
Requirement	
Formalization	in	
Modelica

Lena	Buffoni,	Linköping	University
(with	material	from	Wladimir Schamai)

Lecture	Plan
• Requirements in cyber-physical systems
• How do we express requirements?
• How do we verify requirements?

13	NOVEMBER	2017 2

Material

13	NOVEMBER	2017 3

• Slides

• OpenModelica: openmodelica.org

• Example:
• https://gitlab.ida.liu.se/olero90/RequirementsTutorial

WHAT IS A REQUIREMENT?

13	NOVEMBER	2017 4

Definitions

5

“Software requirements express the needs and
constraints placed on a software product that
contribute to the solution of some real-world
problems.”
(Kotonya and Sommerville, 2000)

“A requirement is something the product must do or a
quality it must have.”

(Suzanne & James Robertson, 2006)

13	NOVEMBER	2017

Examples	from	specification	

6

1. “The torque of any ADGB electrical motor shall not
be superior to 20 N.m for more than 1 sec.”

2. “At least 2 pumps shall be in operation at any time”

3. “In the absence of any BPS component failure or in
the presence of a single sensor failure, when the
BPS is not under maintenance, and in case of MPS
loss, at least two of Set2 to Set5 must be powered
within 40 s ”

13	NOVEMBER	2017

7

Some	Requirements	Engineering	Literature

• Kotonya	G.	and	Sommerville,	I.	Requirements	Engineering:	Processes	and	
Techniques.	Chichester,	UK:	John	Wiley	&	Sons

• Software	Requirements	Engineering	Methodology	(Development) Alfor,M.	W.	and	
Lawson,J.	T.	TRW	Defense	and	Space	Systems	Group.	1979.

• Thayer,	R.H.,	and	M.	Dorfman	(eds.),	System	and	Software	Requirements	
Engineering,	IEEE	Computer	Society	Press,	Los	Alamitos,	CA,	1990.

• Royce,	W.W.	'Managing	the	Development	of	Large	Software	Systems:	Concepts	and	
Techniques',	IEEE	Westcon,	Los	Angeles,	CA>	pp	1-9,	1970.	Reprinted	in	ICSE	'87,	
Proceedings	of	the	9th	international	conference	on	Software	Engineering.

• Requirements	bibliography Reviewed	November	10th	2011
• Sommerville,	I.	Software	Engineering,	7th	ed.	Harlow,	UK:	Addison	Wesley,	2006.
• Ralph,	Paul	(2012).	"The	Illusion	of	Requirements	in	Software	Development".	

Requirements	Engineering.

13	NOVEMBER	2017

WHY DO WE WANT TO MODEL
REQUIREMENTS?

13	NOVEMBER	2017 8

9

Requirement	formalization	in	product	
life-cycle

Specification

Design

Design
Refinement

Component verification

Subsystem level integration and
verification

Subsystem level integration test
calibration and verification

Product verification and
deployment

Maintenance

Realization

Detailed feature design and
implementation

Architectural design and
system functional design

Preliminary feature design

System
requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

13	NOVEMBER	2017

Why	are	requirements	important?

�� �$������!�(�$%�&+��$�%%

�	���������������-��!&$"�'�&�"!�&"��"�&)�$����%&�!�
��'��� �!!�����������'&&�

*��$#&
�"$���!�"$ �&�"!

)))��� �$�����"$�,��!�&��%�)���%�$(������ �$������!�(�$%�&+��$�%%

12 Foundations

Figure 1.1. Cost of late testing.

To put Beizer’s level 4 test maturity level in simple terms, the goal of testing is
to eliminate faults as early as possible. We can never be perfect, but every time we
eliminate a fault during unit testing (or sooner!), we save money. The rest of this
book will teach you how to do that.

EXERCISES
Chapter 1.

1. What are some factors that would help a development organization move
from Beizer’s testing level 2 (testing is to show errors) to testing level 4
(a mental discipline that increases quality)?

2. What is the difference between software fault and software failure?
3. What do we mean by “level 3 thinking is that the purpose of testing is to reduce

risk?” What risk? Can we reduce the risk to zero?
4. The following exercise is intended to encourage you to think of testing in a

more rigorous way than you may be used to. The exercise also hints at the
strong relationship between specification clarity, faults, and test cases1.

(a) Write a Java method with the signature
public static Vector union (Vector a, Vector b)
The method should return a Vector of objects that are in either of the two
argument Vectors.

(b) Upon reflection, you may discover a variety of defects and ambiguities
in the given assignment. In other words, ample opportunities for faults
exist. Describe as many possible faults as you can. (Note: Vector is a Java
Collection class. If you are using another language, interpret Vector as a list.)

(c) Create a set of test cases that you think would have a reasonable chance of
revealing the faults you identified above. Document a rationale for each
test in your test set. If possible, characterize all of your rationales in some
concise summary. Run your tests against your implementation.

1 Liskov’s Program Development in Java, especially chapters 9 and 10, is a great source for students who
wish to learn more about this.

50	times	more	
expensive	to	fix	a	
fault	at	this	stage!

10

Errors in	system	requirements cause	large cost increase in	product
development,	or	even completely failed projects

From	theory to	practice

11

• Requirements engineering should be an integrated
part of the development tool chain

• Some resources:
– International Requirements engineering conference home page:

http://requirements-engineering.org/
– Example of requirements engineering journal: Requirements

Engineering, Springer Verlag,
http://link.springer.com/journal/766

13	NOVEMBER	2017

12

What	is	requirement	analysis	used	for?

• Detect	and	resolve	conflicts	between	
requirements	and	different	levels	of	
requirement	specification

• Define	the	bounds	of	normal	system	
behaviour

• Define	interaction	with	the	environment
• Break	down	high-level	requirements	into	

more	detailed	requirements

13	NOVEMBER	2017

HOW DO WE REPRESENT REQUIREMENTS?

13	NOVEMBER	2017 13

Can	all	requirements	be	formalized?

The	maximum	rate	of	liquid	flow	in	the	
pump	should	be	below	a	certain	threshold	

lflow_rate <	lflow_rate_max

Natural	language	specification

Computable/machine-
readable	form

13	NOVEMBER	2017 14

Can	all	types	of requirements	be	formalized?

Functional: specify a behavior or function
– “The pump shall not cavitate”

Non-functional: system constraints performance
constraints

– “The controller code should be in C”
– “The response time should be less than 0.1s”

13	NOVEMBER	2017 15

Why	model	requirements	in	Modelica?

16

• We can have them alongside the component Model
• Declarative style of Modelica well suited to

requirement expression
• Integrated in the tool chain
• Can be verified during simulation

13	NOVEMBER	2017

What	do	need	to	represent	requirements?	

17

• We need to identify requirements ()
– a special interface

• We must know how to evaluate a requirement
– Requirements must have a status

• Requirements should not modify the physical model
– The status is the only output variable

• Requirement models can (possibly) contain extensions for
expressing requirements in a more requirement-designer
friendly way (FORM-L macros for example)

13	NOVEMBER	2017

Status	of	a	requirement
18

The status variable is 3-valued and applies to a specific
instant in time:

– Violated : the requirement is applicable and the
conditions of the requirement are not fulfilled – the
pump is on and the flow is below the minimum
required

– Satisfied : the requirement is applicable and the
conditions of the requirement are fulfilled – the pump
is on and the flow is above the minimum required

– Not_applicable : the requirement cannot be applied
or is not relevant - the pumps are off

Example	requirement:		when	the	pump	is	on the	flow	must	be	above	a	minimum	
threshold

13	NOVEMBER	2017

19

Status	over	simulation	time

Status	changes	over	time,	so	we	need	to	track	it	over	the	
course	of	the	simulation

undefined

violated not	violated

13	NOVEMBER	2017

20Example	1	- LimitInFlow
model LimitInFlow "A2: If pump is on then in-flow is

less than maxLevel”
extends Requirement;

//qOut from the Source component

input Real liquidFlow;
input Boolean pumpOn;

parameter Real maxLevel = 0.05;

equation
if (pumpOn) then
if (liquidFlow < maxLevel) then
status = Status.not_violated;

else
status = Status.violated;

end if;
else status = Status.not_applicable; end if;

end LimitInFlow;

13	NOVEMBER	2017

þ Standard	Modelica	

Modeling	approaches

13	NOVEMBER	2017 21

• Standard Modelica
• State-machines
• Dedicated libraries or languages

Use	case:	
Requirement	specification	for	a	tank	system

13	NOVEMBER	2017 22

• Req. 001: The volume of each tank shall be at least 2
m3.

• Req. 002: The level of liquid in a tank shall never
exceed 80% of the tank height.

• Req. 003: After each change of the tank input flow,
the controller shall, within 20 seconds, ensure
that the level of liquid in each tank is equal to the
reference level with a tolerance of ± 0.05 m.

13	NOVEMBER	2017 23

Req 001:	standard	Modelica

within TwoTanksExample.Requirements;

model LiquidLevel "The level of the liquid shall never exceed 80% height"
extends VVDRlib.Verification.Requirement;
input Real waterLevel;
//input Real tankVolume;
parameter Real tankVolume = 2;
equation
status = if (waterLevel < 0.8*tankVolume) then
VVDRlib.ReqStatus.NOT_VIOLATED else VVDRlib.ReqStatus.VIOLATED;

end LiquidLevel;

13	NOVEMBER	2017 24

Req 002:	standard	Modelica

within TwoTanksExample.Requirements;

model Volume_of_a_tank "The volume of each tank shall be at least 2 m3.
"
extends VVDRlib.Verification.Requirement;
input Real tankVolume;
parameter Modelica.SIunits.Volume requiredVolume = 2;
equation
status = if tankVolume < requiredVolume
then VVDRlib.ReqStatus.VIOLATED else VVDRlib.ReqStatus.NOT_VIOLATED;

end Volume_of_a_tank;

13	NOVEMBER	2017 25

Req 002:	state	machines
"After each change of the tank input flow, the controller shall,

within 20 seconds, ensure that the level of liquid in each tank
is equal to the reference level with a tolerance of ± 0.05 m."

Dedicated	language:	FORM-L

26

• FORM-L a language for property expression
proposed by EDF

• Aims to make requirement expression easier for
engineers

• Example :
Form-L: during (On and (MPSVoltage > V170))

check no (Off becomes true);
• Integrate it with Modelica to breach semantic gap

between how engineers and modelers express
requirements

13	NOVEMBER	2017

Property modeling: structure of a property

27

• Properties are divided into 4 main parts:
WHERE / WHEN / WHAT / HOW_WELL

• WHERE: spatial locator. Builds the sets of objects defined
by static properties.

• WHEN: temporal locator. Locate properties in time on sets
built with spatial locators.

• WHAT: condition to be verified at the specified WHERE
and during the specified WHEN.

• HOW_WELL: probabilistic condition of the condition to be
verified

13	NOVEMBER	2017

Time	Locators

Special	blocks	that	
define	when	a	
requirement	should	be	
verified	(after,	until,	
afterFor…)

evt

until evt time

evt

duration
time

duringAny duration

Many	more	specified	in	the	
FORM-L	documentation	by	
N.	Thuy

after evt

Indefinite Indefinite
time

evt evt

after first(evt)
Indefinite

time

evt evt

flat(after evt)

Indefinite

time

evt evt

13	NOVEMBER	2017 28

29Textual	requirement	modeling	– Using	
TimeLocator WithinAfter
model R3 "requirement R3 is during any s6 check avg(signal) < 20;"

extends Requirement;
input Real signal;

equation
if time < 6 then
status = undefined;

else
if DuringAnyAverage(timeWindow = 6, value = signal, thr = 2).out
then
status = not_violated;

else
status = violated;

end if;
end if;
end R3;

13	NOVEMBER	2017

DuringAnyAverage time	locator

block DuringAnyAverage "Returns true if the average of the values in a
sliding window of sizeWindow is below the threshold"

extends TimeLocator;
parameter Real timeWindow = 10;
parameter Real sampleFrequency = 1;
parameter Real thr;
input Real value;

protected
Real buffer[size];
Integer counter;
parameter Integer size = integer(floor(timeWindow /

sampleFrequency)) + 1;
algorithm

when sample(0, sampleFrequency) then
buffer[counter + 1] := value " store values in buffer";
counter := mod(counter + 1, size-1);
if time > timeWindow then

out := average(buffer) <= thr;
else

out := true;
end if;

end when;
end DuringAnyAverage;

13	NOVEMBER	2017 30

Requirements	library

13	NOVEMBER	2017 31

https://github.com/modelica/Modelica_Requirements

• Development led by M. Otter at DLR
• Contains implementations for all temporal locators
• Under development

HOW DO WE USE REQUIREMENTS FOR
VERIFICATION?

13	NOVEMBER	2017 32

Formal	model	checking	methods

• Formal language specification (ESTERL, petri nets,
temporal languages)

• Verification tools (Coq, certified code generators…)
+ Prove correctness theoretically
+ Give theoretical guarantees
- Heavy/expensive to use
- What can be verified is limited

13	NOVEMBER	2017 33

Simulation	based	model	checking	methods

• Simulate a certain number of
scenarios and verify requirements
dynamically

• More flexible
• Find the presence not the absence of

bugs
• Can still give good guarantees

13	NOVEMBER	2017 34

Failure	Mode	and	Effects	Analysis	(FMEA)
• Modelica	models	augmented	with	reliability	properties	can	be	used	to	generate	reliability	

models	in	Figaro,	which	in	turn	can	be	used	for	static	reliability	analysis
• Prototype	in	OpenModelica	integrated	with	Figaro	tool	(which	is	becoming	open-source)	

Modelica Library
Application
Modelica model

Simulation

Figaro Reliability
Library

Reliability model
in Figaro FT generation FT processing

Automated
generation

13	NOVEMBER	2017 35

Dynamic Requirement	Evaluation

tank-height is 0.6m

Req. 001 for the tank2 is
violated

Req. 001 for the tank1 is not
violated

13	NOVEMBER	2017 36

Dynamic Requirement Verification wrt
System Design

• Formalized Requirements that should be verified

• System Model, i.e., Design Alternative Model, for
which the requirements should be verified

• Application scenarios with the system model for
which the requirements should be verified

13	NOVEMBER	2017 37

vVDR Method	–
virtual	Verification	of	Designs	vs Requirements

Formalize	
Requirements	

Formalize	Designs

Formalize	
Scenarios

Create	Verification	
Models

Execute	and	
Create	Report

Analyze	Results

RMM Requirement
Monitor Models

Scenario ModelsSM

Designs
Alternative ModelsDAM

VM Verification Models

AUTOMATED

Task Created Artifact

Goal: Enable on-demand
verification of designs
against requirements
using automated model
composition at any time
during development.

AUTOMATED

Actor

Reports

13	NOVEMBER	2017 38

13	NOVEMBER	2017 39

Two	tank	system

System model:
Two connected
tanks with
controllers

System	requirements:	reminder

13	NOVEMBER	2017 40

• Req. 001: The volume of each tank shall be at least 2 m3.

• Req. 002: The level of liquid in a tank shall never exceed 80% of the
tank height.

• Req. 003: After each change of the tank input flow, the controller shall,
within 20 seconds, ensure that the level of liquid in each tank is

equal to the reference level with a tolerance of ± 0.05 m.

Scenarios

13	NOVEMBER	2017 41

• In which conditions do we want to test the system?

– Eg. Constant flow, flow change, rapid flow change

How	do	we	combine	these	elements	for	
verification?

13	NOVEMBER	2017 42

Automatic model composition
Initial AnalysisModel:

13	NOVEMBER	2017 43

model GraphicalModel
extends VVDRlib.Verification.VerificationModel;
Requirements.Volume_of_a_tank volume_of_a_tank1;
Requirements.LiquidLevel liquidLevel1;
Design.TwoTanksDesign;

end GraphicalModel;

Updated AnalysisModel model with a binding:

model GraphicalModel
extends

VVDRlib.Verification.VerificationModel;
TwoTanksExample.Requirements.Volume_of_a_tank

volume_of_a_tank1_autogen_bind_0(tankVolume =
twoTanksDesign1.tank1.volume);

TwoTanksExample.Requirements.Volume_of_a_tank
volume_of_a_tank1_autogen_bind_1(tankVolume =
twoTanksDesign1.tank2.volume);

TwoTanksExample.Requirements.LiquidLevel
liquidLevel1_autogen_bind_0(waterLevel =
twoTanksDesign1.tank1.levelOfLiquid);

TwoTanksExample.Requirements.LiquidLevel
liquidLevel1_autogen_bind_1(waterLevel =
twoTanksDesign1.tank2.levelOfLiquid);

TwoTanksExample.Design.TwoTanksDesign
twoTanksDesign1;
end GraphicalModel;

13	NOVEMBER	2017 44

Binding:

client	instance	reference	=	binding	expression

A	binding is	a	causal	relation	which	specifies	that,	
at	any	simulated	time,	the	value	given	to	the	
referenced	client	instance	shall	be	the	same	as	the	
value	computed	by	the	right-hand	expression.	

How do we capture the information
necessary for automatic generation?

System
Designer

Requirement
Analyst

13	NOVEMBER	2017 45

record volumeLevel
extends Mediator(mType = "Real",
clients = {Client(modelID =

"TwoTanksExample.Requirements.Volume_of_a_tank",
component = "tankVolume")});
end volumeLevel;

record volumeLevel
extends Mediator(mType = "Real",
clients = {Client(modelID =

"TwoTanksExample.Requirements.Volume_of_a_tank",
component = "tankVolume")},
providers = {Provider(modelID =

"TwoTanksExample.Design.Components.Tank",
template = "%getPath.volume")});

end volumeLevel;

Verification	example	2

block R2 "after the power is lost, at least 2 powerSets
must be on within 40s"

extends Requirement;
input Boolean[5] isOn;
input Boolean powerLoss;
output Integer status(start = 0);
Boolean wA;
equation

wA = withinAfter(40, powerLoss);
when wA then
status = if countTrue(isOn) >= 2 then

not_violated else violated;
elsewhen not wA then

status = undefined;
end when;

end R2;

13	NOVEMBER	2017 46

Scenario	1

time

Power	lost

20

Se1	on

40 50

Requirement	verified

60

Set2	on

13	NOVEMBER	2017 47

Scenario	1

time

Power	lost

20

Se1	on

40

Set2	off

50

Requirement	verified

60 80

Set2	on

13	NOVEMBER	2017 48

Scenario	2

time

Power	lost

20

Se1	on

40

Set2	on

70

Requirement	verified

60 80

Set2	off

13	NOVEMBER	2017 49

Next	step
We	want	to	verify	different	design	alternatives against	sets	of	requirements
using	different	scenarios.	Questions:	
1) How	to	find	valid	combinations of	design	alternatives,	scenarios	and	requirements	in

order	to	enable	an	automated	composition	of	verification	models?
2) Having	found	a	valid	combination:	How	to	bind	all	components	correctly?	

…

Create	Verification	
Models

… RMM
1. Verification

Model
VM DAM SM

2. Verification
Model

VM …

…

Requirement ModelsScenario ModelsDesigns Alternative Models

DAM
SM

DAM
DAM

SM
SM

SMSM

SM
RMM1

RMM

RMM

RMM

RMM
SM RMM

RMM

RMM

RMM

… …
n. Verification

Model

*

13	NOVEMBER	2017 50

Generating/Composing Verification
Models

13	NOVEMBER	2017 51

Composing Verification Models

• Collect all scenarios, requirements, import mediators
• Generate/compose verification models automatically:

– Select the system model to be verified
– Find all scenarios that can stimulate the selected system model

(i.e., for each mandatory client check whether the binding
expression can be inferred)

– Find requirements that are implemented in the selected system
model (i.e., check whether for each requirement for all mandatory
clients binding expressions can be inferred)

• Present the list of scenarios and requirements to the user
– The user can select only a subset or scenarios or requirements

he/she wishes to consider

13	NOVEMBER	2017 52

13	NOVEMBER	2017 53

13	NOVEMBER	2017 54

Auto	generated	model
within TwoTanksExample.VerificationModels;

model verif_model_autogen_2 "Autogenerated verification model"
TwoTanksExample.Requirements.Volume_of_a_tank

_agen_Volume_of_a_tank4_autogen_bind_0(tankVolume =
_agen_TwoTanksDesign1.tank1.volume);

TwoTanksExample.Requirements.Volume_of_a_tank
_agen_Volume_of_a_tank4_autogen_bind_1(tankVolume =
_agen_TwoTanksDesign1.tank2.volume);

TwoTanksExample.Requirements.LiquidLevel
_agen_LiquidLevel3_autogen_bind_0(waterLevel =
_agen_TwoTanksDesign1.tank1.levelOfLiquid);

TwoTanksExample.Requirements.LiquidLevel
_agen_LiquidLevel3_autogen_bind_1(waterLevel =
_agen_TwoTanksDesign1.tank2.levelOfLiquid);

TwoTanksExample.Requirements.LevelAdjustment
_agen_LevelAdjustment2_autogen_bind_0(inFlow =
_agen_TwoTanksDesign1.tank1.levelOfLiquid);

TwoTanksExample.Requirements.LevelAdjustment
_agen_LevelAdjustment2_autogen_bind_1(inFlow =
_agen_TwoTanksDesign1.tank2.levelOfLiquid);

TwoTanksExample.Design.TwoTanksDesign _agen_TwoTanksDesign1(source.flowLevel =
_agen_RapidFlowChange0.flowLevel);

TwoTanksExample.Scenarios.RapidFlowChange _agen_RapidFlowChange0;
end verif_model_autogen_2;

To + Up:
• Requirement modeling is a methodology

NOT a tool
• How to model requirement?

– State machines, standard Modelica, libraries
• How to use the requirement models?

– Composition methodology, tool-support
• Next step

– Batch analysis of results, report generation…

13	NOVEMBER	2017 55

www.liu.se

That’s	all!	Thank	you!	Questions?

