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Our organisation: focused around 4 key-competences
in 2 fields of application

PRODUCTS PRODUCTION

N 2
b—o> @9 K
O—r %) ]
vehicles machines assembly plants

1 Sensing, monitoring, control & decision making

2 (Co)design & optimisation
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Our partners: large companies and SME’s
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Challenges during architectural and detailed design
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A computer supported solution to improve
the design process of complex systems
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Case study: The design of a robotic
assembly/manufacturing cell

Force €—

A Product to be manufactured:
casing for fire protective valve in ventilation
system

A Process steps
A Extract
A Correct folding
A Join corners
A Join seam
A Transport between each step

A Throughput > 40 cases/hr

A Objective: Design a RAC that can implement this
process as cheap as possible 7




A

COMPUTATIONAL DESIGN
SYNTHESIS TO SUPPORT

THE CONCEPT SELECTION
PHASE OF RAC




Model-based computational design what?

supported by

<

“Classical” Model-Based Design




Why is it hard to synthesize the right concept?

[ Bend } \\\\\\
~= Transport
Dedicated \\\,\
Clinch? Glue? “ machine?_ Correct
[ Join Corners } —————— Folding
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Robot with end
effector?

A Say there are 6 manufacturing steps, and each can be implemented by
one of 3 alternative working principles

A Say an average of 3 resources implement each working principle

- In worst case, over 3.4x103° different alternative cell designs!
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In the future, it will only become harder

A Companies are confronted with a demand for highly-customized products (lot size
1) => Manufacturing cells need to be flexible as well

A In turn, this requires the use of novel, smart assembly technological solutions
A Cobots, AGV'’s, Smart operator support tools (e.g. projection systems), Intelligent racks

Connected sensors

* Camera

* Environment (temperature,
humidity, ...)

* Weight

* Haptic sensors

Smart (connected) tools

* Smart battery powered
torque wrenches

* Adjustable fixtures

Smart (connected) material

handling

* Via cobot:

* Via AGV

* Support manual pickup of
parts: connected pick-to-light.

Smart (connected) cognitive

tools

* Measuring physiological
response of operator and
act accordingly

Smart (connected)
ergonomics

* Cobot

* Exoskeleton

10T cloud infrastructure

* Provides necessary tools to
generate real-time context-
aware information from
captured data

Connected products

* product knows and its
status, next steps, ... and
communicates this to all
stakeholders

Smart (connected) operator
support tools

* User interface

* Projector systems

* Augmented reality




The solution?

supported b
Model the set of all possible design candidates, op Y

their properties (cost/performance) and the
relation between these properties and the
design constraints/objectives

Use the brute force of friend Mr. computer
to generate and compare all candidates

Seiect valuable candidates (for further
exploration)

=> Computational Design Synthesis




& Clinch

Step 1a: Modeling the design repository

A Activities

A Resources

A Working Principles

[Eg +/ maxForce: Real [1]

ad: ClinchEnd

ao: ClinchSeam

«Block, Resource»
DFG500/60

«Block, Resource»
[=] DFG500,

«Block, Resource»
DFG500/150

«Block, Resource»

dg: ClinchEnd

«WorkingPrinciple»
&k ClinchWithClinchingMachine

q— [Eg +/ operationTime: Real [1] = 1 + 0.01*desiredForce /1000 + 0.75 + 5+ 2 + 2

C 5

go: ClinchSeam

«WorkingPrinciple»
d&: ClinchWithClinchingHead

[Eq +/ operationTime: Real [1] = 0,

.5 + 0.01*desiredForce /1000 + 0.3 + 5

1 «Block, Resource»
+Jig
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Step 1b: Modeling the Design Problem description

dd: Clinch
duration = 0.0
softwareCost = 0.0
engineeringCost = 0.0
sourceBlockingTime = 0.0
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additional specifications




Step 2: Let the computer do all the hard

work

ATs(2).wp(1).name = ‘DisplaceWithRobot’;

ATs(2).wp(1).uuid = 'df@8cf79-f188-3d25-a175-cd88682245F3";
ATs(2).wp(1).softwareCost = 1500.0;
ATs(2).wp(1).engineeringCost = @;

ATs(2).wp(1).resTypes = {'RobotWithGripper'};
ATs(2).wp(1).isShared = [true];

ATs(2).wp(1).canBePerformed = {@(res,req) (req('workpiece.mass') <= reshape([res.robot_maxPayload],size(res)))};

ATs(2).wp(1).durationBase = @(req) (10.e);

ATs(2).wp(1).durationMod = {@(res,req) zeros(size(res))};
ATs(2).wp(1).sourceBlockingTimeBase = @(req) (5);
ATs(2).wp(1).sourceBlockingTimeMod = {@(res,req) zeros(size(res))};
ATs(2).wp(1).targetBlockingTimeBase = @(req) (2);
ATs(2).wp(1).targetBlockingTimeMod = {@(res,req) zeros(size(res))};

ATs(2).wp(2).name = 'DisplaceWithLinearActuator’;
ATs(2).wp(2).uuid = '96c@31e8-3f2d-3739-aed2-2ca83a914fda’;
ATs(2).wp(2).softwareCost = 1000.0;

ATs(2).wp(2).engineeringCost = 12.0;

ATs(2).wp(2).resTypes = {'LinearActuator'};

ATs(2).wp(2).isShared = [false];

ATs(2).wp(2).canBePerformed = {@(res,req) true(size(res))};
ATs(2).wp(2).durationBase = @(req) (7.0);

ATs(2).wp(2).durationMod = {@(res,req) zeros(size(res))};
ATs(2).wp(2).sourceBlockingTimeBase = @(req) (2);
ATs(2).wp(2).sourceBlockingTimeMod = {@(res,req) zeros(size(res))};
ATs(2).wp(2).targetBlockingTimeBase = @(req) (2);
ATs(2).wp(2).targetBlockingTimeMod = {@(res,req) zeros(size(res))};

ATs(2).wp(3).name = 'DisplaceWithConveyorBelt';

ATs(2).wp(3).uuid = '4112e33d-9f2c-332e-83ad-2ad43c042¢99";
ATs(2).wp(3).softwareCost = 2500.0;

ATs(2).wp(3).engineeringCost = 1500.0;

ATs(2).wp(3).resTypes = {'ConveyorBelt'};

ATs(2).wp(3).isShared = [false];

ATs(2).wp(3).canBePerformed = {@(res,req) true(size(res))};
ATs(2).wp(3).durationBase = @(req) (5.9);

ATs(2).wp(3).durationMod = {@(res,req) zeros(size(res))};
ATs(2).wp(3).sourceBlockingTimeBase = @(req) (1);
ATs(2).wp(3).sourceBlockingTimeMod = {@(res,req) zeros(size(res))};
ATs(2).wp(3).targetBlockingTimeBase = @(req) (1);
ATs(2).wp(3).targetBlockingTimeMod = {@(res,req) zeros(size(res))};

> 3000 lines generated MILP code
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What do you need to bring this into practice?

A A clear understanding of how your particular design problems

can be mapped onto a numerical constrained optimisation
program

A User friendly tooling that shields the designers from the
mathematical complexity and allows to

A Create and maintain a reusable design repository
A Create and update design problem descriptions
A Evaluate and interpret the mathematical solutions
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A The necessary transformations from the user friendly tooling to

the mathematical rocket science and vice versa
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A computer supported solution to improve
the design process of complex systems
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Why is it difficult to ensure the consistency during
detailed design?

A Using the generated conceptual solution as a starting point, engineers now
have to refine it and analyse other aspects

A Risk analysis/ safety countermeasures / safety performance analysis for the
counter-measures (for instance safety functions)

A Mechanical and electrical parts have to be further detailed
A Control software

A To shorten the design cycle => Maximalize concurrent design

A However, as they work on the same design, they have dependencies onto
each other
A Software engineer needs additional sensor for accurately estimating position of
the workpiece
A Electrical engineer has to update electrical schemes
A Mechanical engineer has to update CAD model

A Software engineer has to communicate his design decisions to the appropriate
engineers

A In practice: Communication often goes wrong and the resulting errors are
often only detected very late => Failing systems, additional design costs
and delays

20




To make things worse

A Imagine that the customer comes back during the detailed design phase
with the question if it is still feasible to have a throughput of 50 pcs/hour
instead of 40 pcs/hour

Table 1. Original output of the mathematical optimization (left) and output after increasing
the required throughput (right)

Used Resources: Used Resources:

> 1 x DFG500/60 ﬂx DFG500/60

> 1 x ABBIRB140-6/0.8 + MechanicalGripper [> 2 x ConcreteLinearActuator |

> 1 x ABBIRB4600-40/2.55 + MechanicalGripper > 1 x ABBIRB140-6/0.8 + MechanicalGripper

> 1 x ABBIRB4600-40/2.55 + MechanicalGripper
Performance:

Performance:

> Cost = 97068 [euros]
> Throughput = 43.9024 [parts/hour] > Cost = 132568 [euros]
> BottleNeck = ABBIRB4600-40/2.55 + MechanicalGripper > Throughput = 58.0645 [parts/hour]

> BottleNeck = ABBIRB4600-40/2.55 + MechanicalGripper

A Which part needs to be revisited?

A Do we have still have enough 10’s on our control systems for controlling the
additional clinching machine and the two linear actuators?

A Which parts of the safety analysis should we re-perform




Consistency tool architecture
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Excel

Applied to the Robotic Manufacturing Cell

pysML
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Conclusions and future work

A The combination of a computational design synthesis tool and an
inconsistency detection tool are two essential ingredients to support the
design of today’s complex systems such as robotic manufacturing cells.

A The CDS tool allows for more exhaustive exploration of the design space in
the early stages, but cannot avoid iterations, even when the detailed
design is already on-going.

A By basing both tools on related modeling languages and tools, the amount
of new knowledge that has to be acquired by industrial users is reduced
and the probability of adoption in an industrial context is increased.

A Even with this infrastructure in place, it is still better to avoid iterations
than to execute them without inconsistencies... Future work will

A Try to explicitly incorporate uncertainty in the CDS framework

A Investigate the feasibility of automatic ‘clustering’ of design candidates
A Try to work on reducing the setup cost of the inconsistency tooling

A Work towards inconsistency ‘resolution’ (<-> detection)




Questions/Remarks?

klaas gadeyne at flandersmake dot be




