
Bindings: a New Approach for co-simulation applied to System
Design Verification Against Requirements

Yulu Dong

Daniel Bouskela

Thuy Nguyen

Audrey Jardin

EDF R&D

2

Problem: how to efficiently verify complex system design
against requirements ?

• Complex physical systems exhibit large numbers of

• dynamic continuous states: physical states (temperature, pressure,
mass flow…)

• dynamic discrete states: operating modes (normal, dysfunctional,
I&C…)

• described by multiple models from different modelling tools

They are subject to large numbers of requirements

• And need many test scenarios for proper verification

• Difficulty: possible combinatorial explosion of situations to be explored.

3

Solution: automate as much as possible the testing of
complex systems

• How:

• Build a formal model of the requirements

• Build a physical model of the behavior of the system

• Generate automatically test scenarios that comply with the
assumptions made and the test coverage criteria

• Use the requirements model as an observer of the behavioral model to
automatically detect possible violations of the requirements

Requi-

rements

Observing

Requirements model

What the system should

guarantee

E.g. Cavitation should never happen

Behavioral model

How the designed system

actually operates

E.g.    tQktP 2/  

4

Purpose of this presentation: a method for automatic binding
of models and a Python implementation

• The requirement model uses external variables that
are computed by other models (so-called external
models). The links between the external variables
and the variables of the external models are called
bindings.

• Problem to be solved:
The bindings should be generated automatically
because large numbers of external variables are
involved

• A method for the automatic generation of
bindings is presented.

• The method is independent of any modelling
language

• The current implementation uses Modelica for
the requirements and the behavioral models

• The implementation is done with a Python script.
Modeling architecture outline

5

Example: cooling system of auxiliary equipment of a power
plant

• Objective of the cooling system: remove heat from large equipment units of
a power plant.

• System is critical for plant availability: in case of failure, the plant must be
shutdown.

Heat exchanger 1

Heat exchanger 2

Pump 1

Pump 2

Feedwater valve Tank

Temperature

sensor

BC6

BC5

BC1 BC2

BC3 BC4

BC7

Equipments to be cooled

 Control valve 1

 Control valve 2

 Bypass valve

Pump3

Architectural model of the cooling system
(ThermoSysPro, EDF)

6

Cooling system example: informal requirements

• Req. 1: ‘The maximum heating power to be removed is 25 MW’.

• Req. 2: ‘When they are in operation, pumps shall not cavitate’.

• Req. 3: ‘The water temperature shall not vary by more than 10°C per hour’.

• Req. 4: ‘When the system is in operation, there should be no less than two
pumps in operation for more than 2 seconds. Violation shall not occur more
than 3 times per year with a confidence rate of [a given percentage]”.

• etc. (other examples in the paper)

7

Building the verification model: basic principles

1. Formalize requirements using a property modeling language 
requirements model (with ReqSysPro developed at EDF R&D)

2. Describe system design using the same property modeling
language  architecture model (with ThermoSysPro developed
at EDF R&D)

3. Model dynamic physical behavior of the system using
mathematical modeling  behavioral model (with ThermoSysPro
developed at EDF R&D)

Expert: operation engineer

Expert: mechanical and system control engineer

Expert: physicist (thermal-hydraulics, neutronics, combustion, etc.)

C
o

m
p

lia
nt

 w
it

h
C

o
m

p
lia

nt
 w

it
h

8

Binding between the requirements model and the
architecture model (Set bindings)

‘When they are in operation, pumps should not cavitate’.

propertyModel tPump_R

String type = “Pump”;

external Boolean Cavitate;

external Boolean InOperation;

end tPump_R;

propertyModel CoolingSystem_R

external tPump_R Pumps = { };

requirement R2 = check card ({ P in Pumps

| P.InOperation and P.Cavitate }) == 0;

end CoolingSystem_R;

Requirement model for (Req. 2)

Pump definition for
requirement model

propertyModel tPump_A

String type = “Pump”;

String subtype;

String id;

external Real[:] NPSH_req;

end tPump_A;

propertyModel CoolingSystem_A1

tPump_A Pump1 (subtype=”Centrifugal”, id=”PO1”);

tPump_A Pump2 (subtype=”Centrifugal”, id=”PO2”);

tPump_A Pump3 (subtype=”Centrifugal”, id=”PO3”);

end CoolingSystem_A1;

Partial architecture model
for (Req. 2)

Pump definition for
architecture model

WHERE /
WHEN /
WHAT

9

Binding between the architecture model and the behavioral
model (Instance bindings)

Architecture model of the cooling system
Behavioral model of the cooling system

‘When they are in operation, pumps should not cavitate’.

10

Binding between the requirements model and the
observation operators (Variable bindings)

‘When they are in operation, pumps should not cavitate’.

propertyModel tPump_R

String type = “Pump”;

external Boolean Cavitate;

external Boolean InOperation;

end tPump_R;

propertyModel CoolingSystem_R

external tPump_R Pumps = { };

requirement R2 = check card ({ P in Pumps

| P.InOperation and P.Cavitate }) == 0;

end CoolingSystem_R;

Requirement model for (Req. 2)

WHERE /
WHEN /
WHAT

Pump definition for
requirement model

function Obs_PumpStarted_1

input Real V “Supply voltage”;

output Boolean pumpStarted “Boolean telling

whether the pump is started or not”;

algorithm

pumpStarted := (V > 0); // Threshold is zero

end Obs_PumpStarted_1;

function Obs_PumpCavitating

input Real P “Pressure at the inlet of the pump”;

input Real q “Volumetric flow through the pump”;

input NPSH_req “Required NPSH”;

output Boolean pumpCavitating “Boolean telling

whether the pump is cavitating or not”;

algorithm

pumpCavitating := (P < NPSH_req[q]);

end Obs_PumpCavitating;

Observation operator for pump in
operation

Observation operator for pump
cavitation

11

Binding between the observation operators and the
behavioral model (Input bindings)

function Obs_PumpStarted_1

input Real V “Supply voltage”;

output Boolean pumpStarted “Boolean telling

whether the pump is started or not”;

algorithm

pumpStarted := (V > 0); // Threshold is zero

end Obs_PumpStarted_1;

function Obs_PumpCavitating

input Real P “Pressure at the inlet of the pump”;

input Real q “Volumetric flow through the pump”;

input NPSH_req “Required NPSH”;

output Boolean pumpCavitating “Boolean telling

whether the pump is cavitating or not”;

algorithm

pumpCavitating := (P < NPSH_req[q]);

end Obs_PumpCavitating;

Observation operator for pump in
operation

Observation operator for pump
cavitation

Behavioral model of the cooling system

‘When they are in operation, pumps should not cavitate’.

12

Binding algorithm

Input data of algorithm:
a. Set binding O.s  { p1, …, pn }
b. Variable binding R.y [H1, …, Hr]
c. Input binding Hi (u1, …, un)  (u1=E1.x, …, un=En.x) for i = 1 to i = r
d. Instance binding = p { e1, …, en } for all p in target(O.s { p1, …, pn })

‘When they are in operation, pumps should not cavitate’.

Let us consider:
a. an external variable y declared in a class R: R.y,
b. an external set s of objects of type R declared in an object O: O.s

Algorithm:
For each object p in the set {p1, p2, …, pn}:
1. Find H of lowest rank in R.y [H1, …, Hr] such that sig(H) ⊂ sig(p  { e1, …, en }). The
result is Hy.
2. From the binding Hy (u1, …, un)  (u1=E1.x, …, un=En.x), form symbolically the expression
p.y = Hy (u1=E1.x, …, un=En.x).
3. For each Ei in { E1, …, En }, assume that there’s a unique instance ei in the target of p  { e1,
…, en } such that class(ei) = Ei. Keep ei.
4. Replace in p.y = Hy (u1=E1.x, …, un=En.x) the classes Ei by the found instances ei. The result is
p.y = Hy (e1.x, …, en.x).

13

Binding programming

Coding language: Python. Why: interpreted language, open source libraries, easy access to data base such as
Excel, SQL, …

Python code: binding.py

Automatic

genaration

binding_model.mo

verification_model.mo

Data base
• Set binding
• Instance binding
• Variable binding
• Input binding

Ready to be
simulated

14

Final modeling architecture

• Translation from FORM-L to Modelica needs new translator

• Modelica models may be compiled and run with existing open source and
commercial tools

15

Conclusion and further perspectives

Co-simulation is largely used in complex cyber-physical systems: power plants, aircraft,
automobiles, etc. Many factors are taken into account in the modelling & simulation
phase: safety & security analysis, rare events and risk analysis, operation & maintenance,
functional requirements, socio-economic analysis, … All these factors can be modelled by
appropriate tools and co-simulated.

