
MODELS TO CODE
(with no mysterious gaps)

leon_starr@modelint.comLeon Starr

Model Integration LLC www.modelint.com

@leon_starr

modelint

WHY ISN’T EVERYONE
MODELING?

MY EARLY DAYS OF MODELING

C

FORTRAN

ADA

Pascal

Lisp
Smalltalk

Modeling mammals

AGE OF UML (1997-2001)

Shlaer-Mellor

Rumbaugh

Booch

Jacobson

Hatley-Pirbai

Rational
Ilogix

POST UML AGILE ICE AGE (2002-2013)

AGILE

THINGS ARE WARMING UP AGAIN (2014-PRESENT DAY)

EA Sparx

Open source Modelica

Simulink

Executable UML

Rhapsody / Rational
non-executable uml

Mathworks
Alf

THE DINOSAUR KILLING ASTEROID IS ON ITS WAY

Lean modeling language

Clear path to code

Problems solved by the models (like modelica)

Open source

Platform independence

Executable models

Account for all of the software

MONOLITHIC TOOL APPROACH

Executable UML Code!

COMPILE

Unlikely to work for many real-world platforms

(hope you like it)

MODELING ON CHALLENGING PLATFORMS

Battle Simulation
Implantable

Medical

Vehicle
Networks

Factory
Automation

Diagnostic
Ultrasound

Chromatography

Video
Effects

Semiconductor
Inspection

Airborne
platforms

PRESERVE THE MODELS

Cardiac behavior models

Pace - Inhibition
Scheduling models

PATHS TO CODE THAT DESTROY THE MODELS

Add platform specific detailAdd platform specific detail

Destruction Scenario 1 Destruction Scenario 2

Set of “high level” models

Out of time and/or money

System

Write code instead
System

Source models are now irrelevant

Models morph into code diagrams

MAPPING AS DONE BY HARDWARE ENGINEERS

Just because a detail is
systematically ignored, doesn’t
mean that it is not important

Schematic

Focuses on component properties and connectivity

Excludes layout details

Layout diagram

Focuses on layout geometry

CASE STUDY

CASE STUDY: AIR TRAFFIC CONTROL

SJC18C

SFO37B

OAK21C

Toshiko
ATC53

Rating: A
Login: 2013-9-27T15:00

(On Duty)

Ianto
ATC51

Rating: C
Last shift ended:
2013-9-26T17:00
(Not logged in)

Gwen
ATC67

Rating: B
Login:

2013-9-27T11:00
(On Duty)

DS1

DS2

DS3
(not in use)

Loc: Center
Cap: 30

Loc: Front
Cap: 45

Loc: Front
Cap: 20

ATC Center

RULES / REQUIREMENTS
➤ A controller can not direct air traffic while off duty.

➤ An on duty controller must be logged into a duty station.

➤ A duty station may or may not be available.

➤ A control zone must have its traffic directed by one air traffic
controller at all times.

➤ An air traffic controller may not work a shift longer than two
hours and fifteen minutes.

SOME LIMITATIONS OF WRITTEN REQUIREMENTS
➤ Ambiguous

➤ Contradictions

➤ Incomplete

➤ Same word for many things

➤ Different words for the same thing

➤ Over-specification

➤ Under-specification

➤ Inconsistency

➤ Arbitrary partitioning

MODELING BEHAVIOR WITH STATES AND ACTIONS

State models

Actions

Class Model

migrate to On Duty Controller
my station .= Duty Station(Number: in.Station)
link /R3/my station
Time logged in = _now.HMS
Logged in -> me
In use -> my station

THE CLASS MODEL: DATA, RULES, CONSTRAINTS

is directing
traffic within

has traffic
directed by

On Duty Controller

ID {I, R1}
Time logged in : Date
Station {R3}

Off Duty
Controller

ID {I, R1}
Last shift ended : Date

Control Zone

Name : Czone Name {I}
Traffic : Aircraft Quantity
Controller {R2}

R1

R2

Air Traffic
Controller

ID : Employee ID {I}
Name : Name
Rating : Experience Level

Duty Station

Number : Station Number {I}
Location : Name
Capacity : Aircraft Maximum

R3
1

is logged into

{ disjoint,
complete }

0..*

0..1

1

is being used
by

Shift Specification

Name : Spec Name {I}
Max shift : Duration
Min break : Duration

SOURCE MODEL PROPERTIES
➤ Executable (class + state + action models)

➤ Platform independent (models requirements)

➤ Lean, mathematically based language (Executable UML)

DESIGN

PLATFORM CHARACTERISTICS
➤ Limited memory

➤ Limited execution cycles

➤ Interrupts

➤ Timely response required

STEP 1: GET AN MX DOMAIN FOR YOUR CLASS OF PLATFORM

xUML

xUML rules & semantics

Platform constraints

MX Domain

MX = Model Execution

Design Input

It’s realized as a C library

Provides runtime support for
data storage, access, state
machine logic, action execution

STEP 2: MARK UP YOUR MODELS WITH DESIGN DIRECTIVES

xUML Domains
Data types
Classes, attributes, relationships
States, transitions, events
Activities / Actions

Model Design Script

Design Input

Pattern selection

Choose imp data types

Code for some actions

STEP 3: COMPILE & LINK

CHOOSE DATA TYPES

Control Zone

Name : Czone Name {I}
Traffic : Aircraft Quantity
Controller {R2}

In model design script

MODELED CLASS TO STRUCT

class On_Duty_Controller
 attribute (Date_t Time_logged_in) default {0}
 reference R2 ->>l Control_Zone
 reference R3 -> Duty_Station
end

R3

0..11

On Duty
Controller

ID {I, R1}
Time logged in : Date
Station {R3}

R2

10..*

✘

✘

Implementation
link types

In model design script

Generated code

INITIAL INSTANCE POPULATION
Air Traffic Controllers

On Duty Controllers
Off Duty Controllers

Name

A

67

51 C

B

Rating

Gwen

Toshiko

Ianto

53

ID {I}

51

Last shift endedID {I, R1}

9-26-13 17:00
S1

S2

Duty Station {R2}

9/27/13 11:00

9/27/13 15:00

67

ID {I, R1}

53

Time logged in

Same object
Superclass table

Subclass tables

On Duty
Controllers

Off Duty
Controllers

ATC53

ATC67 ATC51

Air Traffic Controllers

OAK21C

SJC18C

SFO37B

9-26-13 17:00
Last shift endedTime logged in

9/27/13 15:00

Time logged in
9/27/13 11:00

Duty Station

None

User {R3}

53

67

Location

20

S3

S2 45

30

Capacity

Center

Front

Front

S1

Number {I}

Traffic

9CZ1

27CZ3

ATC67

ATC53

ATC53

18

Name Controller

CZ2

Control Zones

DS2

DS1

DS1

DS2

DS3

OAK21C

SJC18C

SFO37B

30

25
15

ATC53

ATC67

ATC51

ATC53

ATC67
ATC51

THE INSTANCE DATA

THE CODE

RUNTIME DATA

PERFORMANCE
➤ Code size

➤ MX runtime: ~ 4K

➤ 2 domain example: +12K

➤ 20 classes, bridging +60 instances

➤ CPU 7MHz

➤ 1491 signal dispatches / sec

SUMMARY

REQUIRED FOR MBSE TO BECOME MAINSTREAM
➤ Models must add real value

➤ Don’t destroy the models when implementing

➤ Map the models to code, don’t “mix in” detail

➤ It’s still necessary to write code and that’s okay!

➤ There must be a clear path from models to final code

WHAT’S NEXT FOR MBSE?

MBSE

Java

C++

