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CPS Time Line 

 CPS was initiated in 2006/2007 by a group of academics, ex DARPA 
PMs  with strong support from industry. 

 

 CPS consolidates as a valid scientific direction by 2010. Universities 
led the charge, with VERY strong industry support. (Only complaint 
is the CPS name.) 

 

 In 2010 NSF starts the CPS program in the Computer and 
Information Science and Engineering (CISE) directorate, establishes 
the CPS Virtual Organization (CPS-VO.org) at Vanderbilt-ISIS, 
starts Annual CPS PI Meetings . First ICCPS is in 2010 
Stockholm. DARPA starts the Adaptive Vehicle Make (AVM) 
program. 

 

 Between 2012-2015 industrial consortiums are created (Industrial 
Internet Consortium (2014),  OpenFog Consortium (2015), 
IoT, Industry 4.0 (Germany) and a “new Gold Rush” starts. 



DARPA Adaptive Vehicle Make 
(AVM) Program 

End-to-end model- and component-based design and 

integrated manufacturing of a new generation of 

amphibious infantry vehicle – a complex, real-life cyber-

physical system. From infrastructure to manufactured 

vehicle prototype in five yeas (2010-2014). 

Engineering/economic goals: 
 

• Shorten development time by exploiting advantages of  

  model and component based design 

• Enable the adoption of fabless design and foundry  

  concept in CPS: link design and manufacturing 

•  “Democratize” design by open source tool chain, crowed-  

   sourced model library and prize-based design challenges  
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Scientific Challenges  

Achieving AVM goals require pushing the limits of 
“correct-by-construction” design using 

− Model-based Technologies 
Computational models that predict properties of cyber-physical systems  

“as designed” and “as built”.  

Challenge: Develop domain-specific abstraction layers for complex 

CPS that are evolvable, heterogeneous, yet semantically sound and 

supported by tools.  

− Component-based Technologies  
Reusable units of knowledge (models) and manufactured components. 

Challenge:  Go beyond interoperability – find opportunities for 

composition where system-level properties can be computed  

from the properties of components 



Model-Based Design 
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Model- and Component-based 
Design Process  

• Component Repository: 

• For a system model S: 

• The architecture of a system S  is a labelled  
graph GS , which is well formed if it satisfies 
a set of constraints  over GS  derived from the 
semantics of the interaction types  

• The set of component types and composition  
constraints define a design space: 

• The goal of the design process is to synthesize    
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Lesson Learned -1: Need for 
Integration Platforms 

 We found that the single most important change 
necessary to achieve correct-by-construction 
design is the introduction and systematic use of 
cross-domain modeling – consequently:  

‒ Vertically integrated tool suites should be 
complemented by horizontal integration platforms 

‒ Brings up interesting new challenges in modeling, tool 
architectures and deployment strategies 



Result 1: OpenMETA Horizontal 
Integration Platforms 
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Horizontal Integration Platforms cut across traditionally  
isolated design domains. 



 Model Integration Platform: 
Formal framework and tool for composing Model 
Integration Languages, metaprogrammable modeling 
tool, metamodel repository, Semantic Backplane 

 Tool Integration Platform: 
Tools for specifying, implementing and composing model 
transformations, platforms for orchestrating tool 
execution in design flows 

 Execution Integration Platform: 
Cloud-based deployment  infrastructure, web-based 
delivery of design tools, data repositories and visualizers 

 

OpenMETA Horizontal 
Integration Platforms 



Semantic Integration and 
Model Integration 
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Semantic Integration: 
 Data is tagged with metadata 
 Metadata is structured by ontologies 
 DSMLs are defined driven by needs of 

analyses 
 Semantics of relationships among  

DSMLs is formally specified 

Model Integration: 
 Models are built using DSMLs 
 Model composers are developed 
 Model transformation tools for analytics are  

created using DSML semantics 
 Multi-models are created using Model Integration  

Languages 



Result 2: Semantic Integration  

Impact: Open Language Engineering Environment  Adaptability of Process/Design 
Flow  Accommodate New Tools/Frameworks , Accommodate New Languages 
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Result 3: Semantic Backplane  

Vanderbilt 
https://github.com/webgme 

Microsoft Research 
github.com/Microsoft/formula 
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Lesson Learned – 2: Need for 
Component Modeling Technology 

 Rich interfaces decoupled from modeling 
languages used for capturing domain models 

 Compositionality and semantically well defined 
composition operators 

 Explicit bounds for composability  

 Inclusion of relevant suite of domain models – 
on multiple levels of fidelity 

 Documented validity 



Caterpillar C9 Diesel Engine : AVM Component
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Making AVM Components 
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Experience 

 Building *good* model libraries is hard 

 Component models  should not be confused by 
sub-models taken from an existing complete 
design: component models need to be flexible 
and remain composable in many designs 

 Regions of validity (i.e. composability) need 
to be explicitly represented  

 Parametric  uncertainties need to be 
explicitly represented 

 Epistemic uncertainties need to be assessed 
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Lessons Learned – 3: Need for 
Automation in Design Flow 
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Result 4: Design-Space Exploration 
Using Progressive Refinement  

• Design Reuse 
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Components, Designs,  
Design Spaces 
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Design Space Construction 
and Exploration  



Experience 

 Design spaces need to be constructed to 
make design space exploration meaningful, 
tractable 

 Seed designs have significant importance in 
constructing meaningful design spaces 

 Information management infrastructure need to 
follow changes: design spaces can 
expand/shrink with technology changes and 
knowledge about regions in the design space 
can increase 



Result 5: Automated Analysis 
Using Virtual Test Benches 
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Result 6: Design Space 
Analyzer and Visualizer 

Interactive tools for multi-objective 
optimization (Georgia Tech team) 
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Lessons Learned – 4: Need for 
Interface Between Design and Mfg. 
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Result 7: Design Space Exploration 
with Manufacturability Test 
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Refined Manufacturing 
Interface 
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Experience 

 Manufacturability parameters even early design 
space exploration help… (lead time, cost) 

 Linking manufacturing refinement tools with 
architecture modeling tools was quite effective 

 Open path toward product and manufacturing 
process co-design 



OpenMeta Under Transitioning 

 CyPhy Language & Infrastructure 

 Extend Components, Designs, Design Spaces 

 Other Tool Integration Into Design Flow 

 Design Space Exploration & Visualization 

 Apply Constraints, Explore Design Options 

 Model Composers and Test Bench Analyses:  

 Modelica, CAD, Simple FEA/CFD Composition, Blast & 
Ballistics, Manufacturability 

 Google’s first purchase order led to the 
foundation of MetaMorph Inc. – spinoff from 
Vanderbilt-ISIS 

 



Ongoing Research 

 Product and manufacturing process co-design 

 Rapid Feedback On Manufacturing Decisions 

 Joint Architecture/Manufacturing Process Design  

 Increased Control in PDE Analysis 

 Meshing, Forces & Constraints 

 Multi-User Concurrent Design 

 Tools Integration 

 SPICE, SystemC, Aero, Space, Uncertainty Management 

 Pilots in different domains. 



Conclusion 

 Horizontal Integration Platforms 

‒ Infrastructure is reusable in many domains 

 Semantic Integration 

‒ Model Integration Languages, explicit semantics 

 Increased Automation 

‒ Design space exploration using progressive refinement 

 Product and Manufacturing Process Co-design 

‒ Next revolution? 

 



Model-based Design and 
Societal-Scale CPS 

The goal of model-based design is to synthesize S from a class of 
systems ℂ𝑆 such that 

2/7/2018 

Model-Based Design 
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S System 

𝑆 ∥ 𝐸 ⊨ 𝑅 

SID methodology for formal verification 
(Seshia, 2015): 
 - Abstraction-Based Model Checking 
 - Synthesis of R (STL formula) from  
    sim. traces.. 
Scalability remains limited for CPS. 

Modeling uncertainty in physical systems  
 Aleatoric  uncertainties: irreducable,  
 rooted in physics 
 Epistemic uncertainties: lack of  
 knowledge 
Role of epistemic uncertainties dominates. 

𝑆 ∥ 𝐸 ⊨ 𝑅. 



Addressing Epistemic 
Uncertainties with Learning 

Evidence-based Dynamic Assurance Argumentation 
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DARPA: Assured Autonomy Program 

Extending OpenMeta with Learning Enabled Components: 



Current Trends 

Industry Perception: 
(Gartner’s View on 
Technology Trends 2016)
   

• Transparently 
immersive 
experiences 
Technology becomes 
more adaptive, 
contextual and fluid  

• The perceptual 
smart machine age 
CPS fusion with AI 

• Platform revolution 
Ecosystem-enabling 
platforms 

Academic 
Perception (Current 
Academic Research 
Trends)  

• Policy awareness 
How to build H-CPS that 
can be parameterized with 
societal context?  

• Learning Enabled 
Components 
How to deliver assurance? 

• Platforms with 
safety, security  and 
performance 
guarantees 



Future 


