6. Align interfaces
As can be seen in the 3D viewer, the two shafts appear inside each other. This is because
the connected interface points are not aligned. Thus, they have different positions and/or
orientations relative to the inertia system. Click on the "Align Interfaces" button and align
"shaft2.tlm" to "shaft1.tlm". Verify the alignment in the 3D viewer.

Align Interfaces

7. Simulate
Click on the "TLM Co-Simulation Setup" icon and start the simulation.

TLM Co-Simulation Setup

8. Analyze results
After a successful simulation OMEdit will automatically switch to the plotting perspective. Click
on the play button to start a replay animation of the simulation. You can also plot variables
from the variable tree as usual.

6

