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Extended System Simulation

• Connectivity, co-simulation, multi-core, FMU etc.

• Simulation based optimization

• Design analytics

– I.e. sensitivity analysis, correlation analysis,
robustness, complexity metrics, etc.

– Methods for experimental validation

• Parametrization for design.

– Analytic parametrization, and reduction

• Test case modelling and management
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Extended System Simulation
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Information Theory

• Claude Shannons 
ground breaking
work.

Receiver

Information at 
source

Noise

Transmitter

Information at 
receiver

https://youtu.be/R4OlXb9aTvQ



Applications

• Product Platforms

• Complexity of
Computer Programs

• Logic Hardware 
Design

• Human factors

• Search Theory

• Axiomatic Design

• System Design

• Optimizaton



Amount of Information content
(Information Entropy)
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The differential information entropy for continuous 

signals, defined by Shannon [1] as:
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Amount of Information content
(Information Entropy)
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If the distribution m(x) is a rectangular distribution in the 

bounded interval. 

Generalized
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Amount of Information content
(Information Entropy)
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The choice of logarithm as a base (Shannon)

• It is practically more useful. Parameters of engineering importance 
such as time, bandwidth, number of relays, etc., tend to vary 
linearly with the logarithm of the number of possibilities. For 
example, adding one relay to a group doubles the number of 
possible states of the relays. It adds 1 to the base 2 logarithm of this 
number. Doubling the time roughly squares the number of possible 
messages, or doubles the logarithm, etc.

• It is nearer to our intuitive feeling as to the proper measure. This is 
closely related to (1) since we intuitively measures entities by linear 
comparison with common standards. One feels, for example, that 
two punched cards should have twice the capacity of one for 
information storage, and two identical channels twice the capacity 
of one for transmitting information.

• It is mathematically more suitable. Many of the limiting operations 
are simple in terms of the logarithm but would require clumsy 
restatement in terms of the number of possibilities.



Design Information Entropy is a Measure of the Size of the Design Space
Lego example

• The design space of a set of Lego bricks 
represents all combinations of 
arranging these bricks.

• With a set of only two bricks with four 
knobs on each there are 51 discrete 
possible arrangements

• Two of these represents picking only 
one brick. And one state is to pick no 
one.

• The 51 different configuration (states)  
means that the amount of information 
needed to specify a particular design is:

2018-02-07 Sid 10Petter Krus

2 2log log 51 5.7bitsx DstateI n  
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Design Space with Both Continuous 
and Discrete Variables
• The position of the inserted axis 

represents a continuous variables

• The information entropy 
associated with that is dependent 
on the accuracy with which it is 
specified.

• The axis can be in three position 
and If the position of the axis 
within one hole is specified within 
10% the total information entropy 
is:
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Information entropy in modular design

Unvalid
design

Valid design

Valid design
Chosen 
design

Design information entropy can be used as a measure of quality of 
product platforms for modular design.  A good product platform 
should have little “waste” of design space.



Design Information 
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• Design information entropy

• The amount of bits needed to 
specify a design within a design 
space.

• To specify one designs of the four
takes:
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Unvalid
design

Valid design

Valid design
Chosen 
design

Design Information 
• To specify one designs of the four

takes:

• The entropy of the constraint
design space is

• Wasted design information entropy 
can be formulated as:
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Morphological Matrix
for concept selection

m1 m2 m3
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Increasing the number of rows by one: 
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The entropy increases linearly 
with number of rows.

Information Entropy gives a measure of complexity more 
consistent with experience!



Information Entropy of Morphological Matrix

In the general case there can be variable 
number of elements in each row. m1 m2 m3 m4
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Information Entropy and Complexity
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According to Axiomatic Design the 
best designs are uncoupled

Design 
parameters
(Architecture)

Functional
requirements
(Anatomy)

If this is true. Design decision becomes 
independent of each other



Example: UAV Aircraft Concept Generation
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Design elements Alternative solutions

Horizontal stabilization Front (canard) Aft Aft tail integratedWing integrated

Vertical stabilization Central Wing tip Aft tail integratedUpper Lower

Tail mount Single fuselage Twin boom

Propulsion Tractor Pusher



Aircraft Optimization

• For the aircraft example typical design parameters 
would be; 

– wing span, root cord, tapering, thickness, and 
sweep, structural weight, fuel weight, engine size, 
wing position, span of horizontal tail, cruise speed.
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Information entropy of design  s relative to
design space S

s

S

2logx

S
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Original Design Space

Final Design

Information entropy to measure convergence in 
optimization



Information increase in Optimization
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Figure 5. Accumulation of information as a function of number of objective function evaluations

Information entropy is estimated as



Meta object function I expresses the 
total 
uncertainty, 
representing 
the sum of

uncertainty in 
location and 

uncertainty of 
success
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Information Entropy in System Design
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Information Entropy in System Design
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Information Entropy in System Design
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Information Entropy in System 
Design

28

Assuming apriori information that the 
system should contain one cylinder one
pump and one tank and a library with
variants of these



Connectivity
29

System 

components Connectors A B A B P R P R R

A

B

A 1

B 1

P

R

P 1

R

Tank R 1 1

Piston

Servo valve

Pump



Growth of design information entropy during 
the design process
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Design space expansion
• The design information entropy can be increased in two ways

– Refinement

– Design space expansion

• Design space can be increased in several ways like:

– Adding more bricks

– Adding other types of bricks

– Releasing more design parameters in a design
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Design Space Generation and Parameter 
Reduction

Voltage

max 

power

speed 

at load

max 

torque volume mass

power 

intensity

mean 

pressure 

(torque 

density)

power 

density

torque 

intensity
k p p m r p k T  

 [V]  [W]  [rad/s]  [Nm] [cm3]  [kg]  [kW/kg] [bar] [W/cm3]  [Nm/kg]

8.4 210 1068 0.20 55 0.1716 1.22 0.04 3.84 1.15

8 320 1378 0.23 54 0.29 1.10 0.04 5.95 0.80

24 609 523 1.164 343 1.10 0.55 0.03 1.78 1.06

24 1440 450 3.2 729 2.4 0.60 0.04 1.98 1.33

24 3580 471 7.6 729 3.9 0.92 0.10 4.91 1.95

50 15992 419 38.20 4539 9.36 1.71 0.08 3.52 4.08

460 73763 175 420.74 23487 215.00 0.34 0.18 3.14 1.96

460 198499 215 922.87 86524 215.00 0.92 0.11 2.29 4.29

460 491751 175 2813.33 165518 907.00 0.54 0.17 2.97 3.10

Average 

values 0.88 0.09 3.38 2.19

Example: Electric Motor Data



Power to weight relation 
(electric motor)

Power to mass relation
y = 1.0832x + 0.0542

R2 = 0.9906
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Prinicipal Component Analysis 
to minimize waste of design space (using Singular Value 
Decomposition, SVD)
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The meaning of the matrices

35

T
X = U× W× V

𝐔 𝑾 𝐕𝐓

Adding logarithmic scaling and removal of offset (set mean
to zero) means that limits in U on set to -1 and 1 covers the 
data set within one standard deviation, and thus results
points likely to be feasable.



SVD model of Electric motors
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Corner power [W] 491751 491744 5.69 1.99 3.70 -1.163 0.130 -0.022 0.007 0.000 -0.001 -1.66 8.43 1.86

Speed at load [rad/s] 175 175 2.24 -0.46 2.70 0.331 0.122 -0.021 -0.031 0.000 0.005 0.39 0.62 0.20

Max Torque [Nm] 2813 2813 3.45 2.44 1.01 -1.494 0.008 -0.001 0.038 0.000 -0.005 -0.56 0.44 0.17

diameter [mm] 446 446 2.65 0.63 2.02 -0.384 0.005 0.064 0.007 0.000 0.028 -0.99 0.21 0.10

volume [cm3] 165518 165516 5.22 2.06 3.16 -1.256 -0.018 0.084 -0.036 0.000 -0.011 -1.01 0.00 0.07

mass [kg] 907 907 2.96 2.21 0.75 -1.298 -0.079 -0.085 -0.025 0.000 0.010 1.05 0.10 0.07



Example of Design Space for Parametrization: 
Aircraft Wing Planform
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crct

b

b cr ct S AR l

AN225 88.4 16.5122 3.96293 905 8.63487 0.24

A380 79.75 17.6594 3.53187 845 7.5267 0.2

A320 34.09 5.99394 1.19879 122.6 9.47902 0.2

Gulfstream IV 23.7 5.73191 1.71957 88.3 6.36116 0.3

U2 32 4.83333 0.966667 92.8 11.0345 0.2

F-16 9.96 4.47711 1.11928 27.87 3.55944 0.25

Mirage 2000 9.13 8.5537 0.427685 41 2.0331 0.05

Cessna 172 11 1.59214 1.35332 16.2 7.46914 0.85

Max value 88.4 17.6594 3.96293 905 11.0345 0.85

Min value 9.13 1.59214 0.427685 16.2 2.0331 0.05
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Design space of alternative parameters, with
log-axis
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Design space of SVD- parameters, with log-
axis
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Design Space Volumes

40

Parameter set Design space volume
b, cr, ct 0.914

S,AR,l 0.877

SVD 0.25

1 1
1 2 2 2 2

2 2

/ 0.914
log log log 1.87bits

/ 0.25
w

S s S
H H H

S s S
     



Conclusions
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• Design information entropy represents a measure of the 
precision by which a design is defined relative to the design space
in consideration. It is also proportional to the dimensionality of 
the design problem.

• Design information entropy can be used as one measure of 
complexity.

• “Thinking outside the box” is the task of finding useful directions 
to expand the design space.

• Analytical parametrization through SVD of a design can be made 
using sample designs to span the design space. It can also be used 
to produce scaling models of components. In some sense it can 
be regarded as the ideal parameter set. 


