Introduction to Object-Oriented Modeling and Simulation with Modelica and OpenModelica

2021-02-02

Tutorial 2021-02-02 MODPROD 2021

Peter Fritzson

Professor em. at Linköping University, <u>peter.fritzson@liu.se</u> Research Director at Programming Environments Lab Vice Director of the Open Source Modelica Consortium Vice Director of the MODPROD Center for Model-based Development

Adrian Pop

Linköping University, <u>adrian.pop@liu.se</u> Technical Coordinator of the Open Source Modelica Consortium

Slides

Based on book and lecture notes by Peter Fritzson Contributions 2004-2005 by Emma Larsdotter Nilsson, Peter Bunus Contributions 2006-2018 by Adrian Pop and Peter Fritzson Contributions 2009 by David Broman, Peter Fritzson, Jan Brugård, and Mohsen Torabzadeh-Tari Contributions 2010 by Peter Fritzson

Contributions 2011 by Peter F., Mohsen T,. Adeel Asghar,

Contributions 2012-2018 by Peter Fritzson, Lena Buffoni, Mahder

Gebremedhin, Bernhard Thiele, Lennart Ochel

Contributions 2019-2021 by Peter Fritzson, Arunkumar Palanisamy, Bernt Lie, Adrian Pop

Tutorial Based on Book, December 2014 Download OpenModelica Software

Peter Fritzson Principles of Object Oriented Modeling and Simulation with Modelica 3.3 A Cyber-Physical Approach

Can be ordered from Wiley or Amazon

Wiley-IEEE Press, 2014, 1250 pages

- OpenModelica
 - <u>www.openmodelica.org</u>
- Modelica Association
 - <u>www.modelica.org</u>

Introductory Modelica Book

September 2011 232 pages

Translations available in Chinese, Japanese, Spanish

Wiley IEEE Press

For Introductory Short Courses on Object Oriented Mathematical Modeling

Usage: Creative Commons with attribution CC-BY

MODELICA

Acknowledgements, Usage, Copyrights

- If you want to use the Powerpoint version of these slides in your own course, send an email to: peter.fritzson@ida.liu.se
- Thanks to Emma Larsdotter Nilsson, Peter Bunus, David Broman, Jan Brugård, Mohsen-Torabzadeh-Tari, Adeel Asghar, Lena Buffoni, for contributions to these slides.
- Most examples and figures in this tutorial are adapted with permission from Peter Fritzson's book "Principles of Object Oriented Modeling and Simulation with Modelica 3.3", copyright Wiley-IEEE Press
- Some examples and figures reproduced with permission from Modelica Association, Martin Otter, Hilding Elmqvist, Wolfram MathCore, Siemens
- Modelica Association: <u>www.modelica.org</u>
- OpenModelica: <u>www.openmodelica.org</u>

Software Installation - Windows

- Start the software installation
- Install OpenModelica-1.16.1 Download from <u>www.openmodelica.org</u>

(takes about 20min)

Software Installation – Linux (requires internet connection)

Go to

https://openmodelica.org/index.php/download/down load-linux and follow the instructions.

- Go to
 - https://openmodelica.org/index.php/download/down load-mac and follow the instructions or follow the instructions written below.
- The installation uses MacPorts. After setting up a MacPorts installation, run the following commands on the terminal (as root):
 - echo rsync://build.openmodelica.org/macports/ >>
 /opt/local/etc/macports/sources.conf # assuming you installed into /opt/local
 - port selfupdate
 - port install openmodelica-devel

Part I

Introduction to Modelica and a demo example

Modelica Background: Stored Knowledge

Model knowledge is stored in books and human minds which computers cannot access

"The change of motion is proportional to the motive force impressed " – Newton

Lex. II. Mutationem motus proportionalem effe vi motrici impressa, & fieri secundum lineam restam qua vis illa imprimitur.

Modelica Background: The Form – Equations

- Equations were used in the third millennium B.C.
- Equality sign was introduced by Robert Recorde in 1557

Newton still wrote text (Principia, vol. 1, 1686) "*The change of motion is proportional to the motive force impressed*" CSSL (1967) introduced a special form of "equation":

variable = expression v = INTEG(F)/m

Programming languages usually do not allow equations!

What is Modelica?

A language for modeling of complex cyber-physical systems

- Robotics
- Automotive
- Aircrafts
- Satellites
- Power plants
- Systems biology

What is Modelica?

A language for modeling of complex cyber-physical systems

Primary designed for **simulation**, but there are also other usages of models, e.g. optimization.

What is Modelica?

A language for modeling of complex cyber-physical systems

i.e., Modelica is <u>not</u> a tool

Free, open language specification:

Available at: www.modelica.org

Developed and standardized by Modelica Association

There exist one free and several commercial tools, for example:

OpenModelica from OSMC

(in ABB Optimax, Bosch-Rexr Control Edge Designer, Mike DHI)

- Dymola from Dassault systems
- Wolfram System Modeler from Wolfram MathCore
- SimulationX from ITI, part of ESI Group
- MapleSim from MapleSoft (also in Altair solidThinking Activate)
- AMESIM from LMS
- Impact from Modelon (also in ANSYS Simplorer, Rickardo tool, etc.)
- MWORKS from Tongyang Sw & Control
- IDA Simulation Env, from Equa

Modelica – The Next Generation Modeling Language

Declarative statically typed language

Equations and mathematical functions allow acausal modeling, high level specification and static type checking for increased correctness

Multi-domain modeling

Combine electrical, mechanical, thermodynamic, hydraulic, biological, control, event, real-time, etc...

Everything is a class

Safe engineering practices by statically typed object-oriented language, general class concept, Java & MATLAB-like syntax

Visual component programming

Hierarchical system architecture capabilities

Efficient, non-proprietary

Efficiency comparable to C; advanced equation compilation, e.g. 300 000 equations, ~150 000 lines on standard PC

What is acausal modeling/design?

Why does it increase *reuse*?

The acausality makes Modelica library classes *more reusable* than traditional classes containing assignment statements where the input-output causality is fixed.

Example: a resistor *equation*:

R*i = v;

can be used in three ways:

i := v/R; v := R*i; R := v/i;

- Multi-Domain Modeling
- Visual acausal hierarchical component modeling
- Typed declarative equation-based textual language
- Hybrid modeling and simulation

20 Copyright © Open Source Modelica Consortium

- A textual *class-based* language
- OO primary used for as a structuring concept

Visual Acausal Hierarchical Component Modeling

Behaviour described declaratively using

- Differential algebraic equations (DAE) (continuous-time)
- Event triggers (discrete-time)

Modelica – Faster Development, Lower Maintenance than with Traditional Tools

```
Block Diagram (e.g. Simulink, ...) or
Proprietary Code (e.g. Ada, Fortran, C,...)
vs Modelica
```


Modelica vs Simulink Block Oriented Modeling Simple Electrical Model

Graphical Modeling - Using Drag and Drop Composition

Graphical Modeling with OpenModelica Environment

OMEdit - OpenModelica Connectio	on Editor			-		-		
Components	2 Q J	RMI		1	20 2	0 🕅 🖄 🖄		Modeling 🔜 Plotting
Modelica Standard Library Item Complex Modelica ModelicaReference ModelicaServices OpenModelica								
Modelica Library Modelica Files								
Model Browser	ð ×	× Kind	Time	Resource	Location	Message		0
Outline		saŭessa						
Create New Model		Σ						

Multi-Domain (Electro-Mechanical) Modelica Model

• A DC motor can be thought of as an electrical circuit which also contains an electromechanical component

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

0 == DC.p.i + R.n.i	EM.u == EM.p.v – EM.n.v	R.u == R.p.v - R.n.v			
DC.p.v == R.n.v	0 == EM.p.i + EM.n.i	0 == R.p.i + R.n.i			
	EM.i == EM.p.i	R.i == R.p.i			
0 == R.p.i + L.n.i	$EM.u = EM.k * EM.\omega$	R.u == R.R * R.i			
R.p.v == L.n.v	EM.i == EM.M/EM.k				
	$EM.J \star EM.\omega = EM.M - EM.b \star EM.\omega$	L.u == L.p.v – L.n.v			
0 == L.p.i + EM.n.i		0 == L.p.i + L.n.i			
L.p.v == EM.n.v	DC.u = DC.p.v - DC.n.v	L.i == L.p.i			
	0 == DC.p.i + DC.n.i	L.u == L.L * L.i '			
0 == EM.p.i + DC.n.i	DC.i == DC.p.i				
EM.p.v == DC.n.v	DC.u == DC.Amp * Sin[2πDC.f *t]				
0 == DC.n.i + G.p.i		· · 1 1 1			
DC.n.v == G.p.v	(load component not included)				

Automatic transformation to ODE or DAE for simulation:

$$\frac{dx}{dt} = f[x, u, t] \qquad g\left[\frac{dx}{dt}, x, u, t\right] = 0$$

Model Translation Process to Hybrid DAE to Code

Modelica in Power Generation GTX Gas Turbine Power Cutoff Mechanism

Usage: Creative Comatheore ribution CC-BY

Modelica in Automotive Industry

Modelica in Avionics

Modelica in Biomechanics

Application of Modelica in Robotics Models Real-time Training Simulator for Flight, Driving

- Using Modelica models generating real-time code
- Different simulation environments (e.g. Flight, Car Driving, Helicopter)
- Developed at DLR Munich, Germany
- Dymola Modelica tool

(Movie demo next page)

DLR Real-time Training Simulator Movie Demo

Combined-Cycle Power Plant Plant model – system level

- GT unit, ST unit, Drum boilers unit and HRSG units, connected by thermo-fluid ports and by signal buses
- Low-temperature parts (condenser, feedwater system, LP circuits) are represented by trivial boundary conditions.
- GT model: simple law relating the electrical load request with the exhaust gas temperature and flow rate.

Courtesy Francesco Casella, Politecnico di Milano – Italy and Francesco Pretolani, CESI SpA - Italy

Modelica Spacecraft Dynamics Library

Formation flying on elliptical orbits

Control the relative motion of two or more spacecraft

Attitude control for satellites using magnetic coils as actuators

Torque generation mechanism: interaction between coils and geomagnetic field

Courtesy of Francesco Casella, Politecnico di Milano, Italy

Large-scale ABB OpenModelica Application Generate code for controlling 7.5 to 10% of German Power Production

ABB OPTIMAX PowerFit

- Real-time optimizing control of largescale virtual power plant for system integration
- **Software including OpenModelica** now used in managing more than 2500 renewable plants, total up to 1.5 GW

High scalability supporting growth

- 2012: initial delivery (for 50 plants)
- 2013: SW extension (500 plants)
- 2014: HW+SW extension (> 2000)
- 2015: HW+SW extension, incl. OpenModelica generating optimizing controller code in FMI 2.0 form

Manage 7.5% - 10% of German Power

 2015, Aug: OpenModelica Exports FMUs for real-time optimizing control (seconds) of about 5.000 MW (7.5%) of power in Germany

Industrial Product with OEM Usage of OpenModelica – MIKE by DHI, WEST Water Quality, Water Treatment and Sludge

- **MIKE by DHI**, www.mikebydhi.com, **WEST Water Quality** modeling and simulation environment
- Includes a large part of the OpenModelica compiler using the OEM license.
- Here a water treatment effluent and sludge simulation.

Most important challenge for humanity -Develop a sustainable society!

Use **Modelica** in to model and optimize **sustainable technical innovations**, and a sustainable circular economy

System Dynamics – World Society Simulation Limits to Material Growth; Population, Energy and Material flows

Left. World3 simulation with OpenModelica

- 2 collapse scenarios (close to current developments)
- 1 sustainable scenario (green).

CO2 Emissions per person:

- USA 17 ton/yr
- Sweden 7 ton/yr
- India 1.4 ton/yr
- Bangladesh 0.3 ton/yr
- System Dynamics Modelica library by Francois Cellier (ETH), et al in OM distribution.
- Warming converts many agriculture areas to deserts (USA, Europe, India, Amazonas)
- Ecological breakdown around 2080-2100, drastic reduction of world population
- To avoid this: Need for massive investments in sustainable technology and renewable energy sources

Are Humans More Intelligent than Bacteria?

Not yet evident!

World3 Simulations with Different Start Years for Sustainable Policies – Collapse if starting too late

LIMITS TO GROWTH

The 30-Year Update

DONELLA MEADOWS | JORGEN RANDERS | DENNIS MEADOWS

COLLAPSE

HOW SOCIETIES CHOOSE

TO FAIL OR SUCCEED

JARED DIAMOND

author of the Pulitzer Prize-winning

GUNS, GERMS, and STEEL

WITH A NEW AFTERWORD

How the world could be in 80-100 years at a global warming of 4 degrees

Business-as-usual scenario, IPCC

Cities, agriculture

Uninhabitable desert

Uninhabitable due to extreme weather

Flooded

Massive migration to to northern Europe, Russia, and Canada

Example Emissions CO2e / person

- Earth can handle 2 ton/vr
- Flight Spain 1 ton
- Flight Canaryisl 2 ton
- Flight Thailand 4 ton

References

New Scientist, 28 february 2009 IPCC, business as usual scenario www.climate-lab-book.ac.uk www.atmosfair.de

What Can You Do? Need Global Sustainability Mass Movement

- Develop smart Cyber-Physical systems for reduced energy and material footprint
- · Model-based circular economy for re-use of products and materials
- Promote sustainable lifestyle and technology
- Install electric solar PV panels
- Buy shares in cooperative wind power

20 sqm solar panels on garage roof, Nov 2012 Generated 2700 W at noon March 10, 2013

Expanded to 93 sqm, 12 kW, March 2013 House produced 11600 kwh, used 9500 kwh Avoids 10 ton CO2 emission per year

Example Electric Cars Can be charged by electricity from own solar panels

Small car Renault ZOE; 5 seat; Range with 51 kwh battery (2020)

- WLTP drive cycle 390 km
- In practice, summer, ca 360 km
- Winter: ca 240 km

Can use common Type 2 AC chargers (up to 22kW)

DLR ROboMObil

- experimental electric car
- Modelica models

2018, Tesla Model 3 LR, range 560 km Tesla Model S, range about 550 km

What Can You Do? More Train Travel – Less Air Travel

- Air travel by Swedish Citizens

 about the same emissions
 as all personal car traffic in
 Sweden!
- By train from Linköping to Munich and back – saves almost 1 ton of CO2e emissions compared to flight
- Leave Linköping 07.00 in Munich 23.14

More Examples, PF travel 2016:

- Train Linköping-Paris, Dec 3 6, EU project meeting
- Train Linköping-Dresden, Dec 10-16, 1 week workshop

Train travel Linköping - Munich

Small rectangles – surface needed for 100% solar energy for humanity

Solar Energy PhotoVoltaics Growth Trends

100% of global electricity production year 2030 if strong exponential growth continues

51 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Sustainable Society Necessary for Human Survival

Almost Sustainable

- India, recently 1.4 ton C02/person/year
- Healthy vegetarian food
- Small-scale agriculture
- Small-scale shops
- Simpler life-style (Mahatma Gandhi)

Non-sustainable

- USA 17 ton CO2, Sweden 7 ton CO2/yr
- High meat consumption (1 kg beef uses ca 4000 L water for production)
- Hamburgers, unhealthy, includes beef
- Energy-consuming mechanized agriculture
- Transport dependent shopping centres
- Stressful materialistic lifestyle

Gandhi – role model for future less materialistic life style

Brief Modelica History

- First Modelica design group meeting in fall 1996
 - International group of people with expert knowledge in both language design and physical modeling
 - Industry and academia
- Modelica Versions
 - 1.0 released September 1997
 - 2.0 released March 2002
 - 2.2 released March 2005
 - 3.0 released September 2007
 - 3.1 released May 2009
 - 3.2 released March 2010
 - 3.3 released May 2012
 - 3.2 rev 2 released November 2013
 - 3.3 rev 1 released July 2014
 - 3.4 released April 2017
- Modelica Association established 2000 in Linköping
 - Open, non-profit organization

Modelica Conferences

- The 1st International Modelica conference October, 2000
- The 2nd International Modelica conference March 18-19, 2002
- The 3rd International Modelica conference November 5-6, 2003 in Linköping, Sweden
- The 4th International Modelica conference March 6-7, 2005 in Hamburg, Germany
- The 5th International Modelica conference September 4-5, 2006 in Vienna, Austria
- The 6th International Modelica conference March 3-4, 2008 in Bielefeld, Germany
- The 7th International Modelica conference Sept 21-22, 2009 in Como, Italy
- The 8th International Modelica conference March 20-22, 2011 in Dresden, Germany
- The 9th International Modelica conference Sept 3-5, 2012 in Munich, Germany
- The 10th International Modelica conference March 10-12, 2014 in Lund, Sweden
- The 11th International Modelica conference Sept 21-23, 2015 in Versailles, Paris
- The 12th International Modelica conference May 15-17, 2017 in Prague, Czech Rep
- The 13th International Modelica conference March 4-6, 2019, Regensburg, Germany
- Also: Asian Modelica conferences 2016, 2017, 2018, 2020
- Also: US Modelica conference 2018, 2020
- Coming: 14th International Modelica conference Sept 20-22, 2021, Linköping, Sweden

Exercises Part I Hands-on graphical modeling (15 minutes)

Exercises Part I – Basic Graphical Modeling

- (See instructions on next two pages)
- Start the OMEdit editor (part of OpenModelica)
- Draw the RLCircuit
- Simulate

Exercises Part I – OMEdit Instructions (Part I)

- Start OMEdit from the Program menu under OpenModelica
- Go to File menu and choose New Modelica Class, and then select Model.
- E.g. write *RLCircuit* as the model name.
- For more information on how to use OMEdit, go to Help and choose User Manual or press F1.

Exercises Part I – OMEdit Instructions (Part II)

- For the RLCircuit model, **browse** the Modelica standard library and **add** the following component models:
 - Add Ground, Inductor and Resistor component models from Modelica.Electrical.Analog.Basic package.
 - Add SineVoltage component model from Modelica.Electrical.Analog.Sources package.
- Make the corresponding **connections** between the component models as shown in the previous slide.
- To **draw a connection line**: first single-click on a connector box; then start drawing while keeping the mouse button down; after drawing a little you can release the mouse button and continue drawing.
- Simulate the model
 - Go to the Simulation menu and choose simulate or click on the simulate button in the toolbar.
- **Plot** the instance variables
 - Once the simulation is completed, a plot variables list will appear on the right side. Select the variable that you want to plot.

Part II

Modelica environments and OpenModelica

Dymola

- Dassault Systemes Sweden
- Sweden
- First Modelica tool on the market
- Initial main focus on automotive industry
- www.dymola.com

Wolfram System Modeler – Wolfram MathCore

- Wolfram Research
- USA, Sweden
- General purpose
- Mathematica integration

www.wolfram.com

www.mathcore.com

Mathematica

Simulation and analysis

Car model graphical view

60 Copyright © Open Source Modelica Consortium

Simulation X

- ITI Gmbh (Part of ESI Group)
- Germany
- Mechatronic systems
- www.simulationx.com

MapleSim

pinet and the local states of the	distance in the second second		
M. Ver (28) milder Mesque in	the distant interest	Insertion 250 m	
	1 Steens # 03.00		Farameters (Han-
	Tex BOA BID	10 h	Sector
The process of the pr	Coptinuing the Design the of Second	of an ice. Tank Carriage: Istion	A AND F A DEFENSE A
Cylinetra Cylinetra Three Three Three Three	Domityke tilaku Ingelster orde: The Apple date Han Manyat die Domitale Date konstel		The start of the start of the last of the start of the st
0000	at conflictions in speed	Speed developments	-
come R	efore	After	

- Maplesoft
- Canada
- Integrated with Maple
- www.maplesoft.com

Modelon

- Modelon
- Sweden and International
- Library Suite
- Creator Suite with Impact product and Optimica Compiler Toolbox and WAMS model editor
- www.modelon.com

The OpenModelica Environment www.OpenModelica.org

HOME	DOWNLOAD TO	DLS & APPS USERS DEVELOPERS FORUM EVENTS RESE	EARCH search
p inforr	nation	Introduction	Latest news
	Industrial Products Commercial Applications using Openmodelica	OPENMODELICA is an open-source Modelica-based modeling and simulation environment intended for industrial and academic usage. Its long-term developmen supported by a non-profit organization – the Open Source Modelica Consortium (OSMC).	nt is October 25, 2014: OpenModelica 1.9. released Preliminary Program OpenModelica
4	OMEdit Enhanced OpenModelica Connection Editor.	The goal with the OpenModelica effort is to create a comprehensive Open Source Modelica modeling, compilation and simulation environment based on free software distributed in binary and source code form for research, teaching, and industrial usa We invite researchers and students, or any interested developer to participate in the project and cooperate around OpenModelica, tools, and applications.	e October 07, 2014: OpenModelica 1.9. age. Beta4 released e March 08, 2014: OpenModelica 1.9.1 Beta2 released
	Library Coverage Latest library coverage.		New Book: Peter Fritzson - Principles Object-Oriented Modeling and Simulal with Modelica 3.3 February 02, 2014: OpenModelica 1.9 Beta1 released
			CFP OpenModelica Workshop Februa 2014 October 09, 2013: OpenModelica 1.9.

OpenModelica – Free Open Source Tool developed by the Open Source Modelica Consortium (OSMC)

- Graphical editor
- Model compiler and simulator
- Debugger
- Performance analyzer
- Dynamic optimizer
- Symbolic modeling
- Parallelization
- Electronic Notebook and OMWebbook for teaching
- Spokentutorial for teaching

The OpenModelica Open Source Environment www.openmodelica.org

- Advanced Interactive Modelica compiler (OMC)
 - Supports most of the Modelica Language
 - Modelica, Python, Julia, Matlab scripting
- OMSimulator FMI Simulation/Co-simulation
- Basic environment for creating models
 - OMShell an interactive command handler
 - **OMNotebook** a literate programming notebook
 - MDT an advanced textual environment in Eclipse

- OMEdit graphic Editor
- OMDebugger for equations
- OMOptim optimization tool
- OM Dynamic optimizer collocation
- ModelicaML UML Profile
- MetaModelica extension
- ParModelica extension

L Brent

OSMC – International Consortium for Open Source Model-based Development Tools, 51 members Feb 2021

Founded Dec 4, 2007

Open-source community services

- Website and Support Forum •
- Version-controlled source base •
- **Bug database** ٠
- **Development courses** ٠
- www.openmodelica.org

Code Statistics

/trunk: Lines of Code

Industrial members

- ABB AB, Sweden
- Bosch Rexroth AG, Germany
- CDAC Centre, Kerala, India
- Creative Connections, Prague
- DHI, Aarhus, Denmark
- Dynamica s.r.l., Cremona, Italy
- EDF, Paris, France
- Equa Simulation AB, Sweden
- Fraunhofer IWES, Bremerhaven
- Fraunhofer FCC, Gothenburg
- INRIA, Rennes, France
- ISID Dentsu, Tokyo, Japan

University members

- Augsburg University, Germany
- FH Bielefeld, Bielefeld, Germany
- University of Bolivar, Colombia
- TU Braunschweig, Germany
- Chalmers Univ, Control, Sweden
- Chalmers Univ, Machine, Sweden
 Politecnico Catalunya Spain
- TU Darmstadt, Germany
- TU Delft, The Netherlands
- TU Dresden, Germany
- Université Laval. Canada
- Ghent University, Belgium
- Halmstad University, Sweden
- TU Hamburg/Harburg Germany
- IIT Bombay, Mumbai, India

- Juelich, FZI, Germany
- Maplesoft, Canada
- RISE. Sweden
- RTE France, Paris, France
- · Saab AB, Linköping, Sweden
- SmartFluidPower, Italy,
- TLK Thermo, Germany
- Sozhou Tongyuan, China
- SRON Space Ins Netherlands
- Talent Swarm, Spain
- VTI, Linköping, Sweden
- VTT, Finland
- K.L. Univ, Waddeswaram, India
- Linköping University, Sweden
- Univ of Maryland, Syst Eng USA
- Univ of Maryland, CEEE, USA
- Politecnico di Milano, Italy
- Ecoles des Mines, CEP, France
- Mälardalen University, Sweden
- RPI, Troy, USA
- Univ Pisa, Italy
- Univ College SouthEast Norway
- Tsinghua Univ, Beijing, China
- Vanderbilt Univ, USA

Build System with Regression Testing

- Automatic Nightly build system (using Jenkins), and several multi-core computers
- Regression testing of libraries
- Verification testing comparing results to references

The OpenModelica Tool Architecture

Spoken-Tutorial step-by-step OpenModelica and Modelica Tutorial Using OMEdit. Link from <u>www.openmodelica.org</u>

OMNotebook Electronic Notebook with DrModelica

M SM disting), dr. finds joyane. File Bill Coll Ferna, Inset Window

- Primarily for teaching
- Interactive electronic book
- Platform independent

Commands:

- Shift-return (evaluates a cell)
- File Menu (open, close, etc.)
- Text Cursor (vertical), Cell cursor (horizontal)
- Cell types: text cells & executable code cells
- Copy, paste, group cells
- Copy, paste, group text
- Command Completion (shifttab)

Hold

DrModelica Modelica Edition

Version 2006-04-11

Peady

OMnotebook Interactive Electronic Notebook Here Used for Teaching Control Theory

72 Copyright © Open Source Modelica Consortium

Usage: Creative Commons with attribution CC-BY

MODELICA
Mathematical Typesetting in OMNotebook and OMWebbook

OMNotebook supports Latex formatting for mathematics

OpenModelica Environment Demo

OpenModelica MDT – Eclipse Plugin

- Browsing of packages, classes, functions
- Automatic building of executables; separate compilation
- Syntax highlighting
- Code completion, Code query support for developers
- Automatic Indentation
- Debugger

(Prel. version for algorithmic subset)

OpenModelica MDT: Code Outline and Hovering Info

OpenModelica Simulation in Web Browser Client

← →	MD live page 4	MultiBody RobotR3.FullRobot
1 · · · · · · · · · · · · · · · · · · ·	4:	
OpenModelica simulation example Modelica Mechanics MultiBody Examp	t les.Systems.RobotR3.fullRobot	in @ \$
Stop Time, Sec 1 H Cutput intervals 500 Tolernince 0.0001	ation heared. Time: 00.40.	xample Examples.Systems.RobotR3.fullRobot Simulation finishes: Time 00.40 Model Results Plot variable mechanics.c3.W
OpenModelica compiles to efficient Java Script code which is executed in web browser		1.0 1.0 2.5 0.00 0.25 0.90 0.75 1.90 1.25 1.90 1.75

OMPython – Python Scripting with OpenModelica

- Interpretation of Modelica commands and expressions
- Interactive Session handling
- Library / Tool
- Optimized Parser results
- Helper functions
- Deployable, Extensible and Distributable

- Linst Linsteine

OMPython

Get/Set Helpers

OMJulia – Julia Scripting with OpenModelica

- Interpretation of Modelica commands and expressions from Julia, transfer of data
- Control design using Julia control package together with OpenModelica
- Interactive Session handling
- Library / Tool
- Separately downloadable. be run with OpenModelica 1.13.2 or later
- Works with Jupyter notebooks

FOLCALA Use of Modelica + Julia in Process Systems Engineering Education

Complex models of "Seborg reactor"

Bernt Lie*, Arunkumar Palanisamy**, Peter Fritzson**

Control example with OMJulia in Jupyter notebooks

"University of South-Eastern Norway, Norway

**University of Linköping, Sweden

introducing packages

In [1]: # PAg.add("PLos") - as server for this for observe memory and new sing Plots; pyplot() using CaTeStrings using DataTeams weing OWNELLS during DifferentialEquaring

OMMatlab – Matlab Scripting with OpenModelica

- Interpretation of Modelica commands and expressions from Matlab, transfer of data
- Interactive Session handling
- Library / Tool
- Separately downloadable. be run with OpenModelica
- Similar API functions as in OMJulia and OMPython
- Can be used for control design from Matlab

OMEdit 3D Visualization of Multi-Body Systems

- Built-in feature of OMEdit to animate MSL-Multi-Body shapes
- Visualization of simulation results
- Animation of geometric primitives and CAD-Files

MODEI

OpenModelica 3D Animation Demo (V6Engine and Excavator)

OpenModelica 3D Animation – Excavator

G OMEdit - OpenModelica Connection Editor	
File Edit View Simulation FMI Export Debug Tools Help	
	9 El 🔸 🕸 💩 S 🔗 🛐 📉 🙆 🏩 💊 🐜 🔶 🕂 🧇
Libraries Browser 🗗 🗙 🏠 MH City RT meca Test Gesamtmodell Gesamtmodel omc workingGear.fmu	Variables Browser
ilter Glasses 🔶 🧔 🚺 📐 💵 🗆	Time follo
Libraries	Simulation Time Unit s
P OpenModelica	Variables
ModelicaReference	🗉 🔤 Modelicaanalytic
ň	⊞ body1
ModelicaServices	⊞ body2
Complex =	t≝ body3
Modelica	Dintrikel
🗄 🚺 UsersGuide	I mountina1D
Blocks	⊕ position
	[] rla[1]
Compressions	[] r1a[2]
🗄 D+9 StateGraph	🗖 r1a[3]
Electrical	
	[] r1b[2]
Magnetic	
🖻 📶 Mechanics	
H NultiBody	
- Manbody	□ (±2)-3 □ (2b(1)
E 🚺 UsersGuide	□ r2bj2
🗉 🛄 World	2b[3]
	🖾 🖾 🖉 (3a)1
Examples	🗖 r3a[2]
Eleary	□ r3a[3]
	🗖 r3b[1]
	[] r3b[2]
Enla	[] (3b[3]
En1b	ff rev
	X: 23.88 Y: 13.29 Kelcome 🔥 Modeling Soluting Debugging

Visualization using Third-Party Libraries: DLR Visualization Library

- Advanced, model-integrated and vendor-unspecific visualization tool for Modelica models
- Offline, online and real-time animation
- Video-export function
- Commercial library, feature reduced free Community Edition exists

Courtesy of Dr. Tobias Bellmann (DLR)

Exercise 1.2: Use 3D Visualization for Robot model

- Open the Modelica.Mechanics.MultiBody.Examples.Systems.
 RobotR3.fullRobot example in OMEdit
- Press Simulate with Animation
- Replay the animation
- Compare with the plot

mechanics.load.frame_a.r_0[1] [m]

— mechanics.load.frame_a.r_0[2] [m]

Exercise 1.3: Visualization using the DLR Visualization Community Edition (1)

- Unpack VisualizationCommunityEdition.zip
- Open the library in OMEdit
- Simulate the EMotor example
- The DLR SimVis visualization app should start automatically
- Export the animation (File→Export Replay as Video)

Extending Modelica with PDEs for 2D, 3D flow problems – Research

U

-2

-1

n

-3

Failure Mode and Effects Analysis (FMEA) in OM

- Modelica models augmented with reliability properties can be used to generate reliability models in Figaro, which in turn can be used for static reliability analysis
- Prototype in OpenModelica integrated with Figaro tool.

Usage: Creative Commons with attribution CC-BY

OMOptim – Optimization (1)			Optimized
Model structure	Model Va	ariables	Optimized Objectives
MinEIT File Project Problem Display Tools Models Problems Name Pc Va Vb Ia Ib Ic Ea Eb Ec coutdinvestissement gaincoutoperationnel EmCO2PAC1 Ca Cb Cc Puissae Puisse Puise Puisse Puisse Puisse Puisse Puisse Puisse Puise	Project Optimization EI Variables Filter : Name global.sourceeaudeville.h global.sourceeaudeville.flowPort.p global.sourceInEchColdB.flowPort.p global.sourceEnEchColdB.flowPort.p global.sourceEffluentsECS.h global.sourceEffluentsECS.h global.sourceEffluentsECS.debit1 global.sourceEffluentsECS.debit1 global.sourceEffluentsECS.debit1 global.sourceEffluentsB.h global.sourceEffluentsB.h global.sourceEffluentsB.h global.sourceEffluentsB.flowPort.p global.sourceEffluentsB.h global.sourceEffluentsB.flowPort.p	Value Desc 1,18294+06 [Jkg] 100000 [Jkg] 1,41347e+06 [Jkg] 100000 [Jkg] 1,35495e+06 [Jkg] 100000 [Jkg] 1,35495e+06 [Jkg]	Objectives scription Optimized variables Image: Scription Optimized variables Image: Scription Image: Scription Optimized variables Image: Scription Image: Scription Optimized variables Image: Scription Scanned variables Image: Scanned variables
COPECSSystem PElecECSMax CHECTIAOutCold CHECTIAOutCold CHECTIAOutCold CHECTIAOutCold CHECTIAOutCold CHECTIAOUTCOLOG CHECTIAOU	global.sourceEffluentsA.flowPort.p global.sourceEffluentsA.etat global.sourceEffluentsA.debit global.scenariosourceEaudeville.debit global.scenariodepartB.z	100000	Name Description Direction global.gaincoutoperationnel Maximize 0 global.coutdinvestissement Minimize 0
+	Variables Components Laur	nch	

Multiple-Shooting and Collocation Dynamic Trajectory Optimization

- Minimize a goal function subject to model equation constraints, useful e.g. for NMPC
- Multiple Shooting/Collocation

ting

• Solve sub-problem in each sub-interval

$$x_{i}(t_{i+1}) = h_{i} + \int_{t_{i}}^{t_{i+1}} f(x_{i}(t), u(t), t) dt \approx F(t_{i}, t_{i+1}, h_{i}, u_{i}), \qquad x_{i}(t_{i}) = h_{i}$$

Example speedup, 16 cores:

MULTIPLE_COLLOCATION

Usage: Creative Commons with attribution CC-BY

OpenModelica Dynamic Optimization Collocation

OMSens – Multi-Parameter Sensitivity Analysis

OMSysIdent – System Parameter Identification

- OMSysIdent is a module for parameter estimation of behavioral models (wrapped as FMUs) on top of the OMSimulator API.
- Identification of the parameter values is typically based on measurement data
- It uses the Ceres solver (http://ceres-solver.org/) for the optimization task.

General Tool Interoperability & Model Exchange Functional Mock-up Interface (FMI)

- FMI development was started by ITEA2 MODELISAR project. FMI is a Modelica Association Project now
- Version 1.0
- FMI for Model Exchange (released Jan 26,2010)
- FMI for Co-Simulation (released Oct 12,2010)
- Version 2.0 (released July 25 2014) 2.0.2 (released Dec 15, 2020)
- FMI for Model Exchange and Co-Simulation
- ~ 150 tools supporting it (https://www.fmi-standard.org/tools)

Functional Mockup Units

- Import and export of input/output blocks –
 Functional Mock-Up Units FMUs, described by
 - differential-, algebraic-, discrete equations,
 - with time-, state, and step-events
- An FMU can be large (e.g. 100 000 variables)
- An FMU can be used in an embedded system (small overhead)
- FMUs can be connected together

99

OMSimulator – Integrated FMI and TLM-based Cosimulator/Simulator – part of OpenModelica

Usage: Creative Commons with attribution CC-BY

OMSimulator Composite Model Editor with 3D Viewer

Libraries Browser	8×	38	Writable	Diagram View	C:/Uxml	3D Viewer Browser
Filter Classes	-			1		🔺 🛞 Isometric 👻 🕋
ibraries		1				
ModelicaServic	es					
Complex						
Modelica	_					
Pendulum			-	-		10
			- T			
		sha	aft2			
		-			-	
					shaft1	
		-				
		1		_		

- Composite model editor
 with 3D visualization of
 connected mechanical
 model components which
 can be FMUs, Modelica
 models, etc., or co-simulated
 components
- 3D animation possible
- Composite model saved as SSP XML-file
- Support for SSP System Structure and Parameterization standard
- Numerically stable cosimulation with TLM

OMSimulator Simulation, SSP, and Tool Comparison

FMI Simulation results in OMEdit

FMI Simulation Tool Comparison

'in/macOS
/in/

Usage: Creative Commons with attribution CC-BY

OpenModelica Functional Mockup Interface (FMI)

FMI in OpenModelica

- Model Exchange implemented (FMI 2.0)
- FMI 2.0 Co-simulation implemented
- The FMI interface is accessible via the OpenModelica scripting environment, the OpenModelica connection editor and the OMSimulator tool in OpenModelica

Import FMI			
FMU File:	l.		Browse
Output Directory (Optional):			Browse
* If no Output Directory spec	fied then the FMU files are generated	in the current working direc	tory,
Log Level:	Warning		
Debug Logging			
Generate input connector	pins		
Generate output connect	or pins		
* This feature is experimenta	Most models are not yet handled by i	it.	

OpenModelica Code Generators for Embedded Real-time Code

- A full-fledged OpenModelica-generated source-code FMU (Functional Mockup Unit) code generator
 - Can be used to **cross-compile FMUs** for platforms with more available memory.
 - These platforms can **map** FMI inputs/outputs to analog/digital I/O in the importing FMI master.
- A very **simple code generator** generating a **small footprint** statically linked executable.
 - Not an FMU because there is no OS, filesystem, or shared objects in microcontrollers.

Code Generator Comparison, Full vs Simple

	Full Source-code FMU targeting 8-bit AVR proc	Simple code generator targeting 8-bit AVR proc
Hello World	43 kB flash memory	130 B flash memory
(0 equations)	23 kB variables (RAM)	0 B variables (RAM)
SBHS Board (real-time	68 kB flash memory	4090 B flash memory
PID controller, LCD, etc)	25 kB variables (RAM)	151 B variables (RAM)

The largest 8-bit AVR processor MCUs (Micro Controller Units) have 16 kB SRAM.

One of the more (ATmega328p; Arduino Uno) has 2 kB SRAM.

The ATmega16 we target has 1 kB SRAM available (stack, heap, and global variable

The Simple Code Generator

Supports only a limited Modelica subset

- No initialization (yet)
- No strongly connected components
- No events
- No functions (except external C and built-in)
- Only parts that OpenModelica can generate good and efficient code for right now (extensions might need changes in the intermediate code)
 - Unused variables are not accepted (OM usually duplicates all variables for pre() operators, non-linear system guesses, etc... but only a few of them are actually used)
- FMU-like interface (but statically linked)

Communication & I/O Devices: MODELICA_DEVICEDRIVERS Library

- Modelica_DeviceDrivers
- 🚯 User's Guide
- Blocks
- 🗄 🕨 Examples
- Packaging
- Communication
 - SharedMemoryRead
 - SharedMemoryWrite
 - UDPReceive
 - Hubbend
- SerialPortReceive
- 🔚 Serial Port Send
- 🗄 🗌 SoftingCAN
- SocketCAN
- 🛛 🗌 Internal
- InputDevices
- JoystickInput
- KeyboardKeyInput
- SpaceMouseInput
- 🛃 KeyboardInput
- 🗄 🔄 Types
- OperatingSystem
- HardwarelO
- 🗄 🚯 Interfaces

- **Free library** for interfacing hardware drivers
- Cross-platform (Windows and Linux)
- UDP, SharedMemory, CAN, Keyboard, Joystick/Gamepad
- DAQ cards for digital and analog IO (only Linux)
- Developed for **interactive real-time** simulations

https://github.com/modelica/Modelica_DeviceDrivers/

OpenModelica and Device Drivers Library AVR Processor Support

- No direct Atmel AVR or Arduino support in the OpenModelica compiler
- Everything is done by the Modelica DeviceDrivers library
- All I/O is modeled explicitly in Modelica, which makes code generation very simple

Modelica Device Drivers Library - AVR processor sub-packages:

- IO.AVR.Analog (ADC Analog Input)
- IO.AVR.PWM (PWM output)
- IO.AVR.Digital.LCD (HD44780 LCD driver on a single 8-pin digital port)
- OS.AVR.Timers (Hardware timer setup, used by real-time and PWM packages)
- OS.AVR.RealTime (very simple real-time synchronization; one interrupt per clock cycle; works for single-step solvers)

Use Case: SBHS (Single Board Heating System)

Single board heating system (IIT Bombay)

- Use for teaching basic control theory
- Usually controlled by serial port (set fan value, read temperature, etc)
- OpenModelica can generate code targeting the ATmega16 on the board (AVR-ISP programmer in the lower left). Program size is 4090 bytes including LCD driver and PID-controller (out of 16 kB flash memory available).

Movie Demo, see next page!

Example – Code Generation to SHBS

Usage: Creative Commons with attribution CC-BY
OpenModelica – ModelicaML UML Profile SysML/UML to Modelica OMG Standardization

- ModelicaML is a UML Profile for SW/HW modeling
 - Applicable to "pure" UML or to other UML profiles, e.g. SysML
- Standardized Mapping UML/SysML to Modelica
 - Defines transformation/mapping for **executable** models
 - Being standardized by OMG
- ModelicaML
 - Defines graphical concrete syntax (graphical notation for diagram) for representing Modelica constructs integrated with UML
 - Includes graphical formalisms (e.g. State Machines, Activities, Requirements)
 - Which do not exist in Modelica language
 - Which are translated into executable Modelica code
 - Is defined towards generation of executable Modelica code
 - Current implementation based on the Papyrus UML tool + OpenModelica

Example: Simulation and Requirements Evaluation

vVDR Method – virtual Verification of Designs vs Requirements

Usage: Creative Commons with attribution CC-BY

Need for Debugging Tools Map Low vs High Abstraction Level

- A major part of the total cost of software projects is due to testing and debugging
- US-Study 2002: Software errors cost the US economy annually~ 60 Billion \$
- Problem: Large Gap in Abstraction Level
 from Equations to Executable Code
- Example error message (hard to understand) Error solving nonlinear system 132 time = 0.002 residual[0] = 0.288956 x[0] = 1.105149 residual[1] = 17.000400 x[1] = 1.248448

. . .

OpenModelica MDT Algorithmic Code Debugger

The OpenModelica MDT Debugger (Eclipse-based) Using Japanese Characters

The For Houghte selien wan Lieber Hundow Helb		
Image: Second	 ● ペ ▼ 図 ▼ 図 ▼ 図 ▼ ○ ◆ ▼ ○ ▼ 目 Mode 	Debug delica
🗱 Debug 🖄 🔌 😹 🕪 🗉 🔳 🔄 🚴 🐟 👼 🔅 🔻 🐄 🕬	🗇 🕪= Variables 😫 🤷 Breakpoints 🛛 🐑 🕫 🖽 🖉	***
MDT GDB [Modelica Developement Tooling (MDT) GDB] MDT Main Thread (stepping) オーペンモーデリッカー・ロックス at quotedfunction.mo:5 Ceval_cevalCallFunction at Ceval.mo:1294 Ceval_ceval at Ceval.mo:318 Interactive_evaluateExpr at Interactive.mo:935 Interactive_evaluateExprToStr at Interactive.mo:985 Interactive_evaluate2 at Interactive.mo:507 Interactive_evaluateToStdOut at Interactive.mo:329	Name Declared Type ◆ キャン・ザー・デバガー・シー・ミー Real ◆ イェッス・イット・キャン Real	Value 1.5 -4.8366978272
■ Interactive_evaluateToStdOut at Interactive.mo:333 © moGenerator.c M Main.mo M Util.mo © System_omc.cpp function 'オーペンモーデリッカー・ロックス'	e systemimpl.c M QuotedFunction.mo ☎ 31	- E
input Real 'キャン・ザー・デバガー・シー・ミー'; output Real 'イェッス・イット・キャン'; algorithm 'イエッス・イット・キャン' := sin('キャン・ザー・デバガー・シー・ミー') end 'オーペンモーデリッカー・ロックス';		
input Real 'キャン・ザー・デバガー・シー・ミー'; output Real 'イェッス・イット・キャン'; algorithm (イェッス・イット・キャン' := sin('キャン・ザー・デバガー・シー・ミー') end 'オーペンモーデリッカー・ロックス'; Console 窓 ④ Tasks ⑧ Problems ◎ Executables		
input Real 'キャン・ザー・デバガー・シー・ミー'; output Real 'イェッス・イット・キャン'; algorithm 'イェッス・イット・キャン' := sin('キャン・ザー・デバガー・シー・ミー') end 'オーペンモーデリッカー・ロックス';	: suite\bootstrapping\main.exe	Q * C * " C

121

OpenModelica Equation Model Debugger

	bles View	DpenModelica/OMEdit/Modelica.Mechanics.MultiBo	ody.Examples.Elementary.DoublePendulum_info	16.xml Source View
Trame Case Sensitive Expand All Variables boxBody1 body frame_a	Regular Expression Collapse All Comment Absolutframe_a Absolutframe_a Positiod frame	Variable Operations Operations Operations - solved: boxBodv1.bodv.frame a.R.T[1.1]	= boxBody1.frame b.R.T[1.1]	<pre>Showing altriangle_modelica/tunk/Dullo/III.mechanics/multibody/Joints.mo if // relationships between guantities of frame_a and of frame_b frame_b.r_0 = frame_a.r_0; if rooted(frame_a.R) then R_rel = Frames.planarRotation(e, phi_offset + phi, w); Showing equation transformations of a model: </pre>
□ R - T ∢	Absolutl frame Transfol frame	substitute: boxBody1.body.frame_a.R.T[3	I,xBody1.frameTranslation.frame_a.R.T[1,	<pre>322 frame b.R = 1,1] 323 frames.absoluteRotatic a.R, R_rel); 323 frame_a.f = - Frames_resolute1(R_rel (1) substitution:</pre>
Equations			Depende	frame_b.f); $y + der(x * (time * z))$
Index Type - 819 regular - 820 regular - 821 regular - 822 regular	Equation (assignmer.a_rel (assignmolute2.a (assignmer.a_rel (assignme_a.f[2]	Variable world.frame_b.f[2]	Variable boxBody1.frame_b.R.T[1,2] boxBody1.frame_b.R.T[2,2] revolute1.frame_b.f[1] revolute1.frame_b.f[2]	<pre>324 Irame_a.t = - Frames.resolvel(R_rel, frame_b.t); 325 else 326 R_rel = Frames.planarRotation ph_offset + phi, w); 327 frame a.R.s 328 R_rel = Frames.planarRotation ph_offset + phi, w); 329 frame a.R.s 320 R_rel = Frames.planarRotation ph_offset + phi, w); 320 frame a.R.s 321 Simplify: Si</pre>
-823 regular	(assignme_a.f[1]	Equation Operations		Frames.absoluteRotatic y + der(x * time)
- 824 regular - 825 regular - 826 regular - 827 regular - 828 regular - 829 regular	(assignme_b.f[2] (assignme_b.f[1] (assignme_b.f[2] (assignme_b.f[2] (assignme_b.t[2] (assignmxed.phi0	Operations - solve: -world.frame_b.f[2] = (-boxBody1 - scalarize(2): {-world.frame_b.f[1], -worl - simplify: -{boxBody1.frame_b.R.T[1,1] * . - inline: -Modelica.Mechanics.MultiBody. - substitute: -Modelica.Mechanics.MultiB	ame_b.R.T[2,2] * revolute1.frame_b.f[2] .rame_b.R.T[2,2]) * revolute1.frame_b.f[2] 1.frame_b.f[2], -revolute1.frame_b.f[3]} Fre_b.f[2] + 1.0 * revolute1.frame_b.f[3]} oframe_b.f[2], revolute1.frame_b.f[3]})	<pre>b.R, R_rel); frame_b.f = - Frames.resolvel(R_rel, frame_a.f); 329 frame_b.t = - Frames.resolvel(R_rel, frame_a.t); a30 expand derivative (symbolic diff): y + der(x * time) =>y + (x + der(x) * time) frame_a.t); a31 (4) solve:</pre>

Mapping run-time error to source model position

Copyright © Open Source Modelica Consortium

122

time <> 0

Transformations Browser – EngineV6 Overview (11 116 equations in model)

Activities OMEdit OMEdit - Transformation	al Debugger		Tue 1	2:06	ev 👫 🐛 🖳 — 👎 Martin Sjölund	
/bmp/OpenModelica_ma	ntj/OMEdil/Modelica.Mechanics	MultiBody.Examples.Loops.EngineV6_inFo.xm	nų.			
Variablies					Source Browser	
Variables Browser	rowser Defined in Equations		1350	d In Equations.	/ust/lib/omlibrary/Modelica 3.2.1/Mechanics/MultiBor	
phi		Index = Type Equation	int	= Type Equation	Connections.branch(frame_a.R,	
Case Sensitive Regular Expression		2 - 587 Initial (nonlinear)	E-	regular (assignment) cylindercos(cylinder3.82.phi)	Trane_D.R);	
Expand All	Collapse All	5016 regular (nonlinear)		regular (assignment) cylinder3 sin(cylinder3.B2.phi)	assert(cardinality(frame_a) > 0,	
Variables = Comin L phi Exter phi Relat. phi offset Relat. Comin Absel Dod// Trans - phi Dumn - phi[1] Dumn - phi[2] Dumn - phi[3] Dumn - phi_d = den - phi_d[1] = den	nent Line Location phi) 6616 /usr/lional.mo ame_b 260 /usr/liints.mo ame_b 260 /usr/liints.mo ame_b 242 /usr/liints.mo ame_b 242 /usr/liints.mo ame_b 242 /usr/liints.mo body 805 /usr/liarts.mo nbody 805 /usr/liarts.mo nbody 805 /usr/liarts.mo nbody 805 /usr/liarts.mo nbody 805 /usr/liarts.mo mbody 805 /usr/liarts.mo (phi) 809 /usr/liarts.mo	Variable Operations Operations		 regular (assignment) cylindersin(cylinder3.82.phi) regular (assignment) cylindercos(cylinder3.82.phi) regular (assignment) der(cylder3.Rod.body.w_a[1] regular (assignment) der(cylder3.Rod.body.w_a[1] regular (assignment) der(cylder3.Rod.body.w_a[1] regular (assignment) der(cylder3.Rod.body.w_a[1] 	<pre>inf is not connected ; if assert(cardinality(frame b) > 9,</pre>	
Equations	toviti iture mistrin artistinin				112 frame b.R =	
Figuations Browser		Defines.		Depends;	B rell:	
inc * Type Equation	121	Variable *		Variable	<pre>frame_a.f = -</pre>	
regular (assignment) regular (assignment) regular (assignment) regular (assignment) regular (assignment)	cylindylinder3.cylinder.s cylindlinder3.gasForce1) cylindlinder3.gasForce.x) cylindlinder3.gasForce.V/	der(cylinder3.82.8_rel.7[3,3]) Equation Operations		- cylinder3.Rod.body.w_e[1]	<pre>Frames.resolvel(R_rel, frame_b.f); frame_a.t = - Frames.resolvel(R_rel, frame_b.t); else R_rel = Frames.plamarRotation(-e, phi_o(fset + phi, w); } }</pre>	
mailer (assignment)	outind Linders also to 06	Operations			frame a.R =	
 regular (assignment) cylindk2.frame_b.R.T[2.3] regular (linear,r_rel_a = Frar_O - frame_a.r_O);) regular (linear,frame_b.r_O ** (s_offset + s));) regular (assignment) cylindlinder3.gasForce.x) regular (assignment) cylindlinder3.gasForce.k) 		solved: der(cylinder3.B2,R_reLT[3,3]) = (-sin(substitute: (-sin(cylinder3.B2,Phi)) * cylinder differentiate: dcos(cylinder3.B2,Phi)/dtime differentiate: dcylinder3.B2,R_reLT[3,3]/dtim scalarize(9): cylinder3.B2,R_reLT = {[1.0, 0.0, simplify: cylinder3.B2,R_reLT = {[1.0 * 1.0 + (substitute: ((cylinder3.B2,R_rel = {[1.0 * 1.0 + (substitute: ((cylinder3.B2,R_rel = Modelica.Mechar original: R_rel = Frames planarRotation(e, pl	<pre>lved: der(cylinder3.B2.R_reLT[3,3]) = (-sin(cylinder3.B2.phi)) * cylinder3.Rod.body.w_a[1] bstEtute: (-sin(cylinder3.B2.phi)) * cylinder3.B2.w => (-sin(cylinder3.B2.phi)) * cylinder3.Rod.body.w_a[1] fferentiate: dcs(cylinder3.B2.phi)/dtime = (-sin(cylinder3.B2.phi)) * der(cylinder3.B2.phi) fferentiate: dcylinder3.B2.R_reLT[3,3]/dtime = der(cylinder3.B2.P.reLT[3,3]) alarize(9): cylinder3.B2.R_reLT = {[1.0, 0.0, 0.0], (-0.0, cB2.phi)] >> cylinder3.B2.R_reLT[3,3] = cos(cylinder3.B2.phi) npib'y: cylinder3.B2.R_reLT = {[1.0, * 1.0 + (1.0 + 1.0 * 1.0)B2.phi)], 0.0, -sin(cylinder3.B2.phi), cos(cylinder3.B2.phi)]) bstEtute: ([cylinder3.B2.R_reLT = {[1.0 * 1.0 + (1.0 + 1.0 * 1.0)B2.phi)], 0.0, -sin(cylinder3.B2.phi), cos(cylinder3.B2.phi)]) bstEtute: ([cylinder3.B2.R_rel = Modelica.Mechanics.MultiBody]2] * cylinder3.B2.w, cylinder3.B2.e[3] * cylinder3.B2.w)) ine: cylinder3.B2.R_rel = Frames planarRotation(e, phi offset + phi, w) => flattened:</pre>			

Equation Model Debugger on Siemens Model (Siemens Evaporator test model, 1100 equations)

Usage: Creative Commons with attribution CC-BY

Debugging Example – Detecting Source of Chattering (excessive event switching) causing bad performance

Variables						Source Browser	
variables Browser		Defined in Equ	ations	Used in Equation	ons	/home/marsj/trunk/testsuite/op	penmodelica
ind Variables		Inc + Type	Equation	Ins * Type Equation		Within ;	1
Case Sensiblye Regular Expression		-2 initial (assignmen0 else 1.0		- 3 Initial (assignment) y	(assignment) y = 2.0 * z	cases for debugging "Te	of
Expand All	Expand All Collapse All		fassignmenting else tra	u reguun	fassiðinneurl à « svi - t	declarative models"	
Variables * Comm -x -y z	nent Line Locatio 7 /hom 8 /hom 9 /hom	n 9. 9.				<pre>package Chattering with chattering behav model Chattering "Exhibits chatt after t = 0.5 with</pre>	"Models viour" Events1 tering
		Variable Opera	tions	-412		denerated events"	
		Operations				Real x(start=1,	
						else 1;	them -1
		0				else 1; y = 2*z; der(x) = y; annotation	introl a
Equations		Defines		Depends		<pre>else 1;</pre>	*shtml>
Equations Quations Browser	Hos	Defines		Depends		<pre>else 1;</pre>	" <html> attering the</html>
guations quations Browser nc = Type Equat	tion	Defines Variable		Depends Variable		else 1; y = 2*z; der(x) = y; annotation (Documentation(info= dp>After t = 0.5, che takes place, due to t EQUATIO	"shtml> sttering the sight
quations quations Browser nc = Type Equat - 1 initial (assign - 2 initial (assign - 3 initial (assign - 4 initial (assign - 5 regular (assign - 6 regular (assign	tion priment) x = 1.0 priment) y = 2.0 * z priment) y = 2.0 * z priment) der(x) = y priment, = 1.0 priment) y = 2.0 * z	Defines Variable Z	-	Depends Variable L _X		else 1; y = 2*z; der(x) = y; annotation (Documentation(info- cp>After 1 = 0.5, cha takes place, due to t EQUATION equation. 10 cp>Ent = in fin fin x det Z red oucle & x tightly spaced events generated TP forths the view model allow	sof 0 the
quations quations Browser nc = Type Equat -1 initial (assign -2 initial (assign -3 initial (assign -4 initial (assign -5 regular (assign -7 regular (assign	tion priment) x = 1.0 priment) y = 2.0 * z priment) der(x) = y priment, 0 = 1.0 priment) y = 2.0 * z priment) der(x) = y	Defines Variable Z		Depends Variable L _X		else 1; y = 2*2; der(x) = y; annotation (Documentation(info= copafter t = 8.5, che takes place, due to t EQUATION equation, c/p> 10 cps at = in far X: det Z ies back events generated Try footba the yse in D2 allow identify the equation which the zero crossi	sor 0 the s are 2, to s are 2, to s are 2, to s are 1 from ing
quations quations Browser nr = Type Equat -1 initial (assign -2 initial (assign -3 initial (assign -4 initial (assign -5 regular (assign -7 regular (assign	tion pment) x = 1.0 pment) y = 2.0 * z pment) der(x) = y pment) der(x) = y pment) y = 2.0 * z pment) der(x) = y	Defines Variable z Equation Operatio	•	Depends Variable L _X		else 1; y = 2*z; der(x) = y; annotation (Documentation(info- copAfter t = 8.5, che takes place, due to t EQUATION equation.	**html> attering the night > 0 the s are z to n from ing tes the p

Usage: Creative Commons with attribution CC-BY

Error Indication – Simulation Slows Down

	Running Simulation of Debugging.Chattering.ChatteringEvents1. Please wait for a while.	
	Cancel Simulation	
OME	Edit - Debugging.Chattering.ChatteringEvents1 Simulation Output	Ū (
Output	Compilation	
0.500000 delta le bottlene was: x >	00050.500000995001 (100 state events in a row with a total timess than the step size 0.002). This can be a performance eck. Use -1v LOG_EVENTS for more information. The zero-crossing > 0.0 Debug more	e

Performance Profiling for Faster Simulation (Here: Profiling all equations in MSL 3.2.1 DoublePendulum)

- Measuring **performance** of equation blocks to find bottlenecks
 - Useful as input before model simplification for real-time applications
- Integrated with the debugger to point out the slow equations
- Suitable **for real-time profiling** (collect less information), or a complete view of all equation blocks and function calls

Performance profiling DoublePendulum:

127

Equations Browser								Defines		
Index	Туре	Equation	Executi	Max time	Time	Fraction		A	Variable	
+ 876	regular	linear, size 2	4602	0.000501	0.0134	75.7%			damper.a_rel	
-836	regular	(assignment) evolute2.phi)	1534	2.57e-05	0.000377	2.12%			revolute2.frame_b.f[2]	
-840	regular	(assignment)mper.phi_rel)	1534	1.38e-05	0.000237	1.33%				
-837	regular	(assignment) evolute2.phi)	1534	8.38e-06	0.000235	1.32%				
-841	regular	(assignment)mper.phi_rel)	1534	8.48e-06	0.000192	1.08%				
- 849	regular	(assignment)mper.phi_rel)	1534	8.04e-06	0.000146	0.824%				

Performance Profiling of Siemens Drum Boiler Model with Evaporator

Usage: Creative Commons with attribution CC-BY

ABB Industry Use of OpenModelica FMI 2.0 and Debugger

 ABB OPTIMAX® provides advanced model based control products for power generation and water utilities

- ABB: "ABB uses several compatible Modelica tools, including OpenModelica, depending on specific application needs."
- ABB: "OpenModelica provides outstanding debugging features that help to save a lot of time during model development."

Exercise 1.2 – Equation-based Model Debugger

In the model ChatteringEvents1, chattering takes place after t = 0.5, due to the discontinuity in the right hand side of the first equation. Chattering can be detected because lots of tightly spaced events are generated. The debugger allows to identify the (faulty) equation that gives rise to all the zero crossing events.

```
model ChatteringEvents1
  Real x(start=1, fixed=true);
  Real y;
  Real z;
equation
  z = noEvent(if x > 0 then -1 else 1);
  y = 2*z;
  der(x) = y;
end ChatteringEvents1;
```


- Switch to OMEdit text view (click on text button upper left)
- Open the Debugging.mo package file using OMEdit
- Open subpackage Chattering, then open model ChatteringEvents1
- Simulate in debug mode
- Click on the button Debug more (see prev. slide)
- Possibly start task manager and look at CPU. Then click stop simulation button

Part III

Modelica language concepts and textual modeling

Usage: Creative Commons with attribution CC-BY

The order of computations is not decided at modeling time

Typical Simulation Process

Usage: Creative Commons with attribution CC-BY

Simple model - Hello World!

Simulation in OpenModelica environment

Modelica Variables and Constants

 Built-in primitive data types 						
	Boolean	true or false				
	Integer	Integer value, e.g. 42 or –3				
	Real	Floating point value, e.g. 2.4e-6				
	String	String, e.g. "Hello world"				
	Enumeratio	on Enumeration literal e.g. ShirtSize.Medium				

- Parameters are constant during simulation
- Two types of constants in Modelica
 - constant
 - parameter

constant Real PI=3.141592653589793; constant String redcolor = "red"; constant Integer one = 1; parameter Real mass = 22.5;

A Simple Rocket Model

$acceleration - \frac{thrust - mass \cdot gravity}{2}$
mass
$mass' = -massLossRate \cdot abs(thrust)$
altitude' = velocity
velocity' = acceleration

A class declaration creates a type name in Modelica

class CelestialBody constant Real g = 6.672e-11; parameter Real radius; parameter String name; parameter Real mass; end CelestialBody;

An *instance* of the class can be declared by *prefixing* the type name to a variable name

The declaration states that **moon** is a variable containing an object of type **CelestialBody**

Moon Landing

Simulation of Moon Landing

It starts at an altitude of 59404 (not shown in the diagram) at time zero, gradually reducing it until touchdown at the lunar surface when the altitude is zero The rocket initially has a high negative velocity when approaching the lunar surface. This is reduced to zero at touchdown, giving a smooth landing

Specialized Class Keywords

- Classes can also be declared with other keywords, e.g.: model, record, block, connector, function, ...
- Classes declared with such keywords have specialized properties
- Restrictions and enhancements apply to contents of specialized classes
- After Modelica 3.0 the class keyword means the same as model
- Example: (Modelica 2.2). A model is a class that cannot be used as a connector class
- Example: A record is a class that only contains data, with no equations
- Example: A block is a class with fixed input-output causality

```
model CelestialBody
constant Real g = 6.672e-11;
parameter Real radius;
parameter String name;
parameter Real mass;
end CelestialBody;
```


Modelica Functions

- Modelica Functions can be viewed as a specialized class with some restrictions and extensions
- A function can be called with arguments, and is instantiated dynamically when called

```
function sum
input Real arg1;
input Real arg2;
output Real result;
algorithm
result := arg1+arg2;
end sum;
```


Function Call – Example Function with for-loop

Example Modelica function call:

```
the value of the
                                                        coefficient vector A, and
 p = polynomialEvaluator(\{1, 2, 3, 4\}, 21)
                                                        21 becomes the value of
                                                        the formal parameter x.
function PolynomialEvaluator
 input Real A[:];
                     // array, size defined
                       // at function call time
 input Real x := 1.0; // default value 1.0 for x
                                                       The function
  output Real sum;
                                                       PolynomialEvaluator
protected
                                                       computes the value of a
                          // local variable xpower
  Real
         xpower;
algorithm
                                                       polynomial given two
  sum := 0;
                                                       arguments:
  xpower := 1;
                                                       a coefficient vector A and
  for i in 1:size(A,1) loop
                                                       a value of x.
    sum := sum + A[i]*xpower;
    xpower := xpower*x;
  end for;
end PolynomialEvaluator;
```


 $\{1, 2, 3, 4\}$ becomes

Inheritance

Data and behavior: field declarations, equations, and certain other contents are *copied* into the subclass

Multiple Inheritance

Multiple Inheritance is fine – inheriting both geometry and color

Multiple Inheritance cont'

Only one copy of multiply inherited class Point is kept

Simple Class Definition

- Simple Class Definition
 - Shorthand Case of Inheritance
- Example:

class SameColor = Color;

Equivalent to:

 Often used for introducing new names of types:

type Resistor = Real;

connector MyPin = Pin;

Inheritance Through Modification

147

- Modification is a concise way of combining inheritance with declaration of classes or instances
- A *modifier* modifies a declaration equation in the inherited class
- Example: The class Real is inherited, modified with a different start value equation, and instantiated as an altitude variable:

```
...
Real altitude(start= 59404);
...
```


Extra slide The Moon Landing - Example Using Inheritance (I)

Usage: Creative Commons with attribution CC-BY

Extra slide The Moon Landing - Example using Inheritance (II)

Inheritance of Protected Elements

If an extends-clause is preceded by the protected keyword, all inherited elements from the superclass become protected elements of the subclass

The inherited fields from Point keep their protection status since that extends-clause is preceded by public

A protected element cannot be accessed via dot notation!

Exercises Part III a (15 minutes)

- Start OMNotebook (part of OpenModelica)
 - **Start-**>Programs->OpenModelica->OMNotebook
 - **Open File**: Exercises-ModelicaTutorial.onb from the directory you copied your tutorial files to.
 - **Note**: The DrModelica electronic book has been automatically opened when you started OMNotebook.
 - (Alternatively: Open the OMWeb notebook <u>http://omwebbook.openmodelica.org/</u>
- Open Exercises-ModelicaTutorial.pdf (also available in printed handouts)

Exercises 2.1 and 2.2 (See also next two pages)

- Open the **Exercises-ModelicaTutorial.onb** found in the Tutorial directory you copied at installation.
- Exercise 2.1. Simulate and plot the HelloWorld example. Do a slight change in the model, re-simulate and re-plot. Try command-completion, val(), etc.

- Locate the VanDerPol model in DrModelica (link from Section 2.1), using OMNotebook!
- (extra) Exercise 2.2: Simulate and plot VanDerPol. Do a slight change in the model, re-simulate and re-plot.

A Modelica "Hello World" model

Equation: x' = -xInitial condition: x(0) = 1

```
class HelloWorld "A simple equation"
   parameter Real a=-1;
   Real x(start=1);
equation
   der(x)= a*x; (*xxxxx s*)
end HelloWorld;
```

Simulation in OpenModelica environment

(extra) Exercise 2.2 – Van der Pol Oscillator

155 Copyright © Open Source Modelica Consortium

(extra) Exercise 2.3 – DAE Example

Include algebraic equation

Algebraic equations contain no derivatives

Exercise: Locate in DrModelica. Simulate and plot. Change the model, simulate+plot.

```
class DAEexample
  Real x(start=0.9);
  Real y;
equation
  der(y)+(1+0.5*sin(y))*der(x)
      = sin(time);
      x - y = exp(-0.9*x)*cos(y);
end DAEexample;
```

Simulation in OpenModelica environment

Exercise 2.4 – Model the system below

• Model this Simple System of Equations in Modelica

$$\dot{x} = 2 \star x \star y - 3 \star x$$

 $\dot{y} = 5 \star y - 7 \star x \star y$
 $x(0) = 2$
 $y(0) = 3$

(extra) Exercise 2.5 – Functions

- a) Write a function, **sum2**, which calculates the sum of Real numbers, for a vector of arbitrary size.
- b) Write a function, average, which calculates the average of Real numbers, in a vector of arbitrary size. The function average should make use of a function call to sum2.

Part III b Discrete Events and Hybrid Systems

Picture: Courtesy Hilding Elmqvist

159 Copyright © Open Source Modelica Consortium

Modelica Hybrid Modeling

- A *point* in time that is instantaneous, i.e., has zero duration
- An event condition or clock tick so that the event can take place
- A set of *variables* that are associated with the event
- Some *behavior* associated with the event,
 e.g. *conditional equations* that become active or are deactivated at the event

Event Creation – if

if-equations, if-statements, and if-expressions

if <condition> then
 <equations>
elseif <condition> then
 <equations>
else
 <equations>
else
 <equations>
end if;

Event Creation – when

Generating Repeated Events by unclocked sample

Generating Clock Tick Events using Clock() (clocked models, Modelica 3.3)

- Clock() inferred clock
- Clock(intervalCounter, resolution) clock with Integer quotient (rational number) interval
- Clock(interval) clock with a Real value interval
- Clock(condition, startInterval)
- Clock solver clock

Reinit - Discontinuous Changes

The value of a *continuous-time* state variable can be instantaneously changed by a reinit-equation within a when-equation

 Locate the BouncingBall model in one of the hybrid modeling sections of DrModelica (the When-Equations link in Section 2.9), run it, change it slightly, and re-run it.

Part IIIc

Clocked Synchronous Models and State Machines

and Applications for Digital Controllers

167 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Control System Applications

Control Theory Perspective Feedback Control System

- r(t) reference (setpoint)
- e(t) error
- y(t) measured process variable (plant output)
- u(t) control output variable (plant input)

Usual Objective

Plant output should follow the reference signal.

Embedded Real-Time Control System

- Discrete-time controller + continuous-time plant ≡ hybrid system or sampled-data system
- 2. Interface between digital and analog world: Analog to Digital and Digital to Analog Converters (ADC and DAC).
- 3. ADC \rightarrow Algorithm \rightarrow DAC is synchronous (zero-delay model!)
- 4. A *clock* controls the *sampling instants*. Usually *periodic sampling*.

Controller with Sampled Data-Systems

(unclocked models, using pre() and sample())

- y is automatically sampled at t = 3, 6, 9,...;
- xd, u are piecewise-constant variables that change values at sampling events (implicit zero-order hold)
- initial() triggers event at initialization (t=0)

Controller with Clocked Synchronous Constructs clocked models using Clock(), previous(), hold() in Modelica 3.3

Unclocked Variables in Modelica 3.2

Clock variables (Clock) and Clocked Variables (Real) (in Modelica 3.3)

Clocked Synchronous Extension in Modelica 3.3

State Machines in Modelica 3.3: Simple Example

- Equations are active if corresponding *clock* ticks. Defaults to periodic • clock with 1.0 s sampling period
- "i" is a shared variable, "j" is a local variable. Transitions are "*delayed*" • and enter states by "reset"

Simple Example: Modelica Code

```
model Simple NoAnnotations "Simple state machine"
  inner Integer i(start=0);
  block State1
    outer output Integer i;
    output Integer j(start=10);
  equation
    i = previous(i) + 2;
    i = previous(j) - 1;
  end State1;
  State1 state1;
  block State2
    outer output Integer i;
  equation
    i = previous(i) - 1;
  end State2;
  State2 state2;
equation
  transition(state1, state2, i > 10, immediate=false);
  transition(state2, state1, i < 1, immediate=false);</pre>
  initialState(state1);
end Simple_NoAnnotations;
```


Hierarchical and Parallel Composition of Modelica State Machine Models

Semantics of Modelica state machines (and example above) inspired by Florence Maraninchi & Yann Rémond's "Mode-Automata" and by Marc Pouzet's Lucid Synchrone 3.0.

Hierarchical and Parallel Composition

Semantics of Modelica state machines (and example above) inspired by Florence Maraninchi & Yann Rémond's "Mode-Automata" and by Marc Pouzet's Lucid Synchrone 3.0.

Part IV

Components, Connectors and Connections – Modelica Libraries and Graphical Modeling

Software Component Model

A component class should be defined *independently of the environment,* very essential for *reusability*

A component may internally consist of other components, i.e. *hierarchical* modeling

Complex systems usually consist of large numbers of connected components

Connectors and Connector Classes

Connectors are instances of *connector classes*

Three possible kinds of variables in connectors:

- Potential variables potential or energy level
- Flow variables represent some kind of flow
- Stream variables represent fluid flow in convective transport

Coupling

- *Equality coupling*, for potential variables
- *Sum-to-zero coupling*, for flow variables

The value of a flow variable is *positive* when the current or the flow is *into* the component

Physical Connector Classes Based on Energy Flow

Domain Type	Potential	Flow	Carrier	Modelica Library
Electrical	Voltage	Current	Charge	Electrical. Analog
Translational	Position	Force	Linear momentum	Mechanical. Translational
Rotational	Angle	Torque	Angular momentum	Mechanical. Rotational
Magnetic	Magnetic potential	Magnetic flux rate	Magnetic flux	Magnetic
Hydraulic	Pressure	Volume flow	Volume	OpenHydraulics
Heat	Temperature	Heat flow	Heat	HeatFlow1D
Chemical	Chemical potential	Particle flow	Particles	Chemical
Pneumatic	Pressure	Mass flow	Air	PneuLibLight

Connections between connectors are realized as *equations* in Modelica

connect (connector1,connector2)	connect	connector1	,connector2)
--	---------	------------	--------------

The two arguments of a connect-equation must be references to connectors, either to be declared directly within the same class or be members of one of the declared variables in that class

Connection Equations

Pin pin1,pin2;
//A connect equation
//in Modelica
connect(pin1,pin2);

Corresponds to

pin1.v = pin2.v;
pin1.i + pin2.i =0;

Multiple connections are possible: connect(pin1,pin2); connect(pin1,pin3); ... connect(pin1,pinN);

Each primitive connection set of potential variables is used to generate equations of the form:

 $v_1 = v_2 = v_3 = \dots v_n$

Each primitive connection set of flow variables is used to generate *sum-to-zero* equations of the form:

$$i_1+i_2+\ldots(-i_k)+\ldots i_n=0$$

Common Component Structure

The base class TwoPin has two connectors p and n for positive and negative pins respectively

Electrical Components

Electrical Components cont'

Resistor Circuit

Modelica Standard Library - Graphical Modeling

- Modelica Standard Library (called Modelica) is a standardized predefined package developed by Modelica Association
- It can be used freely for both commercial and noncommercial purposes under the conditions of *The Modelica License*.
- Modelica libraries are available online including documentation and source code from <u>http://www.modelica.org/library/library.html</u>

Modelica Standard Library cont'

The Modelica Standard Library contains components from various application areas, including the following sublibraries:

- Blocks Library for basic input/output control blocks
- Constants Mathematical constants and constants of nature
- Electrical Library for electrical models
- Icons
 Icon definitions
- Fluid 1-dim Flow in networks of vessels, pipes, fluid machines, valves, etc.
- Math Mathematical functions
- Magnetic Magnetic for magnetic applications
- Mechanics Library for mechanical systems
- Media Media models for liquids and gases
- Slunits Type definitions based on SI units according to ISO 31-1992
- Stategraph Hierarchical state machines (analogous to Statecharts)
- Thermal Components for thermal systems
- Utilities Utility functions especially for scripting

Modelica.Blocks

Continuous, discrete, and logical input/output blocks to build block diagrams.

Electrical components for building analog, digital, and multiphase circuits

Package containing components for mechanical systems

Subpackages:

- Rotational
 1-dimensional rotational mechanical components
 - Translational
 - MultiBody

1-dimensional translational mechanical components 3-dimensional mechanical components

PNIib - An Advanced Petri Net Library for Hybrid Process Modeling

Other Free Libraries Up to date list at: https://www.modelica.org/libraries

- WasteWater
- ATPlus
- MotorCycleDymanics
- NeuralNetwork
- VehicleDynamics
- SPICElib
- SystemDynamics
- BondLib
- MultiBondLib
- ModelicaDEVS
- ExtendedPetriNets
- External.Media Library External fl
- VirtualLabBuilder
- PowerSystems

Wastewater treatment plants, 2003 Building simulation and control (fuzzy control included), 2005 Dynamics and control of motorcycles, 2009 Neural network mathematical models, 2006 Dynamics of vehicle chassis (obsolete), 2003 Some capabilities of electric circuit simulator PSPICE, 2003 System dynamics modeling a la J. Forrester, 2007 Bond graph modeling of physical systems, 2007 Multi bond graph modeling of physical systems, 2007 DEVS discrete event modeling, 2006 Petri net modeling, 2002 External fluid property computation, 2008 Implementation of virtual labs, 2007 Power systems in transient and steady-state mode

Some Commercial Libraries Up to date list at: https://www.modelica.org/libraries

- Air Conditioning
- Electric Power
- Fuel Cell
- Heat Exchanger
- Hydro Power
- Liquid Cooling
- Thermal Power
- Vapor Cycle
- Battery
- Belts
- Engine
- ...

- Powertrain
- SmartElectricDrives
- VehicleDynamics
- Hydraulics
- Pneumatics
- Engine Dynamics
- Environmental Control
- CombiPlant
- ..
- (there are many more)

Connecting Components from Multiple Domains

 Block domain ind R1 Mechanical domain R2 emf iner ex ac vser Electrical domain Electrical Block Mechanical G domain domain domain model Generator Modelica.Mechanics.Rotational.Accelerate ac; Modelica.Mechanics.Rotational.Inertia iner; Modelica.Electrical.Analog.Basic.EMF emf(k=-1); Modelica.Electrical.Analog.Basic.Inductor ind(L=0.1); Modelica.Electrical.Analog.Basic.Resistor R1,R2; Modelica.Electrical.Analog.Basic.Ground G; Modelica.Electrical.Analog.Sensors.VoltageSensor vsens; Modelica.Blocks.Sources.Exponentials ex(riseTime={2},riseTimeConst={1}); equation **connect**(ac.flange_b, iner.flange_a); **connect**(iner.flange_b, emf.flange_b); **connect**(emf.p, ind.p); **connect**(ind.n, R1.p); **connect**(emf.n, G.p); **connect**(emf.n, R2.n); **connect**(R1.n, R2.p); **connect**(R2.p, vsens.n); **connect**(R2.n, vsens.p); **connect**(ex.outPort, ac.inPort); end Generator;

DCMotor Model Multi-Domain (Electro-Mechanical)

A DC motor can be thought of as an electrical circuit which also contains an electromechanical component.

```
model DCMotor
   Resistor R(R=100);
   Inductor L(L=100);
   VsourceDC DC(f=10);
   Ground G;
   EMF emf(k=10,J=10, b=2);
   Inertia load;
equation
   connect(DC.p,R.n);
   connect(R.p,L.n);
   connect(L.p, emf.n);
   connect(emf.p, DC.n);
   connect(DC.n,G.p);
   connect(emf.flange,load.flange);
end DCMotor;
```


Part IV Sensitivity Analysis

using OpenModelica

OMSens – Multi-Parameter Sensitivity Analysis

- Individual and simultaneous multi-parameter analysis
- Optimization-based simultaneous analysis
- Robust derivative free optimizer

P.36

P.49

P.32

P.26

9.74

1.0

P.61

P.25

P.20

P.29

P.51

P.73

P.28

P.84

8.74

8.19

P.34

2.3

P.70

P.24

Tool architecture

Introduction to Sensitivity Analysis

- Sensitivity of nonlinear systems in the form of ODEs
 - Undergo noticeable dynamic changes in response to small perturbations in the parameters.
- OO-languages (Modelica)
 - Systematic treatment of the problem
 - Clear, unambiguous access to parameters, variables and simulation configuration.
 - Reusable frameworks to manipulate models as black boxes.
 - . Varied options to use internal knowledge about model structure

Approaches to Sensitivity Analysis

- Individual analysis:
 - One parameter perturbed at a time
 - Ignores combinations of perturbations
- Simultaneous analysis:
 - All possible combinations not feasible
 - Would give combinatorial explosion of parameter settings
 - Find "optimal" combinations of perturbations
 - "Smallest simultaneous perturbations that produce largest deviations"
 - Typically: optimization-based strategies

CURVIF: robust derivative-free optimization algorithm

- The CURVI family
 - Curvilinear search approach
- Three versions: CURVIF, CURVIG, CURVIH
 - Function values, function values plus Gradients, and the latter plus Hessians.
 - Globally convergent
 - In general uses **fewer evaluations** than other algorithms
- CURVIF: the flavor adopted for OMSens
 - Trade-off: favor **robustness**, sacrifice some efficiency
 - Derivative-free methods can either be robust at the cost of using many function evaluations, e.g. direct searches - or may present convergence problems

LotkaVolterra – A Simple Model to be Used for Sensitivity Analysis Exercises

model LotkaVolterra "This is the typical equation-oriented model" **parameter** Real alpha=0.1 "Reproduction rate of prey"; **parameter** Real beta=0.02 "Mortality rate of predator per prey"; **parameter** Real gamma=0.4 "Mortality rate of predator"; **parameter** Real delta=0.02 "Reproduction rate of predator per prey"; **parameter** Real prey pop init=10 "Initial prey population"; **parameter** Real pred pop init=10 "Initial predator population"; Real prey pop(start=prey pop init) "Prey population"; Real pred pop(start=pred pop init) "Predator population"; initial equation prey pop = prey pop init; pred pop = pred pop init;

equation

```
der(prey pop) = prey pop*(alpha-beta*pred pop);
 der(pred pop) = pred pop*(delta*prey pop-gamma);
end LotkaVolterra :
```


OMSens Exercise – Locate Python Select Analysis type – OpenModelica 1.16.0 or later

oMSens OMSens python backend folder:	? × Installation instructions:	ans#om	sons
C:/Program Files/OpenModelica1.16.0-dev-64bit/OMSens	Browse	115 # 0111	30113
Python executable:			
C:/Users/petfr27/AppData/Local/Continuum/anaconda3/p	non.exe Browse		
Individual Parameter Based Sensitivity Multi-parameter Sweep Vectorial Parameter Based Sensitivity A	alysis		
Load 💰 Individual S	isitivity Analysis Results	?	×
Relative (REL) Description: I Results:	Root Mean Square (RMS) REL index calculates the change of a state variable (at the end of a simulation) n and without a parameter perturbation (at the beginning of the simulation). an be used to rank parameters according to their impact on a state variable at a target final time. atrix Heatmap State Variable IDs Parameter IDs		
Results can be f	nd in: AppData/Local/Temp/OpenModelica/OMEdit/omsens_results/indiv_results/2020-02-03/15_4_42/results Ok	Ope	n

OMSens Exercise – results from individual analysis

More info in the file:

OMSens Example_Exercise_Lotka-Volterra.pdf

Part Vb More Graphical Modeling Exercises

using OpenModelica

222 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Graphical Modeling - Using Drag and Drop Composition

Graphical Modeling Animation – DCMotor

Multi-Domain (Electro-Mechanical) Modelica Model

• A DC motor can be thought of as an electrical circuit which also contains an electromechanical component

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

0 == DC.p.i + R.n.i	EM.u == EM.p.v – EM.n.v	R.u == R.p.v - R.n.v	
DC.p.v == R.n.v	0 == EM.p.i + EM.n.i	0 == R.p.i + R.n.i	
	EM.i == EM.p.i	R.i == R.p.i	
0 == R.p.i + L.n.i	$EM.u = EM.k * EM.\omega$	R.u == R.R * R.i	
R.p.v == L.n.v	EM.i == EM.M/EM.k		
	$EM.J \star EM.\omega = EM.M - EM.b \star EM.\omega$	L.u == L.p.v – L.n.v	
0 == L.p.i + EM.n.i		0 == L.p.i + L.n.i	
L.p.v == EM.n.v	DC.u = DC.p.v - DC.n.v	L.i == L.p.i	
	0 == DC.p.i + DC.n.i	L.u == L.L * L.i '	
0 == EM.p.i + DC.n.i	DC.i == DC.p.i		
EM.p.v == DC.n.v	DC.u == DC.Amp * Sin[2πDC.f *t]		
0 == DC.n.i + G.p.i		t included)	
DC.n.v == G.p.v	(10ad component not included)		

Automatic transformation to ODE or DAE for simulation:

$$\frac{dx}{dt} = f[x, u, t] \qquad g\left[\frac{dx}{dt}, x, u, t\right] = 0$$

Exercise 3.1

- Draw the DCMotor model using the graphic connection editor using models from the following Modelica libraries: Mechanics.Rotational.Components, Electrical.Analog.Basic, Electrical.Analog.Sources
- Simulate it for 15s and plot the variables for the outgoing rotational speed on the inertia axis and the voltage on the voltage source (denoted u in the figure) in the same plot.

Exercise 3.2

• If there is enough time: Add a torsional spring to the outgoing shaft and another inertia element. Simulate again and see the results. Adjust some parameters to make a rather stiff spring.

Exercise 3.3

 If there is enough time: Add a PI controller to the system and try to control the rotational speed of the outgoing shaft. Verify the result using a step signal for input. Tune the PI controller by changing its parameters in OMEdit.

Learn more...

OpenModelica

- <u>www.openmodelica.org</u>
- Modelica Association
 - www.modelica.org
- Books
 - Principles of Object Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach, Peter Fritzson 2015.
 - Modeling and Simulation of Technical and Physical Systems with Modelica. Peter Fritzson., 2011 <u>http://eu.wiley.com/WileyCDA/WileyTitle/productCd-</u> <u>111801068X.html</u>
 - Introduction to Modelica, Michael Tiller

Multi-Domain Modeling

Visual Acausal Component Modeling

