

Semantic and Physical Modeling and Simulation of Multi-Domain Energy Systems

Gas Turbines and Electrical Power Networks

Miguel Aguilera Francisco J. Gómez Luigi Vanfretti

Outline

Background

- Context, Motivation and Goals
- Multi-Domain Dynamic System Modeling
- The Gas Turbine in Power Systems

Equation Based Models

- OpenIPSL and ThermoPower
- Modelica Models for Multi-Domain
- Multi-Domain network models

Semantic Models

- Common Information Model in Papyrus
- Modeling Methodology and Proposed Models
- Simulation and Results
 - Multi-domain model simulation
 - FMU generation and simulation in different environments
- Conclusions and Further Work

Part I: Background

"KTH SmarTS Lab will develop **benchmark network models** that will be used to test the functionalities of the OpenCPS toolchains for:

Multi-domain simulations of improved gas turbines and the power grid to meet European standardization requirements for grid connection that requires design space exploration and trade-off analysis and, information exchange requirements through the **IEC-CIM UML**-based Common Grid Modeling Exchange Standard (**CGMES**)"

• Use Case 2: Provide customers with advanced turbine models for grid analysis complying with EU standards (CGMES).

Graphical Description of Thesis Goals

Smart Grids (SGAM) Application Cases: Single Machine Infinite Bus

Why Gas Turbines?

Some targets to be reached in the road towards the Smart Grids

"The increased interdependence and rapid penetration of variable renewable energy sources (varRE) make the gas-electricity nexus a primary concern and opportunity for energy system flexibility".

Several operational and system planning issues due to prolonged drought in hydro-energy dependent regions like Latin America -> **Need for dispatchable generation**!! There is an investment in liquefied natural gas (LNG) in South America resulting in a gas market growth.

Gas turbines plants offer **flexible operation** that is being improved with technology development. Gas turbine plants are in general more flexible that other forms of generation **They can start quickly and provide significant ramping capability**

Heinen, S., Hewicker, C., Jenkins, N., McCalley, J., O'Malley, M., Pasini, S., & Simoncini, S. (2017). Unleashing the Flexibility of Gas: Innovating Gas Systems to Meet the Electricity System's Flexibility Requirements. IEEE Power and Energy Magazine, 15(1), 16-24.

Multi-Domain Dynamic System Modelling

Domain Independent Physical Systems Modeling

- Dimensionless Variables (p.u. in Electric Power domain)
- Multi-Domain Connection

Variable / Characteristic	Electricity	Mechanics Translation	Mechanics Rotation	Hydraulics	Heat System
Effort (e)	Voltage	Force	Torque	Pressure	Temperature
Flow (f)	Current	Velocity	Angular Velocity	Volume Flow	Heat Flow
Power $(P = e \cdot f)$	Power	Power	Power	Power	Power - Temperature

Mechanics & Thermo-Fluid

$$\dot{W}_C = \dot{m}_a \cdot (h_2 - h_1) = \tau \cdot \omega \cdot \eta_{mech}$$

Multi-Domain Dynamic System Modelling

Markunas, A. L. (1972). Modeling, simulation, and control of gas turbines (Doctoral dissertation, Massachusetts Institute of Technology).

Zimmer, D., & Cellier, F. E. (2006, September). The Modelica multi-bond graph library. In Proceedings of the 5th International Modelica Conference (pp. 559-568). Broenink, J. F. (1999). Object-oriented modeling with bond graphs and Modelica. SIMULATION SERIES, 31, 163-168.

The Gas Turbine in Power Systems

Yee, S. K., Milanovic, J. V., & Hughes, F. M. (2008). Overview and comparative analysis of gas turbine models for system stability studies. IEEE Transactions on power systems, 23(1), 108-118.

The Gas Turbine in Power Systems

Gas Turbine + Governor Model Limitation

- 2001: The widely used GAST model was replaced with GGOV1.
- **Malaysia black out**: Example of abnormal frequency event, power imbalance after the formation of electrical power islands.

Frequency dependent models: Power system & governor behavior, equipment specific studies wt large frequency excursions.

Physical models: The most complex and the most accurate ones. Obviously, suitable for dynamic behaviour analysis of gas turbines -> **Manufacturers**

Part II: Equation Based Model

The OpenIPSL Library

- OpenIPSL is an open-source Modelica library for power systems
 - It contains a set of **power system components** for **phasor time domain** modeling and simulation
 - Models have been validated against a number of reference tools
- OpenIPSL enables:
 - Unambiguous model exchange
 - Formal mathematical description of models
 - Separation of models from IDEs and solvers
 - Use of object-oriented paradigms

The ThermoPower Library

- ThermoPower is an open-source Modelica library that provides components that can be used to model thermal power plants.
 - Some examples of the types of power plants that can be modeled are: fossil-fired Ranking cycle, **gas turbine** and combined cycle.
 - Water and Gas packages provide models of components where the working fluid is water/steam or gas mixtures, respectively.
 - Default models of fluids can be replaced by those compliant with the Modelica.Media interface.
 - ThermoPower was developed by Francesco Casella, Alberto Leva and their research group in Politecnico di Milano.

 Casella, F. (2009). Object-oriented modelling of power plants: a structured approach. *IFAC Proceedings Volumes*, 42(9), 249-254.

More info:

- https://casella.github.io/ThermoPower/
- <u>https://github.com/casella/ThermoPower</u>

Modelica Models for Multi-Domain

Package Structure

Modelica Models for Multi-Domain

Single-Machine Infinite Bus network model

Modelica Models for Multi-Domain

Multi-Domain network models

Multi-domain Modelica Model: ThermoPower + OpenIPSL

Multi-Domain network models

Multi-domain Modelica Model: ThermoPower + OpenIPSL

Part III: Semantic Model

Common Information Model in Papyrus

Common Information Model in Papyrus

The CIM semantics for Power Systems

KTH VETERISKAP OCH KONST

F. Gómez, L. Vanfretti and S. H. Olsen, "CIM-Compliant Power System Dynamic Model-to-Model Transformation and Modelica Simulation," in IEEE Transactions on Industrial Informatics, vol. PP, no. 99, pp. 1-1. doi: 10.1109/TII.2017.2785439

Common Information Model in Papyrus

The CIM / UML Modeling for Power Systems

Modeling Methodology and Proposed Models

SysML extension for the CIM / UML

- Plant contains *Generator block* and *Turbine block*
- Turbine defined as:
 - Standard model used by Power System Simulation Tools.
 - Detailed *explicit* model of Turbine dynamics (Multi-Domain).

Modeling Methodology and Proposed Models

Modeling Methodology and Proposed Models

ISO 15926 Standard Proposal for Multi-Domain Modeling ISO_15926 Challenge 1: ISO standard is distributed in OWL notation -> Basics transformation to UML (MSc Thesis results!) — Fluid **Challenge 2**: Creation of namespaces* and profiles, - Flange compatible with CIM, to include ISO models Core Domain SUBJECT PREDICATE **OBJECT** AbsolutePressure ▼ 📩 Heat_Transfer consist of **Gas Turbine** Compressor CombustionChamber C101 GT1 Instrumentation PressureMeter Desian Rotating_Equipment has property Compressor **Temperature** Compressor C101 **T101** V pology TMPressureDrop Similar Structure to organize or classify Design has magnitude **Temperature** 300 T101 Classes / Components https://www.posccaesar.org/wiki/ISO15926 Source: ISO definitions Design is quantified in Κ **Temperature T101** (RDF Named Graph / Triples)

- xmlns:cim="http://iec.ch/TC57/2013/CIMschema-cim16#"
- xmlns:pti="http://www.pti-us.com/PTI_CIM-
- schema-cim16#"
 - xmlns:entsoe="http://entsoe.eu/CIM/SchemaE xtension/3/1#"

Kim, B., Teijgeler, H., Mun, D., Sun, D., Hwang, J., & Han, S. (2008). A Representation and Implementation of Process Plant Models using OWL and ISO 15926. In PLM08 Conference.

Part IV: Simulation and Results

ISSN 2352-7110, https://doi.org/10.1016/j.softx.2016.07.004.

Stochastic Load Model

FMU Generation and Simulation

FMU Generation and Simulation

Preparation and Compilation of FMUs

FMU Generation and Simulation

FMUs Simulation in different environments

Conclusions and Future Work

- A multi-domain semantic and equation-based model has been derived to allow simulations of detail representations of gas turbines and the electric power grid.
- Differences in the simple turbine model (GGOV1) and the multi-domain explicit turbine model have been shown. A relevant source of that difference is the *representation of the speed influence* on the *gas turbine dynamics*.
- It is possible to exchange the models in the form of FMUs. This leads to the opportunity of getting detailed models of the gas turbines from the manufacturers while protecting their IP. The right choice of the *solver* and the *noise modeling* are still a challenge.
- A better model that includes among other things the valves dynamics is desired. This will be useful in the study of forced oscillations phenomena in power systems coming from gas power plants. This model can be extended to cover Combined-cycle power plants.
- It is recommended to follow the ISO 15926 standard more strictly.

Thank you!

maguilerach@ice.go.cr

fragom@kth.se

vanfrl@rpi.edu

Linkoping, 6th February 2018

