
Explicit pressure drop equations for Herschel-Bulkley
fluid flow in pipes

Andrew Parry
Technical Advisor in Modeling and Simulation

MODPROD 2018                                 6th February 2018



Background (1/2)
The flow of non-Newtonian fluids in pipes and conduits occurs in many 

situations including biology, the food processing industry and oil field 

services. 
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Background (2/2)
The stress-strain rate relationships for viscoplastic fluids are often 

modelled using the Herschel – Bulkley constitutive law. 
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Introduction
Jahangiri et al. [1] described the modeling of non-Newtonian fluids 

characterized by the Power – law model and the implementation in 

Modelica. 

In the present work we study the more general case of a Herschel –

Bulkley fluid, including the effect of yield stress. We will restrict the 

presentation to the laminar flow regime, isothermal and 

incompressible.  We will consider the choice of form of the pressure 

drop - flow rate relationship.
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Flow rate in pipes given the pressure drop
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Pressure drop in pipes given the flow rate (1/3)
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Pressure drop in pipes given the flow rate (2/3)
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Pressure drop in pipes given the flow rate (3/3)
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Modelica model (1/2)
The MSL Thermal FluidHeatFlow library was specifically adapted
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Isothermal, incompressible and laminar flow of Herschel – Bulkley fluids

Connector variables  p and  m_flow

TwoPort partial flow element model to conserve mass flow and define the derived 
variables; the pressure difference dp and the volume flow rate Q

Medium record for the fluid properties  rho , consistency , cn and
tau_y

Pipe partial model to combine friction and hydrostatic pressure drops 



Modelica model (2/2)
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Two types of pipe components are available –

Pipe_Q_to_dp uses the function func_Q_to_dp based on (V to Dp)1

model Pipe_Q_to_dp "Pipe - pressure drop from flow rate"

extends Components.Partials.Pipe;

equation

dp_fric=func_Q_to_dp(medium.tau_y,medium.consistency,me

dium.cn,len,d,dp_creep,small_velocity,small_pressure,Q);

end Pipe_Q_to_dp;

Pipe_dp_to_Q uses the function func_dp_to_Q based on (Dp to V) 

model Pipe_dp_to_Q "Pipe - flow rate from pressure drop"

extends Components.Partials.Pipe;

equation

Q =func_dp_to_Q(medium.tau_y,medium.consistency,medium.

cn,len,d,dp_creep,small_velocity,small_pressure,dp_fric);

end Pipe_dp_to_Q;



Regularization (1/2)
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func_Q_to_dp

function func_Q_to_dp

input . . . ;

output Modelica.SIunits.Pressure dp_fric;

protected

Real gamma, mueff, cndash;

algorithm

gamma:= 8*(abs(Q*4./Modelica.Constants.pi/d^2) +small_velocity)/d;

mueff:= tau_y*gamma^(-1) + consistency*gamma^(cn - 1);

cndash:= cn*consistency*gamma^cn/(tau_y + consistency*gamma^cn);

dp_fric:=32*Q*4./Modelica.Constants.pi/d^2*len/d^2*((1 + 3*cndash)/4/cnd

ash)^cndash*mueff;

annotation(LateInline=true,inverse(Q= func_dp_to_Q( . . . )));

end func_Q_to_dp;

In order to protect against numerical issues around the yield conditions, regularization of the 

pressure drop characteristic functions was carried out for the two alternative pipe elements

Pipe_Q_to_dp elements

For the purpose of the calcuation of frictional pressure drop, the magnitude of the mean 

velocity is never allowed to drop below the value of small_velocity

Note the inverse function definition in the annotation



Regularization (2/2)
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func_dp_to_Q

function func_dp_to_Q

input . . . ;

output Modelica.SIunits.VolumeFlowRate Q;

protected

Real X;

algorithm

X:= dp_creep/(abs(dp_fric) + small_pressure); 

Q:=sign(dp_fric)*Modelica.Constants.pi*d^2/4*(if (X<1) then d*cn/2*(tau_

y/consistency)^(1/cn)*(1 - X)^(1 + 1/cn)/X^(1/cn)*((1 -

X)^2/(1 + 3*cn) + 2*X*(1 - X)/(1 + 2*cn) + X^2/(1 + cn))

+small_velocity else small_velocity/X);

annotation(LateInline=true,inverse(dp_fric = func_Q_to_dp(  . . . )));

end func_dp_to_Q;

Pipe_dp_to_Q elements

The magnitude of the frictional pressure drop is never allowed to drop below small_pressure. 

If the pressure drop is below the yield value, the mean velocity is calculated from 

small_velocity/𝑋.



Fluid properties and pipe dimensions
The properties of the Herschel – Bulkley fluid studied and pipe element 

geometry are given in the table below 
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Internal pipe 

diameter 𝐷

0.05m

Pipe length 10m

Pipe orientation horizontal

Consistency 𝜅 3 Pa.sn

Yield stress 𝜏𝑦 10 Pa

Flow index 𝑛 0.5

The pressure drop required to overcome the yield stress is 8000 Pa, as 

shown below: 

∆𝑝creep =
4𝐿𝜏𝑦
𝐷

=
4 ∙ 10 ∙ 10

0.05
= 8000 Pa



Test cases (1/2)
For pure series and parallel networks comprising N pipe elements
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Outer boundary 

condition

Pipe element 

type

Size of non-linear 

system of equations

Series

Pressure Pipe_Q_to_dp {1)

Pipe_dp_to_Q {N}

Flow rate Pipe_Q_to_dp {0}

Pipe_dp_to_Q {0}

Parallel

Pressure Pipe_Q_to_dp {0}

Pipe_dp_to_Q {0}

Flow rate Pipe_Q_to_dp {N}

Pipe_dp_to_Q {1}



Test cases (2/2)
Hydraulic pipe networks were tested with the two alternative pipe 

elements and with two external boundary condition types.
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Outer boundary condition Pipe element type

Test 1 Pressure Pipe_Q_to_dp

Test 2 Pipe_dp_to_Q

Test 3 Flow rate Pipe_Q_to_dp

Test 4 Pipe_dp_to_Q



Dymola results
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Plotting flow behavior in pipe elements 1

Tests 1 and 2 provide almost identical results. Same for Tests 3 and 4.



Dymola translation statistics and simulation logs
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For the purpose of measuring CPU time, the integrator is set 

to fixed time step implicit Euler, dt=0.01s 

*CPU times are for single processor Intel Core i7-4900MQ 2.80 GHz

Insignificant file writing time by setting Number of intervals = 1

Nonlinear system size after 

translation

Test 1

{14}

Test 2

{15}

Test 3

{14}

Test 4

{15}
CPU* time [s]

Test 1

8.68

Test 2

6.43

Test 3

12.60

Test 4

9.98



Conclusions
1. Approximate explicit relationships to express laminar pressure drop of 

the flow of a Herschel – Bulkley fluid as a function of velocity have been 

tested and shown to produce results with sufficient precision for most 

engineering purposes.

2. The implementation in Modelica of the two alternative pipe models, 

based on (Q to Dp) and (Dp to Q) relationships, is described including 

regularization methods.  

3. Model translation and simulation performance were monitored in 

Dymola. 

• For pure series networks of pipe elements with pressure type outer 

boundary condition, the formulation based on (Q to Dp) is preferred. 

• Conversely, for pure parallel networks of pipe elements with flow rate type 

outer boundary condition, the formulation based on (Dp to Q) is preferred.

• For general networks both element formulations provide approximately 

equivalent performance. 
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