Explicit pressure drop equations for Herschel-Bulkley fluid flow in pipes

Andrew Parry Technical Advisor in Modeling and Simulation

MODPROD 2018

6th February 2018

Background (1/2)

The flow of non-Newtonian fluids in pipes and conduits occurs in many situations including biology, the food processing industry and oil field services.

Cement additive metering system

Background (2/2)

The stress-strain rate relationships for viscoplastic fluids are often modelled using the Herschel – Bulkley constitutive law.

 $\tau = \tau_{\gamma} + \kappa \dot{\gamma}^n$ κ consistency Shear stress τ_y yield stress *n* flow index Herschel-Bulkley Model $\tau = \tau_v + \kappa \dot{\gamma}^n$ τ_v Shear rate 1 Schlumberger

Outline

- Introduction
- Flow rate in pipes given the pressure drop
- Pressure drop in pipes given the flow rate
- Modelica model
- Regularization
- Fluid properties and pipe dimensions
- Test cases
 - Dymola results
 - Dymola translation statistics and simulation logs
- Conclusions

Introduction

Jahangiri et al. [1] described the modeling of non-Newtonian fluids characterized by the Power – law model and the implementation in Modelica.

In the present work we study the more general case of a Herschel – Bulkley fluid, including the effect of yield stress. We will restrict the presentation to the laminar flow regime, isothermal and incompressible. We will consider the choice of form of the pressure drop - flow rate relationship.

[1] Jahangiri, R. Streblow and D. Müller, Simulation of Non-Newtonian Fluids using Modelica, Proceedings of the 9th International Modelica Conference, September 3-5, 2012, Munich, Germany, DOI 10.3384/ecp1207657

Flow rate in pipes given the pressure drop

Given the pressure drop, Δp , the mean velocity in the pipe, V, for a Herschel – Bulkley fluid can be determined from

$$\begin{cases} V = \frac{Dn}{2} \left(\frac{\tau_y}{\kappa}\right)^{\frac{1}{n}} \frac{(1-X)^{1+\frac{1}{n}}}{X^{\frac{1}{n}}} \left[\frac{(1-X)^2}{1+3n} + \frac{2X(1-X)}{1+2n} + \frac{X^2}{1+n}\right] & \text{if } X = \frac{4L\tau_y}{D\Delta p} < 1 \qquad (\Delta p \text{ to V}) \\ V = 0 & \text{otherwise} \end{cases}$$

The pipe diameter is D and the length is L.

Given the mean velocity in the pipe, the equation can provide the pressure drop, but it is implicit and requires iterations.

1

Pressure drop in pipes given the flow rate (1/3)

Introducing the Fanning the friction factor $f = \frac{D\Delta p}{2\rho V^2 L}$.

There are two alternative approximations:

Cruz, Coelho and Alves [2]	Swamee and Aggarwal [3]				
based on simplifying physics assumptions	based on curve fitting to the exact solution				
$f_{\text{CCA}} = \frac{16}{\rho VD} \left(\frac{1+3n'}{4n'}\right)^{n'} \mu_{\text{eff}} \qquad (\forall \text{ to } \Delta p)_1$ $n' = n \frac{\kappa \dot{\gamma}^n}{\tau_y + \kappa \dot{\gamma}^n}$ $\dot{\gamma} = \frac{8V}{D}$ $\mu_{\text{eff}} = \tau_y \dot{\gamma}^{-1} + \kappa \dot{\gamma}^{n-1}$	$f_{SA} = \frac{16}{Re_n} \left(1 + \left[\frac{1}{\left(36 + \left(\frac{1.5}{n} \right)^{2.46} \right)^{0.5} \frac{He}{Re_n}} \right]^{\frac{0.958n}{2-n}} \right) \qquad (V \text{ to } \Delta p)_2$ $Re_n = \frac{\rho V^{2-n} D^n}{8^{n-1} \kappa} \left(\frac{4n}{1+3n} \right)^n$ $He = \frac{D^2 \rho}{\tau_y} \left(\frac{\tau_y}{\kappa} \right)^{\frac{2}{n}}$				

[2] D. A. Cruz, P. M. Coelho and M. A. Alves, A Simplified Method for Calculating Heat Transfer Coefficients and Friction Factors in Laminar Pipe Flow of Non – Newtonian Fluids, Journal of Heat Transfer, Vol 134, September 2012
[3] P. K. Swamee and N. Aggarwal, 'Explicit Equations for Laminar Flow of Herschel – Bulkley Fluids', The Canadian Journal of Chemical Engineering, Volume 89, December 2011, pp 1426-1433

Pressure drop in pipes given the flow rate (2/3)

In the limit of creep flow (high values of He/Re_n) it is found that equation (V to Δp)₂ under-predicts f. Since the value of f should always be superior

or equal to $f_{creep} = \frac{2\tau_y}{\rho V^2}$, the equation (V to Δp)₂ can be improved by the operation

$$f_{SA}' = \max\{f_{SA}, f_{creep}\}$$
 (V to Δp)₃

Pressure drop in pipes given the flow rate (3/3)

The relative error between the approximate relationships f_{CCA} , f_{SA} and f'_{SA} and the exact solution f_{exact} from (Δp to V) are shown below for a range of *n* values.

Modelica model (1/2)

The MSL Thermal FluidHeatFlow library was specifically adapted

- Inon_newtonian_flow
- Components
 - Pipe_Q_to_dp
 - Pipe_dp_to_Q
 - 🕂 Valve
 - f func_Q_to_dp
 - func_dp_to_Q
 - Partials
 - 🛑 Pipe
- ▲ ① Interfaces
 - FlowPort
 - 🔵 FlowPort_a
 - FlowPort_b
 - 🖌 📃 Partials
 - TwoPort
 - 🗕 Ambient
- Sources
 - Ambient
 - NolumeFlow
 - 🔶 PressureIncrease
- 🛯 🔘 Media
 - 🜐 Medium

Isothermal, incompressible and laminar flow of Herschel – Bulkley fluids

Connector variables **p** and **m_flow**

TwoPort partial flow element model to conserve mass flow and define the derived variables; the pressure difference dp and the volume flow rate Q

Medium record for the fluid properties **rho**,**consistency**, <mark>cn</mark> and <mark>tau_y</mark>

Pipe partial model to combine friction and hydrostatic pressure drops

Modelica model (2/2)

Two types of pipe components are available -

non_newtonian_flow Components Pipe_Q_to_dp Pipe_dp_to_Q Valve func_Q_to_dp

f func_dp_to_Q

Partials

— Pipe

```
▲ ① Interfaces
```

FlowPort

FlowPort_a

```
⊿ ____
Partials
```

• TwoPort

- Ambient

Sources
Ambient

🐌 VolumeFlow

PressureIncrease

Hedium 🗄

```
Pipe_Q_to_dp uses the function func_Q_to_dp based on (V to Δp)<sub>1</sub>
model Pipe_Q_to_dp "Pipe - pressure drop from flow rate"
    extends Components.Partials.Pipe;
equation
    dp_fric=func_Q_to_dp (medium.tau_y,medium.consistency,me
    dium.cn,len,d,dp_creep,small_velocity,small_pressure,Q);
end Pipe_Q_to_dp;
Pipe_dp_to_Q uses the function func_dp_to_Q based on (Δp to V)
model Pipe_dp_to_Q "Pipe - flow rate from pressure drop"
    extends Components.Partials.Pipe;
equation
```

Q =func_dp_to_Q(medium.tau_y,medium.consistency,medium. cn,len,d,dp_creep,small_velocity,small_pressure,dp_fric); end Pipe_dp_to_Q;

Regularization (1/2)

In order to protect against numerical issues around the yield conditions, regularization of the pressure drop characteristic functions was carried out for the two alternative pipe elements

Pipe_Q_to_dp elements

For the purpose of the calcuation of frictional pressure drop, the magnitude of the mean velocity is never allowed to drop below the value of small_velocity

func_Q_to_dp

```
function func_Q_to_dp
input . . . ;
output Modelica.SIunits.Pressure dp_fric;
protected
Real gamma, mueff, cndash;
algorithm
gamma:= 8*(abs(Q*4./Modelica.Constants.pi/d^2) +small_velocity)/d;
mueff:= tau_y*gamma^(-1) + consistency*gamma^(cn - 1);
cndash:= cn*consistency*gamma^cn/(tau_y + consistency*gamma^cn);
dp_fric:=32*Q*4./Modelica.Constants.pi/d^2*len/d^2*((1 + 3*cndash)/4/cnd
ash)^cndash*mueff;
annotation(LateInline=true,inverse(Q= func_dp_to_Q( . . . )));
end func_Q_to_dp;
```

¹² Note the inverse function definition in the annotation

Regularization (2/2)

Pipe_dp_to_Q elements

The magnitude of the frictional pressure drop is never allowed to drop below small_pressure. If the pressure drop is below the yield value, the mean velocity is calculated from small_velocity/X.

```
func dp to Q
function func_dp_to_Q
  input . . . ;
  output Modelica.SIunits.VolumeFlowRate Q;
protected
  Real X;
algorithm
X:= dp creep/(abs(dp fric) + small pressure);
Q:=sign(dp fric)*Modelica.Constants.pi*d^2/4*(if (X<1) then d*cn/2*(tau
y/consistency)^{(1/cn)*(1 - X)^{(1 + 1/cn)/X^{(1/cn)*((1 - X)^{(1 - X)})}}
 X)^{2}(1 + 3 \times cn) + 2 \times X \times (1 - X) / (1 + 2 \times cn) + X^{2} / (1 + cn))
+small velocity else small velocity/X);
annotation(LateInline=true, inverse(dp_fric = func_Q_to_dp( . . . )));
end func dp to Q;
```

Fluid properties and pipe dimensions

The properties of the Herschel – Bulkley fluid studied and pipe element geometry are given in the table below

Internal pipe	0.05m
diameter D	
Pipe length	10m
Pipe orientation	horizontal
Consistency κ	3 Pa.s ⁿ
Yield stress $ au_y$	10 Pa
Flow index <i>n</i>	0.5

The pressure drop required to overcome the yield stress is 8000 Pa, as shown below:

$$\Delta p_{\text{creep}} = \frac{4L\tau_y}{D} = \frac{4 \cdot 10 \cdot 10}{0.05} = 8000 \text{ Pa}$$
Schlumberger

Test cases (1/2)

For pure series and parallel networks comprising N pipe elements

	Outer boundary	Pipe element	Size of non-linear			
	condition	type	system of equations			
	Pressure	Pipe_Q_to_dp	{1)			
Series		Pipe_dp_to_Q	{N}			
	Flow rate	Pipe_Q_to_dp	{0}			
		Pipe_dp_to_Q	{0}			
	Pressure	Pipe_Q_to_dp	{0}			
Parallel		Pipe_dp_to_Q	{0}			
	Flow rate	Pipe_Q_to_dp	{N}			
		Pipe_dp_to_Q	{1}			

Test cases (2/2)

16

Hydraulic pipe networks were tested with the two alternative pipe elements and with two external boundary condition types.

	Outer boundary condition	Pipe element type
Test 1	Pressure	Pipe_Q_to_dp
Test 2		Pipe_dp_to_Q
Test 3	Flow rate	Pipe_Q_to_dp
Test 4		Pipe_dp_to_Q

Dymola results

Plotting flow behavior in pipe elements 1

[l/min]

Dymola translation statistics and simulation logs

For the purpose of measuring CPU time, the integrator is set to fixed time step implicit Euler, δt =0.01s

Nonlinear system size after
translationTest 1Test 2{14}{15}Test 3Test 4

{15}

{14}

Simulation Setup										
General Ti	ranslation	Output	Debug	Compiler	Realtime	e FMI				
Experiment										
Model	non_nev	vtonian_flo	w.Test1_	Q_bc_Q_to	_dp					
Result	Test1_Q	_bc_Q_to	_dp							
Simulation ir	nterval									
Start time	0								S	5
Stop time	1000								S	5
Output inter	val									
Interval I	ength	0							s	5
Number of the second	of intervals	1								
Integration -							ima			
Algorithm		Euler				CFU I	Ime	[5]		
Tolerance		1e-5				Tast 1		Tasto		
Fixed Integ	rator Step	0.01				lest i		iest Z		
						8 68		6 4 3		
						0.00		0.40		
						Test 3		Test 1		
						10310				
						12.60		9.98		

*CPU times are for single processor Intel Core i7-4900MQ 2.80 GHz

Insignificant file writing time by setting Number of intervals = 1

Conclusions

- 1. Approximate explicit relationships to express laminar pressure drop of the flow of a Herschel Bulkley fluid as a function of velocity have been tested and shown to produce results with sufficient precision for most engineering purposes.
- 2. The implementation in Modelica of the two alternative pipe models, based on (Q to Δp) and (Δp to Q) relationships, is described including regularization methods.
- 3. Model translation and simulation performance were monitored in Dymola.
 - For pure series networks of pipe elements with pressure type outer boundary condition, the formulation based on (Q to Δp) is preferred.
 - Conversely, for pure parallel networks of pipe elements with flow rate type outer boundary condition, the formulation based on (Δp to Q) is preferred.
 - For general networks both element formulations provide approximately equivalent performance.
 Schlumher

Acknowedgments

The author is grateful to Christopher Helbig and Alexander Fuller of the Dymola Content Services for discussions on model size and structure.

The author is grateful to Victor-Marie Lebrun of Dymola Technical Sales for technical support and help on Dymola applications.

