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Extended System Simulation

« Connectivity, co-simulation, multi-core, FMU etc.
« Simulation based optimization
* Design analytics

— I.e. sensitivity analysis, correlation analysis,
robustness, complexity metrics, etc.

— Methods for experimental validation
« Parametrization for design.
— Analytic parametrization, and reduction

« Test case modelling and management
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A Mathematical Theory of Communication

By C.E. SHANNON
INTRODUCTION

J"‘H:E recent development of various methods of modulation such as PCM and PPM which exchange

‘bandwndth for signal-to-noise ranio has mtensified the interest in a general theory of commmmication. A
basis for such a theory is contained in the important papers of Nyquist! and Hartley? on this subject. In the
present paper we will extend the theory to include a number of new factors, in pam'nL'a: the effect of noise
in the charnel, and the savings possible due to the statistical structure of the original message and due to the
natwe of the final destination of the information.

The problem of ic that of reproducing 3t one point either exactly or ap-
proximately 2 message selected at another point. Frequently the messages have meaning; that is they refer
to or are corelated according to some system with certain physical or conceptual entiies. These semantic
p— irvelevant to the eng £ problem. The sizmficant aspact is that the actual
message iz ane selected from a set of possible messages. The system must be designed to operate for each
passible selection, not just the one which will actually be chosen since this is unknown 3t the tme of desizn.

If the number of messages in the set 15 firste then this number or any monotore function of this number
can be rezarded a5 3 measure of the information produced when one messaze is chosen from the set, all
choices being squally likely. As was pomted out by Hartley the most nstual choice is the logarithmic
function. Although this definition mmst be generalized considerably when we consider the infiuence of the
statistics of the message and when we have 3 continuous range of messages, we will in all cases use an
essentially logarithmic measure
The loganithmic measure is more comvenient for various reasons:

1. Itis practically more useful. Parameters of engineering importance such as time, bandwidth, mumber
of relays, etc., tend to vary linearly with the logarithm of the mumber of possibilities. For example
adding one relay to a group doubles the mumber of possibl Fthe relays. Itadds | to the base 2
Iogarithm of this mumber Doubling the time roughly squares the number of possible messages, or
doubles the logarithm, etc

2. Tris nearer to our intuitive feeling 2 to the proper measure. This is closely related o (1) since we in-
tuitively measures entities by linear comparison with commen standards. One feels, for example, that
two punched cards should have twice the capacify of cne for mformation storage, and fwo identical
«channels twice the capacity of one for transmitting information.

. Ttis mathematically more suitable. Many of the limiting operations e simple in ferms of the loga-
rithun bt would vequire clumsy vestatement in terms of the munber of possibiliies

The choice of 3 logasithmic base comesponsd: to the choice of 3 wnit for messwing information. If the
base 2 is nsed the resulting units may be called binary digits, or mars briefy bits, 3 word suggested by
. W, Tukey: A derics with two stsbls posinons, auch 3: 3 alsy or a Sip-flop crcuit can stors ona bit of
mformanion. N much devices can store N bits, since the total muzsber of pozsible ststes i 2 and Lo N
Tfthe base 1015 used fhe units may be called dectmal dizits. Since

Tog, M = log; M/ logyg 2
3.32log M.

h\q.nsr. EL “Cansin Facrors Affecting Telagmph Speed” Beil
b Transmission Theory.” ATEE frans. v. 17, \.':n.llgjﬂ
Technical Journai, Taly 1928, p.

tom Tochnizal Journal, Agril 1924, p. 324 “Cermin Topics in

Infrmation” Be
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A Measurement for Complexity
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ABSTRACT

In genaral, this work will deal with messuring complex:
The focus question is towards addressing eomplexity in an
atiequate way. This work concentrates on cireuits
and digital bardware. For ihis fcld qf(\)mpulﬂr science the
complexity for circuits will be calealat

Therefore, & new complexity messure il e e
called design encropy 1t allows & mathematical ealeulation
of eomplexity resulting in figures. These allow & direct eval-
ustion snd ompericon between different systems and real-
izations. The appleation s important cupabilitics of his
enmecens vl e demr o o examples

Categories and Subject Descriptors
B.6.m [Hardware]: LOGIC DESIGN — Miscellancous

General Terms
Design, Mensurement, Theory, Verification

Keywords

Complexity, Messurement, Entropy, Abstract, Model, States

Paper organization

This paper is organized as follows. Seetion 1 identifles &
general need for & new and different messurement for com-
plexity. The lolloviog section 2 dscribes he approsch sl
the goals of the design entropy concept. Section

the origins for complexi
the design entropy. Before saction & presents the formulas
of the concept section 4 will clarify some terminology. The
final section 6 will apply the formulss on some different ex-
amples.

1. INTRODUCTION
Most enginering disciplines exert well defined methods
and models to manage, control and evaluate projects. The
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mplementations (3] [f]. For determining sizes
friprden e ehallenge is to get complexity under
control.

‘Computer science especially digital circuit design
young science with only & few decades of experience. Addi
tionally computer science is subjected to fast changes and
developments in technology. Therefore empirical data fom
recent projects is hard to transfer to new projects and brings
high inacrurscies ().

dey, ot methods for estimating projec sie e em-
pirical data, by analyzing previous pr I
find key flgures with which project =
and compare. Al thos spproachis st basclly i
get complexity under control. But most of these approaches
‘only work for one eertain technology, programming language
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stract messurement, which can be used even with changes
I tochnology ane naw doveiopmants

For digital cireuits, simply counting transistors ws suffl-
cient for an adequate estim:
ginning of
and sims 1 ot Encugn m L amntoes aesaces
In hardware design U posible {0 counl. (rans
and maybe comarions. But b woulda'e adres complen:
ity in an adequate way. hardware description lan-
iuages additional sbetraction layers are introduced. This
makes transistor counts very less significant as & eomplexity
messurement. Hardware design today gets more and more
equivalent. o methods used in sofiware engincering. I it
mould be peesble 1o ghve funded compiex estimations, a

re makes it possible 1o give state-
s for development, how devel-
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2. DESIGN ENTROPY CONCEPT
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Amount of Information content
(Information Entropy)

The differential information entropy for continuous
signals, defined by Shannon [1] as:

o :_f p(x) log, (P(x))dx

P,
Kullback-Leibler divergence | )7/\/(1
o) m(x)
pP(x)
H., =— X)lo dx
rel _[op( ) gz(m(x)) -

X

Generalized
% pP(x K x.)
H . =—|L X, K x)lo "Ydx, L dx
rel _[O J;Op( 1 n) g2(m(X1K Xn)) 1 n
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Amount of Information content
(Information Entropy)

If the distribution m(x) is a rectangular distribution in the
bounded interval.

= Ho (0 == | P()10g, (P(x)X, JiX

Generalized

== [ L [ pOgK %,)10g,(P(%, K %)X, L Xg, )X, L d,

Xl,min Xn,mln

More compact

L, = | p(9)log,(p(x)D)dD

IX
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Amount of Information content
(Information Entropy)

The information content | of a variable (in bits).

| = — J' p(X)10g, (PO)X )AX  Xg = X — X

If the range x, is divided in equal parts Ax the amount of
information is: N

or more general:

X 1

| =log, —=log, —
9, AX 9, S B v | =|ngi
S

Here AX is the
tolerance in Xx.

v
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The choice of logarithm as a base (Shannon)

« Itis practically more useful. Parameters of engineering importance
such as time, bandwidth, number of relays, etc., tend to vary
linearly with the logarithm of the number of possibilities. For
exam {e, adding one relay to a group doubles the number of
possible states of the relays. It adds 1 to the base 2 logarithm of this
number. Doubling the time roughly squares the number of possible
messages, or doubles the logarithm, etc.

« It is nearer to our intuitive feeling as to the proper measure. This is
closely related to (1) since we intuitively measures entities by linear
comparison with common standards. One feels, for example, that
two punched cards should have twice the capacity of one for
information storage, and two identical channels twice the capacity
of one for transmitting information.

- Itis mathematically more suitable. Many of the limiting operations
are simple in terms of the logarithm but would require clumsy
restatement in terms of the number of possibilities.

LINKOPING
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Design Information Entropy is a Measure of the Size of the Design Space
Lego example

» The design space of a set of Lego bricks
represents all combinations of
arranging these bricks.

«  With a set of only two bricks with four
knobs on each there are 51 discrete
possible arrangements

»  Two of these represents picking only
one brick. And one state is to pick no
one.

» The 51 different configuration (states)
means that the amount of information
needed to specify a particular design is:

I, =109, Ny =109, 51=5.7Dbits

II LINKOPING
o UNIVERSITY



Design Information Entropy is a Measure of the Size of the
Design Space

Lego example

* The design space of a set of Lego bricks
represents all combinations of arranging
these bricks.

* With a set of only two bricks with four
knobs on each there are 51 discrete
possible arrangements

* Two of these represents picking only one
brick. And one state is to pick no one.

* The 51 different configuration (states)
means that the amount of information
needed to specify a particular design is:

I, =109, Ny =109, 51=5.7Dbits
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Design Space with Both Continuous
and Discrete Variables

* The position of the inserted axis
represents a continuous variables

* The information entropy
associated with that is dependent
on the accuracy with which it is
specified.

XR
Ix - Iogz nDstates + |Og nCstates + Iogz E

* The axis can be in three position
and If the position of the axis
within one hole is specified within
10% the total information entropy
is:

| =log, (51+3) +log, Oil _ 8.2bits

2018-02-07 Petter Krus Sid 12



Information entropy in modular design

Valid design Un\{alid
design

Chosen

Valid design design

Design information entropy can be used as a measure of quality of
product platforms for modular design. A good product platform
should have little “waste” of design space.

II LINKOPING
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Design Information

* Design information entropy

 The amount of bits needed to
specify a design within a design
space.

* To specify one designs of the four
takes:

S

H. =log,> = log, n. = log, (2x1x 2) = 2 bits
S

LINKOPING
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Valid design

Unvalid
design

N

Valid design

Chosen
design

Design Information

waste

* To specify one designs of the four
takes:

H, = |092§= log, n, =log, (2x1x2) =2 bits
S

* The entropy of the constraint

design space is

H,=log, n, =log,3=1.58

 Wasted design information entropy

can be formulated as:

H,=H,-H, =-log,

w X

S /s S
X — =—|dgp, > =0.42
S./s dg_%Sc

c



Morphological Matrix
for concept selection

o 1 2 3

] m m m
NS —_ 4:[ nmll fl mll m12 m13
zl f m;* m,? m,°
1 f ms* ms® m5®

4 3 3 3 3
N, = _[3 =3 =81 f me  mé  |md

i=1
H, =log, N, =log,81=6.34 bits

Increasing the number of rows by one: m’ m’ m’
f; mll m12 m13
4 1 2 3

_ _ 5 _ f2 mo mo mo
N, = I I 3=3" =243 : S Y g D P
=1 . f, m4l m42 m43
H, =log, N, =log, 243 =7.92 bits f m'  [md  |md

The entropy increases linearly
with number of rows.

Information Entropy gives a measure of complexity more
consistent with experience!

LINKOPING
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Information Entropy of Morphological Matrix

In the general case there can be variable
number of elements in each row.

4
N, =] [4x2x3x2x3=144
i=1

H, =log, N, =log, 144 = 7.16 bits

LINKOPING
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Information Entropy and Complexity

According to Axiomatic Design the
best designs are uncoupled

FRq \ (X 0 D Py
FRo ) - 0 X DPs

Functional Design
requirements parameters
(Anatomy) (Architecture)

If this is true. Design decision becomes
independent of each other

II LINKOPING
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Example: UAV Aircraft Concept Generation

R

Design elements Alternative solutions
Horizontal stabilization|Front (canard) Aft Aft tail integrateqWing integrated
Vertical stabilization |Central Wing tip Aft tail integrateqUpper Lower
Tail mount Single fuselage |Twin boom
Propulsion Tractor Pusher
Ny
Ns:”nmi N, =4x5x2x2=80
i=1

1 1 )
| =—log, — =-log, — =6.32 bit

S

II LINKOPING
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Aircraft Optimization

» For the aircraft example typical design parameters
would be;

— wing span, root cord, tapering, thickness, and
sweep, structural weight, fuel weight, engine size,
wing position, span of horizontal tail, cruise speed.

=

II LINKOPING
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Design uncertainty as a function of design information




Information entropy of design s relative to
design space S

S  Original Design Space

H, :Iogz§
S

S Final Design

PY
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Information increase in Optimization

Information entropy is estimated as

X, e — X

A =—nlog, (max(6,.)) %5 250

i,min

i
Q

]
]

Estimated entropy
W
Q

=
[}

=]

0] 500 1000 1500 2000
No of evaluations

Figure 5. Accumulation of information as a function of number of objective function evaluations

II LINKOPING
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Meta object function

1- I:)opt I:)opt
., =@1- Popt) log, — |+ POIDt log, | —
1-¢, &,

| 1 1-P P
(2) _ "x _ opt opt
¢ - Nm - Nm [(1_ Popt)IOQZ( 1—85 ]+Popt |ng (‘QEJJ




Information Entropy in System Design

25
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Information Entropy in System Design

A system configuration is defined by its components and by how they are connected. The
design space can this be expressed as:

Nz =N:x N, (9.35)

Here N, is the number of possibilities for component selections, and N, the number of
possible ways to connect the components. The corresponding information entropy is:

I, =logy N; =logy N +logy N, (9.36)

26
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Information Entropy in System Design

@O OO

ot = O

=1

N, =5* =625

|. =log, N, =9.29bit

n
n
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\1—“ " Information Entropy in System
—r Design
X

Figure 9.10: System configuration of a simple hydraulic system.

Assuming apriori information that the
system should contain one cylinder one

pump and one tank and a library with
variants of these

N = Neyi X Nyatve X Npump X Nianke =6 X 27 x 6 x 1 =972 (9.43)

and hence

I, = logy N, = log, 972 = 9.92 (9.44)

II LINKOPING
o UNIVERSITY



29

Connectivity

System
components |Connectors |A B A B P R P R R
A
Piston B
|7— A 1
B 1
>
Servo valve R
P 1
: Pump R
' Tank R 1 1
;
L}
I,="2 ; "2, (9.45)
Here ny is the total number of ports in the system. For this example it is:
. I,= 10: 0 10— (9.46)

The total amount of information is:

Iy =Is+1Ip (9.47)

I, = 9.92+ 40 = 49.92bits (9.48)

II.' Figure 9.11: Connectivity matrix of a hydraulic servo.
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Growth of design information entropy during
the design process :

=1
m
2.5
i=1
S
c
SI
I =log, =
so[
________________ Sé‘

i , i
i Designspace 1
expansion

1
1 m
[
1 i
1 "
: S 1 i=1 c . s
| 0 1 oncep 5
: - Szl > Cenee »  optimizaton |—»
generation screening )
and selection

S D S s
I, =—log, i=Sl [ I, =—log, i% [ Iy =—log, Zn:: 1
0 s 0)
1 i=1
i=1
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Design space expansion

» The design information entropy can be increased in two ways
— Refinement
— Design space expansion
» Design space can be increased in several ways like:
— Adding more bricks
— Adding other types of bricks

— Releasing more design parameters in a design

X Nx Xg
Iog2 =log, (
AX

log,n+1o =log, n+1,
Ax j 9, 92 Ax g,

’

—Iogzx _Iogz( j_nlogzx =nl,
AX AX
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Design Space Generation and Parameter

Reduction

Example: Electric Motor Data

mean
pressure
max speed max power (torque power torque
Voltage |power at load torque volume mass intensity | density) | density | intensity
k p Pm Pp Kt

V] W] [rad/s] | [Nm] [cm3] [ka] [kW/kg] [bar] [W/cm3] [Nm/kg]
8.4 210 1068 0.20 55 0.1716 1.22 0.04 3.84 1.15
8 320 1378 0.23 54 0.29 1.10 0.04 5.95 0.80
24 609 523 1.164 343 1.10 0.55 0.03 1.78 1.06
24 1440 450 3.2 729 2.4 0.60 0.04 1.98 1.33
24 3580 471 7.6 729 3.9 0.92 0.10 4.91 1.95
50 15992 419 38.20 4539 9.36 1.71 0.08 3.52 4.08
460 73763 175 420.74 23487 215.00 0.34 0.18 3.14 1.96
460 198499 215 922.87 86524 215.00 0.92 0.11 2.29 4.29
460 491751 175| 2813.33 165518 907.00 0.54 0.17 2.97 3.10

Average
values 0.88 0.09 3.38 2.19
II LINKOPING
o UNIVERSITY




Power to weight relation
(electric motor)

Power to mass relation
y =1.0832x + 0.0542
R? = 0.9906

.
5 © /
=5
2
% 4 ¢ Seriesl
D 3 Linear (Seriesl)
S
c) 2
(@]
-1

0

0 2 4 6
Log(Power [W])
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Prinicipal Component Analysis
to minimize waste of design space (using Singular Value
Decomposition, SVD)

log(P)

II LINKOPING
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The meaning of the matrices

U w

VT

X=UxWxV'

Adding logarithmic scaling and removal of offset (set mean
to zero) means that limits in U on set to -1 and 1 covers the
data set within one standard deviation, and thus results
points likely to be feasable.

35
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0.00

SVD model of Electric motors

1

36

i

o

o

o

—

= 0

S g _

©

i 9 2 9] 2 S —

s @ b = & g ® S

S £ ES 2 g o 3 =

& 3 < & Z 2 z d
Corner power [W] 491751| 491744 5.69 1.99 370 -1.163 0130 -0.022 0.007 0.000  -0.001 -1.66 8.43 1.86
Speed at load [rad/s) 175 175 2.24 -0.46 270 0331 0122 -0.021  -0.031 0.000  0.005 0.39 0.62 0.20
Max Torque [Nm] 2813 2813 3.45 2.44 1.01]  -1.494 0.008 -0.001 0.038  0.000 -0.005 -0.56 0.44 0.17
diameter [mm] 446 446 2.65 0.63 2.02| -0.384  0.005 0.064  0.007 0.000  0.028 -0.99 0.21 0.10
volume [cm3] 165518| 165516 5.22 2.06 3.16| -1.256 -0.018  0.084 -0.036  0.000 -0.011 -1.01 0.00 0.07
mass [kg] 907 907 2.96 2.21 0.75 -1.298 -0.079 -0.085 -0.025 0.000 0.010 1.05 0.10 0.07

w-diagonal
[ | [ - —_
2 3 4 5 6
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Example of Design Space for Parametrization:
Aircraft Wing Planform

b

(@]
I
(@]
o
A
A 4

t r
b cr ct S AR A
AN225 88.4 16.5122 3.96293 905 8.63487
A380 79.75 17.6594 3.53187 845 7.5267
A320 34.09 5.99394 1.19879 122.6 9.47902
Gulfstream IV 23.7 5.73191 1.71957 88.3 6.36116
U2 32 4.83333 0.966667 92.8 11.0345
F-16 9.96 4.47711 1.11928 27.87 3.55944
Mirage 2000 9.13 8.5537 0.427685 41 2.0331
Cessna 172 11 1.59214 1.35332 16.2 7.46914
Max value 88.4 17.6594 3.96293 905 11.0345
Min value 9.13 1.59214 0.427685 16.2 2.0331
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Design space of alternative parameters, with
log-axis

logzgnct)

18 |

11.8

| log,(b)

; J {14
| :I-_..." r i

- logy(c,)
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Desigh space of SVD- parameters, with log-
axis
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Design Space Volumes

Parameter set Design space volume

0.914
0.877
0.25
H,=H,-H,=log, zl—iz =log, % =log, 025 =1.87bits
2 2 )
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Conclusions

Design information entropy represents a measure of the
precision by which a design is defined relative to the design space
in consideration. It is also proportional to the dimensionality of
the design problem.

Design information entropy can be used as one measure of
complexity.

“Thinking outside the box” is the task of finding useful directions
to expand the design space.

Analytical parametrization through SVD of a design can be made
using sample designs to span the design space. It can also be used
to produce scaling models of components. In some sense it can
be regarded as the ideal parameter set.
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