
Introduction to Object-Oriented
Modeling and Simulation

with Modelica and OpenModelica

2021-02-02

Tutorial 2021-02-02 MODPROD 2021
Peter Fritzson
Professor em. at Linköping University, peter.fritzson@liu.se
Research Director at Programming Environments Lab
Vice Director of the Open Source Modelica Consortium
Vice Director of the MODPROD Center for Model-based Development
Adrian Pop
Linköping University, adrian.pop@liu.se
Technical Coordinator of the Open Source Modelica Consortium

Slides
Based on book and lecture notes by Peter Fritzson
Contributions 2004-2005 by Emma Larsdotter Nilsson, Peter Bunus
Contributions 2006-2018 by Adrian Pop and Peter Fritzson
Contributions 2009 by David Broman, Peter Fritzson, Jan Brugård, and
Mohsen Torabzadeh-Tari
Contributions 2010 by Peter Fritzson
Contributions 2011 by Peter F., Mohsen T,. Adeel Asghar,
Contributions 2012-2018 by Peter Fritzson, Lena Buffoni, Mahder
Gebremedhin, Bernhard Thiele, Lennart Ochel
Contributions 2019-2021 by Peter Fritzson, Arunkumar Palanisamy, Bernt
Lie, Adrian Pop

mailto:peter.fritzson@liu.se
mailto:adrian.pop@liu.se

2 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Peter Fritzson
Principles of Object Oriented
Modeling and Simulation with
Modelica 3.3
A Cyber-Physical Approach

Can be ordered from Wiley or Amazon

Wiley-IEEE Press, 2014, 1250 pages

• OpenModelica
• www.openmodelica.org

• Modelica Association
• www.modelica.org

Tutorial Based on Book, December 2014
Download OpenModelica Software

http://www.openmodelica.org/
http://www.modelica.org/

3 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

September 2011
232 pages

Translations
available in
Chinese,
Japanese,
Spanish

Wiley
IEEE Press

For Introductory
Short Courses on
Object Oriented
Mathematical Modeling

Introductory
Modelica Book

4 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Acknowledgements, Usage, Copyrights

• If you want to use the Powerpoint version of these slides in
your own course, send an email to: peter.fritzson@ida.liu.se

• Thanks to Emma Larsdotter Nilsson, Peter Bunus, David
Broman, Jan Brugård, Mohsen-Torabzadeh-Tari, Adeel
Asghar, Lena Buffoni, for contributions to these slides.

• Most examples and figures in this tutorial are adapted with
permission from Peter Fritzson’s book ”Principles of Object
Oriented Modeling and Simulation with Modelica 3.3”,
copyright Wiley-IEEE Press

• Some examples and figures reproduced with permission
from Modelica Association, Martin Otter, Hilding Elmqvist,
Wolfram MathCore, Siemens

• Modelica Association: www.modelica.org
• OpenModelica: www.openmodelica.org

http://www.modelica.org/
http://www.openmodelica.org/

5 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Outline

Part I
Introduction to Modelica and a

demo example

Part II
Modelica environments

Part III
Modelica language concepts

and textual modeling

Part IV
Graphical modeling and the

Modelica standard library

6 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Software Installation - Windows

• Start the software installation

• Install OpenModelica-1.16.1 Download from
www.openmodelica.org
(takes about 20min)

http://www.openmodelica.org/

7 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Software Installation – Linux (requires internet connection)

• Go to
https://openmodelica.org/index.php/download/down
load-linux and follow the instructions.

https://openmodelica.org/index.php/download/download-linux

8 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Software Installation – MAC (requires internet connection)

• Go to
https://openmodelica.org/index.php/download/down
load-mac and follow the instructions or follow the
instructions written below.

• The installation uses MacPorts. After setting up a
MacPorts installation, run the following commands
on the terminal (as root):
• echo rsync://build.openmodelica.org/macports/ >>

/opt/local/etc/macports/sources.conf # assuming you installed into /opt/local
• port selfupdate
• port install openmodelica-devel

https://openmodelica.org/index.php/download/download-mac

9 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Part I

Introduction to Modelica and
a demo example

10 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica Background: Stored Knowledge

Model knowledge is stored in books and human
minds which computers cannot access

“The change of motion is proportional

to the motive force impressed “
– Newton

11 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica Background: The Form – Equations

• Equations were used in the third millennium B.C.
• Equality sign was introduced by Robert Recorde in 1557

Newton still wrote text (Principia, vol. 1, 1686)
“The change of motion is proportional to the motive force

impressed ”
CSSL (1967) introduced a special form of “equation”:

variable = expression

v = INTEG(F)/m

Programming languages usually do not allow equations!

12 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

What is Modelica?

• Robotics
• Automotive
• Aircrafts
• Satellites
• Power plants
• Systems biology

A language for modeling of complex cyber-physical systems

13 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

What is Modelica?

A language for modeling of complex cyber-physical systems

Primary designed for simulation, but there are also other
usages of models, e.g. optimization.

14 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

What is Modelica?

A language for modeling of complex cyber-physical systems
i.e., Modelica is not a tool

Free, open language
specification: There exist one free and several

commercial tools, for example:
• OpenModelica from OSMC
(in ABB Optimax, Bosch-Rexr Control Edge Designer, Mike DHI)

• Dymola from Dassault systems
• Wolfram System Modeler from Wolfram MathCore
• SimulationX from ITI, part of ESI Group
• MapleSim from MapleSoft

(also in Altair solidThinking Activate)
• AMESIM from LMS
• Impact from Modelon
(also in ANSYS Simplorer, Rickardo tool, etc.)

• MWORKS from Tongyang Sw & Control
• IDA Simulation Env, from Equa
•

Available at: www.modelica.org
Developed and standardized
by Modelica Association

15 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Declarative statically typed language
Equations and mathematical functions allow acausal modeling,
high level specification and static type checking for increased correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic, hydraulic,
biological, control, event, real-time, etc...

Everything is a class
Safe engineering practices by statically typed object-oriented language,
general class concept, Java & MATLAB-like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, non-proprietary
Efficiency comparable to C; advanced equation compilation,
e.g. 300 000 equations, ~150 000 lines on standard PC

Modelica – The Next Generation Modeling Language

16 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

What is acausal modeling/design?
Why does it increase reuse?

The acausality makes Modelica library classes more
reusable than traditional classes containing assignment
statements where the input-output causality is fixed.

Example: a resistor equation:
R*i = v;

can be used in three ways:
i := v/R;
v := R*i;
R := v/i;

Modelica Acausal Modeling

17 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

What is Special about Modelica?

• Multi-Domain Modeling
• Visual acausal hierarchical component modeling
• Typed declarative equation-based textual language
• Hybrid modeling and simulation

18 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

What is Special about Modelica?

Multi-Domain
Modeling

Cyber-Physical Modeling

Physical

Cyber

3 domains
- electric
- mechanics
- control

19 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

What is Special about Modelica?

Multi-Domain
Modeling

Acausal model
(Modelica)

Causal
block-based
model
(Simulink)

Keeps the physical

structure

Visual Acausal
Hierarchical
Component

Modeling

20 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6
r3Drive1

1
r3Motor

r3ControlqdRef
1

S

qRef
1

S

k2

i

k1

i

qddRef cut joint

q: angle
qd: angular velocity

qdd: angular acceleration

qd

tn

Jmotor=J

gear=i

spring=c

fri
c=

Rv
0

S
rel

joint=0

S

Vs

-

+
diff

-

+
pow er

emf

La=(250/(2*D*w
m))

Ra=250

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200

Rp
2=

50

Rd4=100

hall2

Rd
3=

10
0

g1

g2

g3

hall1

g4

g5

rw

cut in

iRef

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

What is Special about Modelica?

Visual Acausal
Hierarchical
Component

Modeling

Multi-Domain
Modeling

Hierarchical system
modeling

Courtesy of Martin Otter

Srel = n*transpose(n)+(identity(3)- n*transpose(n))*cos(q)-

skew(n)*sin(q);

wrela = n*qd;

zrela = n*qdd;

Sb = Sa*transpose(Srel);

r0b = r0a;

vb = Srel*va;

wb = Srel*(wa + wrela);

ab = Srel*aa;

zb = Srel*(za + zrela + cross(wa, wrela));

21 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

What is Special about Modelica?

Multi-Domain
Modeling

Typed
Declarative
Equation-based
Textual Language

A textual class-based language
OO primary used for as a structuring concept

Behaviour described declaratively using
• Differential algebraic equations (DAE) (continuous-time)
• Event triggers (discrete-time)

class VanDerPol "Van der Pol oscillator model"

Real x(start = 1) "Descriptive string for x”;

Real y(start = 1) "y coordinate”;

parameter Real lambda = 0.3;

equation

der(x) = y;

der(y) = -x + lambda*(1 - x*x)*y;

end VanDerPol;

Differential equations

Variable

declarations

Visual Acausal
Hierarchical
Component

Modeling

22 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

What is Special about Modelica?

Hybrid
Modeling

Visual Acausal
Component

Modeling

Multi-Domain
Modeling

Typed
Declarative
Equation-based
Textual Language

time

Continuous-time

Discrete-time

Hybrid modeling =
continuous-time + discrete-time modeling

Clocked discrete-time

23 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Block Diagram (e.g. Simulink, ...) or
Proprietary Code (e.g. Ada, Fortran, C,...)
vs Modelica

Proprietary

Code

Block Diagram

Modelica

Systems

Definition

System

Decomposition

Modeling of

Subsystems

Causality

Derivation

(manual derivation of

input/output relations) Implementation Simulation

Modelica – Faster Development, Lower Maintenance
than with Traditional Tools

24 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica vs Simulink Block Oriented Modeling
Simple Electrical Model

R1=10

C=0.01 L=0.1

R2=100

G

AC=220

p
n

p

p p

p

p

n

n

n n

-1
 1

sum3

+1
 -1

sum1

+1
+1

sum2

1
s

l2

1
s

l1sinln

1/R1

Res1

1/C

Cap

1/L

Ind

R2

Res2

Modelica:

Physical model –
easy to understand

Simulink:

Signal-flow model – hard to
understand

Keeps the

physical

structure

25 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Graphical Modeling - Using Drag and Drop Composition

26 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Graphical Modeling with OpenModelica Environment

27 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

• A DC motor can be thought of as an electrical circuit which
also contains an electromechanical component
model DCMotor

Resistor R(R=100);

Inductor L(L=100);

VsourceDC DC(f=10);

Ground G;

ElectroMechanicalElement EM(k=10,J=10, b=2);

Inertia load;

equation

connect(DC.p,R.n);

connect(R.p,L.n);

connect(L.p, EM.n);

connect(EM.p, DC.n);

connect(DC.n,G.p);

connect(EM.flange,load.flange);

end DCMotor

load

EM

DC

G

R L

Multi-Domain (Electro-Mechanical) Modelica Model

28 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Automatic transformation to ODE or DAE for simulation:

(load component not included)

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

29 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Model Translation Process to Hybrid DAE to Code

Modelica Model

Flat model Hybrid DAE

Sorted equations

C Code

Executable

Optimized sorted
equations

Modelica
Model

Modelica
Graphical Editor Modelica

Source code

Translator

Analyzer

Optimizer

Code generator

C Compiler

Simulation

Modelica
Textual Editor

Frontend

Backend

"Middle-end"

Modeling
Environment

30 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica in Power Generation
GTX Gas Turbine Power Cutoff Mechanism

Hello

Courtesy of Siemens Industrial Turbomachinery AB

Developed
by MathCore
for Siemens

31 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica in Automotive Industry

32 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica in Avionics

33 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica in Biomechanics

34 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Application of Modelica in Robotics Models
Real-time Training Simulator for Flight, Driving

Courtesy of Tobias Bellmann, DLR,
Oberphaffenhofen, Germany

• Using Modelica models
generating real-time
code

• Different simulation
environments (e.g.
Flight, Car Driving,
Helicopter)

• Developed at DLR
Munich, Germany

• Dymola Modelica tool

(Movie demo next page)

35 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

DLR Real-time Training Simulator Movie Demo

36 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

• GT unit, ST unit, Drum
boilers unit and HRSG units,
connected by thermo-fluid
ports and by signal buses

• Low-temperature parts
(condenser, feedwater
system, LP circuits) are
represented by trivial
boundary conditions.

• GT model: simple law
relating the electrical load
request with the exhaust gas
temperature and flow rate.

Combined-Cycle Power Plant
Plant model – system level

Courtesy Francesco Casella, Politecnico di Milano – Italy
and Francesco Pretolani, CESI SpA - Italy

37 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Attitude control for satellites
using magnetic coils as actuators

Torque generation mechanism:
interaction between coils and
geomagnetic field

Formation flying on elliptical orbits

Control the relative motion of two or more
spacecraft

Modelica Spacecraft Dynamics Library

Courtesy of Francesco Casella, Politecnico di Milano, Italy

38 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Large-scale ABB OpenModelica Application
Generate code for controlling 7.5 to 10% of German Power Production

ABB OPTIMAX PowerFit
• Real-time optimizing control of large-

scale virtual power plant for system
integration

• Software including OpenModelica now
used in managing more than 2500
renewable plants, total up to 1.5 GW

High scalability supporting growth
• 2012: initial delivery (for 50 plants)
• 2013: SW extension (500 plants)
• 2014: HW+SW extension (> 2000)
• 2015: HW+SW extension,

incl. OpenModelica generating optimizing
controller code in FMI 2.0 form

Manage 7.5% - 10% of German Power
• 2015, Aug: OpenModelica Exports FMUs

for real-time optimizing control (seconds)
of about 5.000 MW (7.5%) of power in
Germany

39 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Industrial Product with OEM Usage of OpenModelica –
MIKE by DHI, WEST Water Quality, Water Treatment and Sludge

• MIKE by DHI, www.mikebydhi.com, WEST Water Quality modeling and
simulation environment

• Includes a large part of the OpenModelica compiler using the OEM license.
• Here a water treatment effluent and sludge simulation.

40 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Most important challenge
for humanity -

Develop a sustainable society!

Use Modelica in to model and optimize
sustainable technical innovations,
and a sustainable circular economy

41 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

System Dynamics – World Society Simulation
Limits to Material Growth; Population, Energy and Material flows

• System Dynamics Modelica library by Francois Cellier (ETH), et al in OM distribution.
• Warming converts many agriculture areas to deserts (USA, Europe, India, Amazonas)
• Ecological breakdown around 2080-2100, drastic reduction of world population
• To avoid this: Need for massive investments in sustainable technology and renewable

energy sources

CO2 Emissions per
person:
• USA 17 ton/yr
• Sweden 7 ton/yr
• India 1.4 ton/yr
• Bangladesh 0.3 ton/yr

Left. World3 simulation
with OpenModelica
• 2 collapse scenarios

(close to current
developments)

• 1 sustainable scenario
(green).

42 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Are Humans More Intelligent than Bacteria?

Not yet evident!

Bacterial growth curve /kinetic curve (Wikipedia)

Humans
on a
finite
Earth

vs

Bacteria
on a
finite
substrate

43 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

World3 Simulations with Different Start Years
for Sustainable Policies – Collapse if starting too late

44 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

How the world could be in 80-100 years
at a global warming of 4 degrees

Sea level rise 2 m
flooding coastal cities

Uninhabitable

New Scientist, 28 february 2009
IPCC, business as usual scenario
www.climate-lab-book.ac.uk
www.atmosfair.de

References

Cities, agriculture

Uninhabitable desert

Uninhabitable due
to extreme weather

Flooded

Business-as-usual
scenario, IPCC

Massive migration to
to northern Europe,
Russia, and Canada

Example Emissions
CO2e / person
- Earth can handle 2 ton/yr
- Flight Spain – 1 ton
- Flight Canaryisl – 2 ton
- Flight Thailand – 4 ton

http://www.climate-lab-book.ac.uk/

46 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

What Can You Do?
Need Global Sustainability Mass Movement

• Develop smart Cyber-Physical systems for reduced energy and material footprint
• Model-based circular economy for re-use of products and materials
• Promote sustainable lifestyle and technology
• Install electric solar PV panels
• Buy shares in cooperative wind power

20 sqm solar panels on garage roof, Nov 2012
Generated 2700 W at noon March 10, 2013

Expanded to 93 sqm, 12 kW, March 2013
House produced 11600 kwh, used 9500 kwh
Avoids 10 ton CO2 emission per year

47 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Example Electric Cars
Can be charged by electricity from own solar panels

Small car Renault ZOE; 5 seat;
Range with 51 kwh battery (2020)
• WLTP drive cycle 390 km
• In practice, summer, ca 360 km
• Winter: ca 240 km
Can use common Type 2 AC chargers (up
to 22kW)

DLR ROboMObil
• experimental electric car
• Modelica models Tesla Model S, range about 550 km

2018, Tesla Model 3 LR, range 560 km

48 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

What Can You Do?
More Train Travel – Less Air Travel

• Air travel by Swedish Citizens
– about the same emissions
as all personal car traffic in
Sweden!

• By train from Linköping to
Munich and back – saves
almost 1 ton of CO2e
emissions compared to flight

• Leave Linköping 07.00
in Munich 23.14

More Examples, PF travel 2016:
• Train Linköping-Paris, Dec 3-

6, EU project meeting
• Train Linköping-Dresden,

Dec 10-16, 1 week workshop

Train
travel
Linköping
- Munich

49 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Small rectangles – surface needed
for 100% solar energy for humanity

50 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Solar Energy PhotoVoltaics Growth Trends

Almost
Exponential
worldwide
Growth of
Photovoltaics
2006 – 2018

IEA PVPS
TRENDS IN
PHOTOVOLTAIC
APPLICATIONS
2019 100% of global electricity

production year 2030 if
strong exponential growth
continues

2018 2.5% solar

51 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Sustainable Society Necessary for Human Survival

Almost Sustainable
• India, recently 1.4 ton C02/person/year
• Healthy vegetarian food
• Small-scale agriculture
• Small-scale shops
• Simpler life-style (Mahatma Gandhi)
Non-sustainable
• USA 17 ton CO2, Sweden 7 ton CO2/yr
• High meat consumption (1 kg beef uses ca

4000 L water for production)
• Hamburgers, unhealthy , includes beef
• Energy-consuming mechanized agriculture
• Transport dependent shopping centres
• Stressful materialistic lifestyle

Gandhi – role model for
future less materialistic
life style

52 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Brief Modelica History
• First Modelica design group meeting in fall 1996

• International group of people with expert knowledge in both language design
and physical modeling

• Industry and academia
• Modelica Versions

• 1.0 released September 1997
• 2.0 released March 2002
• 2.2 released March 2005
• 3.0 released September 2007
• 3.1 released May 2009
• 3.2 released March 2010
• 3.3 released May 2012
• 3.2 rev 2 released November 2013
• 3.3 rev 1 released July 2014
• 3.4 released April 2017

• Modelica Association established 2000 in Linköping
• Open, non-profit organization

53 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica Conferences
• The 1st International Modelica conference October, 2000
• The 2nd International Modelica conference March 18-19, 2002
• The 3rd International Modelica conference November 5-6, 2003 in Linköping, Sweden
• The 4th International Modelica conference March 6-7, 2005 in Hamburg, Germany
• The 5th International Modelica conference September 4-5, 2006 in Vienna, Austria
• The 6th International Modelica conference March 3-4, 2008 in Bielefeld, Germany
• The 7th International Modelica conference Sept 21-22, 2009 in Como, Italy
• The 8th International Modelica conference March 20-22, 2011 in Dresden, Germany
• The 9th International Modelica conference Sept 3-5, 2012 in Munich, Germany
• The 10th International Modelica conference March 10-12, 2014 in Lund, Sweden
• The 11th International Modelica conference Sept 21-23, 2015 in Versailles, Paris
• The 12th International Modelica conference May 15-17, 2017 in Prague, Czech Rep
• The 13th International Modelica conference March 4-6, 2019, Regensburg, Germany
• Also: Asian Modelica conferences 2016, 2017, 2018, 2020
• Also: US Modelica conference 2018, 2020
• Coming: 14th International Modelica conference Sept 20-22, 2021, Linköping, Sweden

54 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercises Part I
Hands-on graphical modeling

(15 minutes)

55 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercises Part I – Basic Graphical Modeling
• (See instructions on next two pages)
• Start the OMEdit editor (part of OpenModelica)
• Draw the RLCircuit
• Simulate

AC

R=10

R1

L=0.1

L

G

L=1R=100

SimulationThe RLCircuit

56 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercises Part I – OMEdit Instructions (Part I)

• Start OMEdit from the Program menu under OpenModelica
• Go to File menu and choose New Modelica Class, and then select

Model.
• E.g. write RLCircuit as the model name.
• For more information on how to use OMEdit, go to Help and choose User

Manual or press F1.

Under the Modelica Library:
• Contains The standard Modelica library components
• The Modelica files contains the list of models you
have created.

57 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercises Part I – OMEdit Instructions (Part II)

• For the RLCircuit model, browse the Modelica standard library and add the
following component models:

• Add Ground, Inductor and Resistor component models from
Modelica.Electrical.Analog.Basic package.

• Add SineVoltage component model from Modelica.Electrical.Analog.Sources package.

• Make the corresponding connections between the component models as
shown in the previous slide.

• To draw a connection line: first single-click on a connector box; then start
drawing while keeping the mouse button down; after drawing a little you can
release the mouse button and continue drawing.

• Simulate the model
• Go to the Simulation menu and choose simulate or click on the simulate button

in the toolbar.

• Plot the instance variables
• Once the simulation is completed, a plot variables list will appear on the right side.

Select the variable that you want to plot.

58 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Part II

Modelica environments and OpenModelica

59 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

• Dassault Systemes Sweden
• Sweden
• First Modelica tool on the market
• Initial main focus on automotive

industry
• www.dymola.com

Dymola

60 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Courtesy
Wolfram
Research

• Wolfram Research
• USA, Sweden
• General purpose
• Mathematica integration
• www.wolfram.com
• www.mathcore.com

Car model graphical view

Wolfram System Modeler – Wolfram MathCore

Mathematica

Simulation and
analysis

http://www.wolfram.com/
http://www.mathcore.com/

61 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Simulation X

• ITI Gmbh (Part of ESI Group)
• Germany
• Mechatronic systems
• www.simulationx.com

62 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

MapleSim

• Maplesoft
• Canada
• Integrated with Maple
• www.maplesoft.com

63 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelon

• Modelon
• Sweden and International
• Library Suite
• Creator Suite with Impact product and Optimica

Compiler Toolbox and WAMS model editor
• www.modelon.com

64 Copyright © Open Source Modelica Consortium

The OpenModelica Environment
www.OpenModelica.org

http://www.openmodelica.org/

65 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OpenModelica – Free Open Source Tool
developed by the Open Source Modelica Consortium (OSMC)
• Graphical editor

• Model compiler
and simulator

• Debugger

• Performance
analyzer

• Dynamic optimizer

• Symbolic modeling

• Parallelization

• Electronic
Notebook and
OMWebbook
for teaching

• Spokentutorial for
teaching

EngineV6 11116
equation model

66 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

• Advanced Interactive Modelica compiler (OMC)
• Supports most of the Modelica Language
• Modelica, Python, Julia, Matlab scripting

• OMSimulator – FMI Simulation/Co-simulation
• Basic environment for creating models

• OMShell – an interactive command handler
• OMNotebook – a literate programming notebook
• MDT – an advanced textual environment in Eclipse

66

• OMEdit graphic Editor
• OMDebugger for equations
• OMOptim optimization tool
• OM Dynamic optimizer collocation
• ModelicaML UML Profile
• MetaModelica extension
• ParModelica extension

The OpenModelica Open Source Environment
www.openmodelica.org

http://www.ida.liu.se/~adrpo/mdt/mdt-0.6.8.1/MDT-0.6.8.1-ClassElementsCompletion.JPG

67 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Industrial members
• ABB AB, Sweden
• Bosch Rexroth AG, Germany
• CDAC Centre, Kerala, India
• Creative Connections, Prague
• DHI, Aarhus, Denmark
• Dynamica s.r.l., Cremona, Italy
• EDF, Paris, France
• Equa Simulation AB, Sweden
• Fraunhofer IWES, Bremerhaven
• Fraunhofer FCC, Gothenburg
• INRIA, Rennes, France
• ISID Dentsu, Tokyo, Japan

Open-source community services
• Website and Support Forum
• Version-controlled source base
• Bug database
• Development courses
• www.openmodelica.org

Code Statistics
• Augsburg University, Germany
• FH Bielefeld, Bielefeld, Germany
• University of Bolivar, Colombia
• TU Braunschweig, Germany
• Chalmers Univ, Control,Sweden
• Chalmers Univ, Machine, Sweden
• TU Darmstadt, Germany
• TU Delft, The Netherlands
• TU Dresden, Germany
• Université Laval, Canada
• Ghent University, Belgium
• Halmstad University, Sweden
• TU Hamburg/Harburg Germany
• IIT Bombay, Mumbai, India

University members

OSMC – International Consortium for Open Source
Model-based Development Tools, 51 members Feb 2021

Founded Dec 4, 2007 • Juelich, FZI, Germany
• Maplesoft, Canada
• RISE, Sweden
• RTE France, Paris, France
• Saab AB, Linköping, Sweden
• SmartFluidPower, Italy,
• TLK Thermo, Germany
• Sozhou Tongyuan, China
• SRON Space Ins Netherlands
• Talent Swarm, Spain
• VTI, Linköping, Sweden
• VTT, Finland

• K.L. Univ, Waddeswaram, India
• Linköping University, Sweden
• Univ of Maryland, Syst Eng USA
• Univ of Maryland, CEEE, USA
• Politecnico di Milano, Italy
• Politecnico Catalunya Spain
• Ecoles des Mines, CEP, France
• Mälardalen University, Sweden
• RPI, Troy, USA
• Univ Pisa, Italy
• Univ College SouthEast Norway
• Tsinghua Univ, Beijing, China
• Vanderbilt Univ, USA

68 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Build System with Regression Testing

• Automatic Nightly build system (using Jenkins), and
several multi-core computers

• Regression testing of libraries
• Verification testing comparing results to references

69 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

The OpenModelica Tool Architecture

Simulation
Execution

OMEdit Graphic
and Textual

Model Editor

OMNotebook
Interactive
Notebooks

Debugger

OMC
Interactive Compiler

Server

ModelicaML
UML/Modelica

and requirement
verification

MDT
Eclipse Plugin

OMOptim
Optimization

3D
Visualization

OMShell
Modelica
Scripting

OMPython
Python

Scripting

OMSimulator
FMI Simulation

OMJulia
Julia

Scripting

OMWebbook
Interactive
Notebooks

OMMatlab
Matlab
Scripting

OMSens
sensitivity
analysis OMSysident

70 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Spoken-Tutorial step-by-step OpenModelica and Modelica
Tutorial Using OMEdit. Link from www.openmodelica.org

https://spoken-tutorial.org/tutorial-search/?search_foss=OpenModelica&search_language=English

http://www.openmodelica.org/
https://spoken-tutorial.org/tutorial-search/?search_foss=OpenModelica&search_language=English

71 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OMNotebook Electronic Notebook with DrModelica
• Primarily for teaching
• Interactive electronic book
• Platform independent

Commands:
• Shift-return (evaluates a cell)
• File Menu (open, close, etc.)
• Text Cursor (vertical), Cell

cursor (horizontal)
• Cell types: text cells &

executable code cells
• Copy, paste, group cells
• Copy, paste, group text
• Command Completion (shift-

tab)

72 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OMnotebook Interactive Electronic Notebook
Here Used for Teaching Control Theory

75 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Mathematical Typesetting in OMNotebook
and OMWebbook

OMNotebook supports Latex formatting for mathematics

Latex instructions
can be hidden by
double clicking the
Cell in tree view

Contents in
OMWebbook
Generated from
OMNotebook

76 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OpenModelica Environment Demo

77 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OpenModelica MDT – Eclipse Plugin

• Browsing of packages, classes, functions
• Automatic building of executables;

separate compilation
• Syntax highlighting
• Code completion,

Code query support for developers
• Automatic Indentation
• Debugger

(Prel. version for algorithmic subset)

78 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY 78

OpenModelica MDT: Code Outline and Hovering Info

Code Outline for
easy navigation within

Modelica files

Identifier Info on

Hovering

79 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OpenModelica Simulation in Web Browser Client

OpenModelica compiles
to efficient
Java Script code which is
executed in web browser

MultiBody RobotR3.FullRobot

81 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OMPython – Python Scripting with OpenModelica

• Interpretation of Modelica
commands and expressions

• Interactive Session handling
• Library / Tool
• Optimized Parser results
• Helper functions
• Deployable, Extensible and

Distributable

82 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OMJulia –Julia Scripting with OpenModelica
• Interpretation of Modelica commands and

expressions from Julia, transfer of data
• Control design using Julia control

package together with OpenModelica
• Interactive Session handling
• Library / Tool
• Separately downloadable. be run with

OpenModelica 1.13.2 or later
• Works with Jupyter notebooks

Control example with OMJulia in Jupyter notebooks

83 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OMMatlab – Matlab Scripting with OpenModelica

• Interpretation of Modelica
commands and expressions from
Matlab, transfer of data

• Interactive Session handling
• Library / Tool
• Separately downloadable. be run

with OpenModelica
• Similar API functions as in

OMJulia and OMPython
• Can be used for control design

from Matlab

84 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OMEdit 3D Visualization of Multi-Body Systems

• Built-in feature of OMEdit to
animate MSL-Multi-Body
shapes

• Visualization of simulation
results

• Animation of geometric
primitives and CAD-Files

New
Animation

Window

Simulate
with

Animation

85 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OpenModelica 3D Animation Demo
(V6Engine and Excavator)

86 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OpenModelica 3D Animation – Excavator

87 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Visualization using Third-Party Libraries:
DLR Visualization Library
• Advanced, model-integrated

and vendor-unspecific
visualization tool for
Modelica models

• Offline, online and real-time
animation

• Video-export function
• Commercial library, feature

reduced free Community
Edition exists

Courtesy of Dr. Tobias Bellmann (DLR)

88 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercise 1.2: Use 3D Visualization for Robot model

• Open the
Modelica.Mechanics.MultiBody.Examples.Systems.
RobotR3.fullRobot
example in OMEdit

• Press Simulate with Animation
• Replay the animation
• Compare with the plot

89 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercise 1.3: Visualization using the
DLR Visualization Community Edition (1)
• Unpack

VisualizationCommunityEdition.zip
• Open the library in OMEdit
• Simulate the EMotor example
• The DLR SimVis visualization app should

start automatically
• Export the animation

(File→Export Replay as Video)

90 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Extending Modelica with PDEs
for 2D, 3D flow problems – Research

Insulated boundary:

Poorly insulated boundary:

20inf T

Conducting boundary:
60u

class PDEModel

HeatNeumann h_iso;

Dirichlet h_heated(g=50);

HeatRobin h_glass(h_heat=30000);

HeatTransfer ht;

Rectangle2D dom;

equation

dom.eq=ht;

dom.left.bc=h_glass;

dom.top.bc=h_iso;

dom.right.bc=h_iso;

dom.bottom.bc=h_heated;

end PDEModel;

Prototype in OpenModelica 2005
PhD Thesis by Levon Saldamli
www.openmodelica.org
Currently not operational

http://www.openmodelica.org/

91 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Failure Mode and Effects Analysis (FMEA) in OM

• Modelica models augmented with reliability properties can be used to generate
reliability models in Figaro, which in turn can be used for static reliability analysis

• Prototype in OpenModelica integrated with Figaro tool.

Modelica Library

Application

Modelica model

Simulation

Figaro Reliability

Library
Reliability model

in Figaro
FT generation FT processing

Automated

generation

92 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Model structure Model Variables

Optimized
parameters

Optimized
Objectives

OMOptim – Optimization (1)

93 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Problems

Solved problems Result plot Export result data .csv

OMOptim – Optimization (2)

94 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Multiple-Shooting and Collocation
Dynamic Trajectory Optimization
• Minimize a goal function subject to model

equation constraints, useful e.g. for NMPC
• Multiple Shooting/Collocation

• Solve sub-problem in each sub-interval

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

1 2 4 8 16

MULTIPLE_COLLOCATION

ipopt [scaled] jac_g [scaled]

Example speedup, 16 cores:

95 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OpenModelica Dynamic Optimization Collocation

96 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OMSens – Multi-Parameter Sensitivity Analysis

• Individual and simultaneous multi-parameter analysis
• Optimization-based simultaneous analysis
• Robust derivative free optimizer Tool architecture

Heatmap visualization

For an exercise, see
further in these slides

97 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OMSysIdent – System Parameter Identification

• OMSysIdent is a module for parameter estimation of behavioral
models (wrapped as FMUs) on top of the OMSimulator API.

• Identification of the parameter values is typically based on
measurement data

• It uses the Ceres solver (http://ceres-solver.org/) for the
optimization task.

98 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

General Tool Interoperability & Model Exchange
Functional Mock-up Interface (FMI)

• FMI development was started by ITEA2 MODELISAR project. FMI is a
Modelica Association Project now

• Version 1.0
• FMI for Model Exchange (released Jan 26,2010)
• FMI for Co-Simulation (released Oct 12,2010)
• Version 2.0 (released July 25 2014) 2.0.2 (released Dec 15, 2020)
• FMI for Model Exchange and Co-Simulation
• ~ 150 tools supporting it (https://www.fmi-standard.org/tools)

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling
courtesy Daimler

99 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Functional Mockup Units
• Import and export of input/output blocks –

Functional Mock-Up Units – FMUs, described by
• differential-, algebraic-, discrete equations,
• with time-, state, and step-events

• An FMU can be large (e.g. 100 000 variables)
• An FMU can be used in an embedded system (small overhead)
• FMUs can be connected together

100 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OMSimulator – Integrated FMI and TLM-based
Cosimulator/Simulator – part of OpenModelica

OMSimulator
Integrated TLM & FMI

libOMSimulator

Simulink wrapper
Beast wrapper

ADAMS wrapper

TLM component

C-API
interface

OMEdit

Papyrus

Scripting
…

OMC
FMI component

FMI component

FMI FMU

Modelica model

Composite FMI
component

Unified co-simulation/simulation tool
• FMI 2.0 (model exchange and co-

simulation)

• TLM (transition line modelling)

• Real-time and offline simulation

Standalone open source simulation tool
with rich interfaces

• C/Java

• Scripting languages Python, Lua

Co-simulation framework as a solid base
for engineering tools

• Integration into

OpenModelica/Papyrus

• Open for integration into third-party

tools and specialized applications

(e.g. flight simulators, optimization)

Main Framework Aspects

OMSimulator in OpenModelica 1.13.2
• Supports both FMI and TLM

• TLM connections are optional

• Co-simulation to multiple tools

• Composite model editor

• External API interface and scripting

101 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OMSimulator Composite Model Editor with 3D Viewer

• Composite model editor
with 3D visualization of
connected mechanical
model components which
can be FMUs, Modelica
models, etc., or co-simulated
components

• 3D animation possible

• Composite model saved as
SSP XML-file

• Support for SSP – System
Structure and
Parameterization standard

• Numerically stable co-
simulation with TLM

102 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OMSimulator Simulation, SSP, and Tool Comparison

Adding SSP bus connections FMI Simulation
results
in OMEdit

OMSimulator DACCOSIM Simulink PyFMI
Commercial No No Yes No
Open-source OSMC-PL, GPL AGPL2 No LGPL
Lookup Table Yes Yes Yes No
Alg. Loops Yes Yes No Yes
Scripting Python, Lua proprietary proprietary Python
GUI Yes Yes Yes No
SSP Yes No No No
platform Linux/Win/macOS Linux/Win Linux/Win/macOS Linux/Win/macOS

Dymola PySimulator FMI Go! FMI Composer
Commercial Yes No No Yes
Open-source No BSD MIT No
Lookup Table Yes Yes Yes Yes
Alg. Loops Yes Yes Yes Yes
Scripting proprietary Python Go No
GUI Yes Yes No Yes
SSP No No Yes Yes
platform Linux/Win Linux/Win Linux/Win/macOS Linux/Win/macOS

FMI Simulation Tool Comparison

103 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OpenModelica Functional Mockup Interface (FMI)

104 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

FMI in OpenModelica

• Model Exchange implemented (FMI 2.0)
• FMI 2.0 Co-simulation implemented
• The FMI interface is accessible via the OpenModelica scripting

environment, the OpenModelica connection editor and the
OMSimulator tool in OpenModelica

105 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OpenModelica Code Generators for
Embedded Real-time Code

• A full-fledged OpenModelica-generated source-code FMU
(Functional Mockup Unit) code generator
• Can be used to cross-compile FMUs for platforms with more

available memory.
• These platforms can map FMI inputs/outputs to analog/digital I/O in

the importing FMI master.
• A very simple code generator generating a small footprint

statically linked executable.
• Not an FMU because there is no OS, filesystem, or shared objects in

microcontrollers.

106 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Code Generator Comparison, Full vs Simple

Full Source-code FMU

targeting 8-bit AVR proc

Simple code generator

targeting 8-bit AVR proc

Hello World

(0 equations)

43 kB flash memory

23 kB variables (RAM)

130 B flash memory

0 B variables (RAM)

SBHS Board (real-time

PID controller, LCD, etc)

68 kB flash memory

25 kB variables (RAM)

4090 B flash memory

151 B variables (RAM)

The largest 8-bit AVR processor MCUs (Micro Controller Units) have 16 kB SRAM.

One of the more (ATmega328p; Arduino Uno) has 2 kB SRAM.

The ATmega16 we target has 1 kB SRAM available (stack, heap, and global variables)

107 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

The Simple Code Generator

Supports only a limited Modelica subset

• No initialization (yet)

• No strongly connected components

• No events

• No functions (except external C and built-in)

• Only parts that OpenModelica can generate good and efficient code

for right now (extensions might need changes in the intermediate

code)

• Unused variables are not accepted (OM usually duplicates all

variables for pre() operators, non-linear system guesses, etc…

but only a few of them are actually used)

• FMU-like interface (but statically linked)

108 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

• Free library for interfacing hardware drivers

• Cross-platform (Windows and Linux)

• UDP, SharedMemory, CAN, Keyboard,
Joystick/Gamepad

• DAQ cards for digital and analog IO (only Linux)

• Developed for interactive real-time simulations

Communication & I/O Devices:
MODELICA_DEVICEDRIVERS Library

https://github.com/modelica/Modelica_DeviceDrivers/

https://github.com/modelica/Modelica_DeviceDrivers/

109 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OpenModelica and Device Drivers Library
AVR Processor Support

● No direct Atmel AVR or Arduino support in the OpenModelica
compiler

● Everything is done by the Modelica DeviceDrivers library
● All I/O is modeled explicitly in Modelica, which makes code

generation very simple

Modelica Device Drivers Library - AVR processor sub-packages:

• IO.AVR.Analog (ADC – Analog Input)

• IO.AVR.PWM (PWM output)

• IO.AVR.Digital.LCD (HD44780 LCD driver on a single 8-pin digital port)

• OS.AVR.Timers (Hardware timer setup, used by real-time and PWM

packages)

• OS.AVR.RealTime (very simple real-time synchronization; one interrupt per

clock cycle; works for single-step solvers)

110 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Single board heating system (IIT
Bombay)

• Use for teaching basic control

theory

• Usually controlled by serial

port (set fan value, read

temperature, etc)

• OpenModelica can generate

code targeting the ATmega16

on the board (AVR-ISP

programmer in the lower left).

Program size is 4090

bytes including LCD driver

and PID-controller (out of 16

kB flash memory available).

Use Case: SBHS (Single Board Heating System)

Movie Demo, see next page!

111 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Example – Code Generation to SHBS

116 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OpenModelica – ModelicaML UML Profile
SysML/UML to Modelica OMG Standardization

• ModelicaML is a UML Profile for SW/HW modeling
• Applicable to “pure” UML or to other UML profiles, e.g. SysML

• Standardized Mapping UML/SysML to Modelica
• Defines transformation/mapping for executable models
• Being standardized by OMG

• ModelicaML
• Defines graphical concrete syntax (graphical notation for diagram) for

representing Modelica constructs integrated with UML
• Includes graphical formalisms (e.g. State Machines, Activities,

Requirements)
• Which do not exist in Modelica language
• Which are translated into executable Modelica code

• Is defined towards generation of executable Modelica code
• Current implementation based on the Papyrus UML tool + OpenModelica

117 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Example: Simulation and Requirements Evaluation

Req. 001 is instantiated 2 times
(there are 2 tanks in the system)

tank-height is 0.6m

Req. 001 for the tank2 is
violated

Req. 001 for the tank1 is
not violated

118 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

vVDR Method –
virtual Verification of Designs vs Requirements

Formalize
Requirements

Formalize Designs

Formalize
Scenarios

Create Verification
Models

Execute and
Create Report

Analyze Results

RMM Requirement
Monitor Models

Scenario
Models

SM

Designs
Alternative
Models

DAM

VM Verification Models

AUTOMATED

Task Created Artifact

Goal: Enable on-demand
verification of designs
against requirements
using automated model
composition at any time
during development.

AUTOMATED

Actor

Reports

*

119 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Need for Debugging Tools
Map Low vs High Abstraction Level

• A major part of the total cost of software projects
is due to testing and debugging

• US-Study 2002:
Software errors cost the US economy annually~ 60 Billion $

• Problem: Large Gap in Abstraction Level
from Equations to Executable Code

• Example error message (hard to understand)
Error solving nonlinear system 132

time = 0.002
residual[0] = 0.288956
x[0] = 1.105149
residual[1] = 17.000400
x[1] = 1.248448
...

120 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OpenModelica MDT Algorithmic Code Debugger

121 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

The OpenModelica MDT Debugger (Eclipse-based)
Using Japanese Characters

122 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OpenModelica Equation Model Debugger

0 = y + der(x * time * z); z = 1.0;

(1) substitution:

y + der(x * (time * z))

=>

y + der(x * (time * 1.0))

(2) simplify:

y + der(x * (time * 1.0))

=>

y + der(x * time)

(3) expand derivative (symbolic

diff):

y + der(x * time)

=>y + (x + der(x) * time)

(4) solve:

0.0 = y + (x + der(x) * time)

=>

der(x) = ((-y) - x) / time

time <> 0

Showing
equation
transformations
of a model:

Mapping run-time error to source model position

123 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Transformations Browser – EngineV6 Overview
(11 116 equations in model)

124 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Equation Model Debugger on Siemens Model
(Siemens Evaporator test model, 1100 equations)

Pointing out the buggy equation
y = u1/u2;
that gives division by zero

125 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Debugging Example – Detecting Source of Chattering
(excessive event switching) causing bad performance

• Lkjlkjlj
• Lkjlkj
• lkjklj

equation
z = if x > 0 then -1 else 1;
y = 2 * z;

…

126 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Error Indication – Simulation Slows Down

127 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Performance Profiling for Faster Simulation
(Here: Profiling all equations in MSL 3.2.1 DoublePendulum)

• Measuring performance of equation blocks to find bottlenecks
• Useful as input before model simplification for real-time applications

• Integrated with the debugger to point out the slow equations
• Suitable for real-time profiling (collect less information), or a complete

view of all equation blocks and function calls

Performance profiling DoublePendulum:

128 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Performance Profiling of
Siemens Drum Boiler Model with Evaporator

Conclusion from the evaluation:

“…the profiler makes the process
of performance optimization
radically shorter.”

129 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

• ABB OPTIMAX® provides advanced model based control products
for power generation and water utilities

• ABB: “ABB uses several compatible Modelica tools, including
OpenModelica, depending on specific application needs.”

• ABB: “OpenModelica provides outstanding debugging features that
help to save a lot of time during model development.”

ABB Industry Use of OpenModelica FMI 2.0 and Debugger

130 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercise 1.2 – Equation-based Model Debugger

model ChatteringEvents1

Real x(start=1, fixed=true);

Real y;

Real z;

equation

z = noEvent(if x > 0 then -1 else 1);

y = 2*z;

der(x) = y;

end ChatteringEvents1;

In the model ChatteringEvents1, chattering takes place after t = 0.5, due to the
discontinuity in the right hand side of the first equation. Chattering can be detected
because lots of tightly spaced events are generated. The debugger allows to identify
the (faulty) equation that gives rise to all the zero crossing events.

• Switch to OMEdit text view (click on text button upper left)
• Open the Debugging.mo package file using OMEdit
• Open subpackage Chattering, then open model ChatteringEvents1
• Simulate in debug mode
• Click on the button Debug more (see prev. slide)
• Possibly start task manager and look at CPU. Then click stop simulation button

Uses 25% CPU

131 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Part III

Modelica language concepts
and textual modeling

Hybrid
Modeling

Typed
Declarative
Equation-based
Textual Language

132 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

A resistor equation:
R*i = v;

Acausal Modeling

The order of computations is not decided at modeling time

Acausal Causal

Causal possibilities:
i := v/R;

v := R*i;

R := v/i;

Visual
Component
Level

Equation
Level

133 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Typical Simulation Process

134 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Simple model - Hello World!

model HelloWorld "A simple equation"

Real x(start=1);

parameter Real a = -1;

equation

der(x)= a*x;

end HelloWorld;

Equation: x’ = - x
Initial condition: x(0) = 1

Simulation in OpenModelica environment

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

simulate(HelloWorld, stopTime = 2)

plot(x)

Name of model

Continuous-time

variable

Initial condition

Parameter, constant

during simulation

Differential equation

135 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica Variables and Constants

• Built-in primitive data types
Boolean true or false
Integer Integer value, e.g. 42 or –3
Real Floating point value, e.g. 2.4e-6
String String, e.g. “Hello world”
Enumeration Enumeration literal e.g. ShirtSize.Medium

• Parameters are constant during simulation
• Two types of constants in Modelica

• constant

• parameter
constant Real PI=3.141592653589793;

constant String redcolor = "red";

constant Integer one = 1;

parameter Real mass = 22.5;

136 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

A Simple Rocket Model

 abs

thrust mass gravity
acceleration

mass

mass massLossRate thrust

altitude velocity

velocity acceleration

class Rocket "rocket class"

parameter String name;

Real mass(start=1038.358);

Real altitude(start= 59404);

Real velocity(start= -2003);

Real acceleration;

Real thrust; // Thrust force on rocket

Real gravity; // Gravity forcefield

parameter Real massLossRate=0.000277;

equation

(thrust-mass*gravity)/mass = acceleration;

der(mass) = -massLossRate * abs(thrust);

der(altitude) = velocity;

der(velocity) = acceleration;

end Rocket;

new model
declaration
comment

parameters (changeable
before the simulation)

name + default value

differentiation with
regards to time

mathematical
equation (acausal)

floating point
type

start value

thrustapollo13

mg

Rocket

137 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Celestial Body Class

class CelestialBody

constant Real g = 6.672e-11;

parameter Real radius;

parameter String name;

parameter Real mass;

end CelestialBody;

An instance of the class can be
declared by prefixing the type
name to a variable name

...

CelestialBody moon;

...

A class declaration creates a type name in Modelica

The declaration states that moon is a variable
containing an object of type CelestialBody

138 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Moon Landing

class MoonLanding

parameter Real force1 = 36350;

parameter Real force2 = 1308;

protected

parameter Real thrustEndTime = 210;

parameter Real thrustDecreaseTime = 43.2;

public

Rocket apollo(name="apollo13");

CelestialBody moon(name="moon",mass=7.382e22,radius=1.738e6);

equation

apollo.thrust = if (time < thrustDecreaseTime) then force1

else if (time < thrustEndTime) then force2

else 0;

apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;

end MoonLanding;

 2..

..
.

radiusmoonaltitudeapollo

massmoongmoon
gravityapollo

only access
inside the class

access by dot
notation outside
the class

altitude
CelestialBody

thrust
apollo13

mg

Rocket

139 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Simulation of Moon Landing

simulate(MoonLanding, stopTime=230)

plot(apollo.altitude, xrange={0,208})

plot(apollo.velocity, xrange={0,208})

50 100 150 200

5000

10000

15000

20000

25000

30000

50 100 150 200

-400

-300

-200

-100

It starts at an altitude of 59404
(not shown in the diagram) at
time zero, gradually reducing it
until touchdown at the lunar
surface when the altitude is zero

The rocket initially has a high
negative velocity when approaching
the lunar surface. This is reduced to
zero at touchdown, giving a smooth
landing

140 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Specialized Class Keywords

• Classes can also be declared with other keywords, e.g.: model, record,
block, connector, function, ...

• Classes declared with such keywords have specialized properties
• Restrictions and enhancements apply to contents of specialized classes
• After Modelica 3.0 the class keyword means the same as model

• Example: (Modelica 2.2). A model is a class that cannot be used as a
connector class

• Example: A record is a class that only contains data, with no equations
• Example: A block is a class with fixed input-output causality

model CelestialBody

constant Real g = 6.672e-11;

parameter Real radius;

parameter String name;

parameter Real mass;

end CelestialBody;

141 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica Functions

• Modelica Functions can be viewed as a specialized
class with some restrictions and extensions

• A function can be called with arguments, and is
instantiated dynamically when called

function sum

input Real arg1;

input Real arg2;

output Real result;

algorithm

result := arg1+arg2;

end sum;

142 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

function PolynomialEvaluator

input Real A[:]; // array, size defined

// at function call time

input Real x := 1.0;// default value 1.0 for x

output Real sum;

protected

Real xpower; // local variable xpower

algorithm

sum := 0;

xpower := 1;

for i in 1:size(A,1) loop

sum := sum + A[i]*xpower;

xpower := xpower*x;

end for;

end PolynomialEvaluator;

Function Call – Example Function with for-loop

Example Modelica function call:

The function
PolynomialEvaluator

computes the value of a
polynomial given two
arguments:
a coefficient vector A and
a value of x.

...

p = polynomialEvaluator({1,2,3,4},21)

{1,2,3,4} becomes
the value of the
coefficient vector A, and
21 becomes the value of
the formal parameter x.

143 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Inheritance

record ColorData

parameter Real red = 0.2;

parameter Real blue = 0.6;

Real green;

end ColorData;

class Color

extends ColorData;

equation

red + blue + green = 1;

end Color;

Data and behavior: field declarations, equations, and
certain other contents are copied into the subclass

keyword
denoting
inheritance

restricted kind
of class without
equations

parent class to Color

child class or
subclass

class ExpandedColor

parameter Real red=0.2;

parameter Real blue=0.6;

Real green;

equation

red + blue + green = 1;

end ExpandedColor;

144 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Multiple Inheritance

Multiple Inheritance is fine – inheriting both geometry and color

class Point

Real x;

Real y,z;

end Point;

class Color

parameter Real red=0.2;

parameter Real blue=0.6;

Real green;

equation

red + blue + green = 1;

end Color;
multiple inheritance

class ColoredPointWithoutInheritance

Real x;

Real y, z;

parameter Real red = 0.2;

parameter Real blue = 0.6;

Real green;

equation

red + blue + green = 1;

end ColoredPointWithoutInheritance;

Equivalent to

class ColoredPoint

extends Point;

extends Color;

end ColoredPoint;

Extra slide

145 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Multiple Inheritance cont’

Only one copy of multiply inherited class Point is kept
class Point

Real x;

Real y;

end Point;

Diamond Inheritance
class VerticalLine

extends Point;

Real vlength;

end VerticalLine;

class HorizontalLine

extends Point;

Real hlength;

end HorizontalLine;

class Rectangle

extends VerticalLine;

extends HorizontalLine;

end Rectangle;

Extra slide

146 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Simple Class Definition

• Simple Class Definition
• Shorthand Case of Inheritance

• Example:
class SameColor = Color;

class SameColor

extends Color;

end SameColor;

Equivalent to:

• Often used for
introducing new
names of types:

type Resistor = Real;

connector MyPin = Pin;

inheritance

147 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Inheritance Through Modification

• Modification is a concise way of combining inheritance
with declaration of classes or instances

• A modifier modifies a declaration equation in the
inherited class

• Example: The class Real is inherited, modified with a
different start value equation, and instantiated as an
altitude variable:

...

Real altitude(start= 59404);

...

148 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

The Moon Landing - Example Using Inheritance (I)

model Body "generic body"

Real mass;

String name;

end Body;

model CelestialBody

extends Body;

constant Real g = 6.672e-11;

parameter Real radius;

end CelestialBody;

model Rocket "generic rocket class"

extends Body;

parameter Real massLossRate=0.000277;

Real altitude(start= 59404);

Real velocity(start= -2003);

Real acceleration;

Real thrust;

Real gravity;

equation

thrust-mass*gravity= mass*acceleration;

der(mass)= -massLossRate*abs(thrust);

der(altitude)= velocity;

der(velocity)= acceleration;

end Rocket;

altitude CelestialBody

thrustapollo13

mg

Rocket

Extra slide

149 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

The Moon Landing - Example using Inheritance (II)

model MoonLanding

parameter Real force1 = 36350;

parameter Real force2 = 1308;

parameter Real thrustEndTime = 210;

parameter Real thrustDecreaseTime = 43.2;

Rocket apollo(name="apollo13", mass(start=1038.358));

CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");

equation

apollo.thrust = if (time<thrustDecreaseTime) then force1

else if (time<thrustEndTime) then force2

else 0;

apollo.gravity =moon.g*moon.mass/(apollo.altitude+moon.radius)^2;

end Landing;

inherited
parameters

Extra slide

150 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Inheritance of Protected Elements

class ColoredPointWithoutInheritance

Real x;

Real y,z;

protected Real red;

protected Real blue;

protected Real green;

equation

red + blue + green = 1;

end ColoredPointWithoutInheritance;

If an extends-clause is preceded by the protected keyword,
all inherited elements from the superclass become protected
elements of the subclass

The inherited fields from Point keep
their protection status since that
extends-clause is preceded by
public

A protected element cannot be
accessed via dot notation!

class ColoredPoint

protected

extends Color;

public

extends Point;

end ColoredPoint;

class Color

Real red;

Real blue;

Real green;

equation

red + blue + green = 1;

end Color;

class Point

Real x;

Real y,z;

end Point;

Equivalent to

Extra slide

151 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercises Part III a
(15 minutes)

152 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercises Part III a

• Start OMNotebook (part of OpenModelica)
• Start->Programs->OpenModelica->OMNotebook
• Open File: Exercises-ModelicaTutorial.onb from the directory you copied

your tutorial files to.
• Note: The DrModelica electronic book has been automatically opened when

you started OMNotebook.

• (Alternatively: Open the OMWeb notebook
http://omwebbook.openmodelica.org/

• Open Exercises-ModelicaTutorial.pdf (also
available in printed handouts)

http://omwebbook.openmodelica.org/

153 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

• Open the Exercises-ModelicaTutorial.onb found in the
Tutorial directory you copied at installation.

• Exercise 2.1. Simulate and plot the HelloWorld example. Do
a slight change in the model, re-simulate and re-plot. Try
command-completion, val(), etc.

• Locate the VanDerPol model in DrModelica (link from
Section 2.1), using OMNotebook!

• (extra) Exercise 2.2: Simulate and plot VanDerPol. Do a
slight change in the model, re-simulate and re-plot.

Exercises 2.1 and 2.2 (See also next two pages)

class HelloWorld "A simple equation"

Real x(start=1);

equation

der(x)= -x;

end HelloWorld;

simulate(HelloWorld, stopTime = 2)

plot(x)

154 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercise 2.1 – Hello World!

A Modelica “Hello World” model
class HelloWorld "A simple equation”

parameter Real a=-1;

Real x(start=1);

equation

der(x)= a*x; (*xxxxx s*)

end HelloWorld;

Equation: x’ = - x
Initial condition: x(0) = 1

Simulation in OpenModelica environment

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

simulate(HelloWorld, stopTime = 2)

plot(x)

155 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

-1 1 2

-2

-1

1

2

-2

(extra) Exercise 2.2 – Van der Pol Oscillator
class VanDerPol "Van der Pol oscillator model"

Real x(start = 1) "Descriptive string for x"; // x starts at 1

Real y(start = 1) "y coordinate"; // y starts at 1

parameter Real lambda = 0.3;

equation

der(x) = y; // This is the 1st diff equation //

der(y) = -x + lambda*(1 - x*x)*y; /* This is the 2nd diff equation */

end VanDerPol;

simulate(VanDerPol,stopTime = 25)

plotParametric(x,y)

156 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

(extra) Exercise 2.3 – DAE Example

Include algebraic equation
Algebraic equations contain
no derivatives

Simulation in OpenModelica environment

0.2 0.4 0.6 0.8 1

time

0.90

0.95

1.05

1.10

1.15

1.20

1.0

simulate(DAEexample, stopTime = 1)

plot(x)

class DAEexample

Real x(start=0.9);

Real y;

equation

der(y)+(1+0.5*sin(y))*der(x)

= sin(time);

x - y = exp(-0.9*x)*cos(y);

end DAEexample;

Exercise: Locate in DrModelica.
Simulate and plot. Change
the model, simulate+plot.

157 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercise 2.4 – Model the system below

• Model this Simple System of Equations in Modelica

158 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

(extra) Exercise 2.5 – Functions

• a) Write a function, sum2, which calculates the sum
of Real numbers, for a vector of arbitrary size.

• b) Write a function, average, which calculates the
average of Real numbers, in a vector of arbitrary
size. The function average should make use of a
function call to sum2.

159 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Part III b
Discrete Events and Hybrid Systems

Picture: Courtesy Hilding Elmqvist

160 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica Hybrid Modeling
Hybrid modeling = continuous-time + discrete-time modeling

Real x;

Voltage v;

Current i;

Events

discrete Real x;

Integer i;

Boolean b;

• A point in time that is instantaneous, i.e., has zero duration
• An event condition or clock tick so that the event can take place
• A set of variables that are associated with the event
• Some behavior associated with the event,

e.g. conditional equations that become active or are deactivated at
the event

time

Continuous-time

Discrete-time

Clocked discrete-time

161 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Event Creation – if

model Diode "Ideal diode"

extends TwoPin;

Real s;

Boolean off;

equation

off = s < 0;

if off then

v=s

else

v=0;

end if;

i = if off then 0 else s;

end Diode;

if <condition> then
<equations>

elseif <condition> then
<equations>

else
<equations>

end if;

if-equations, if-statements, and if-expressions

false if s<0

If-equation choosing
equation for v

If-expression

162 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Event Creation – when

when <conditions> then
<equations>

end when; // un-clocked version

when-equations (two kinds: unclocked and clocked)

Only dependent on time, can be
scheduled in advance

Time event
when time >= 10.0 then

...

end when;

time
event 1 event 2 event 3

Equations only active at event times

State event
when sin(x) > 0.5 then

...

end when;

Related to a state. Check for
zero-crossing

when clock then
<equations>

end when; // clocked version

163 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Generating Repeated Events by unclocked sample

The call sample(t0,d) returns
true and triggers events at times
t0+i*d, where i=0,1, …

model SamplingClock

Integer i;

discrete Real r;

equation

when sample(2,0.5) then

i = pre(i)+1;

r = pre(r)+0.3;

end when;

end SamplingClock;

time

sample(t0,d)

false

true

t0 t0+d t0+2d t0+3d t0+4d

Variables need to be
discrete

Creates an event
after 2 s, then
each 0.5 s

pre(...) takes the
previous value
before the event.

164 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Generating Clock Tick Events using Clock()
(clocked models, Modelica 3.3)

• Clock() – inferred clock
• Clock(intervalCounter, resolution) – clock with

Integer quotient (rational number) interval
• Clock(interval) – clock with a Real value interval
• Clock(condition, startInterval)
• Clock – solver clock

class ClockTicks
// Integer quotient rational number interval clock
Clock c1 = Clock(3,10); // ticks: 0, 3/10, 6/10, ..
// Clock with real value interval between ticks
Clock c2 = Clock(0.2); // ticks: 0.0, 0.2, 0.4, ...

end ClockTicks;

165 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Reinit - Discontinuous Changes

model BouncingBall "the bouncing ball model"

parameter Real g=9.81; //gravitational acc.

parameter Real c=0.90; //elasticity constant

Real height(start=10),velocity(start=0);

equation

der(height) = velocity;

der(velocity)=-g;

when height<0 then

reinit(velocity, -c*velocity);

end when;

end BouncingBall;

The value of a continuous-time state variable can be instantaneously
changed by a reinit-equation within a when-equation

Reinit ”assigns”
continuous-time variable
velocity a new value

Initial conditions

166 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercise 2.6 – BouncingBall

• Locate the BouncingBall model in one of the hybrid
modeling sections of DrModelica (the When-
Equations link in Section 2.9), run it, change it
slightly, and re-run it.

167 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Part IIIc

Clocked Synchronous Models
and State Machines

and Applications for
Digital Controllers

168 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Control System Applications

Control System
A control system is a device, or set of devices, that manages,
commands, directs or regulates the behavior of other devices
or systems (wikipedia).

Sensors

Control

Computing

Actuators

Measurements Controller Outputs

169 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Control Theory Perspective
Feedback Control System

r(t)

e(t)

y(t)

u(t)

reference (setpoint)
error
measured process variable (plant output)
control output variable (plant input)

Usual Objective
Plant output should follow the reference signal.

Controller Plant

(Physical System)

170 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Embedded Real-Time Control System

Clock

Algorithm

Computer

1. Discrete-time controller + continuous-time plant ≡hybrid system or
sampled-data system

2. Interface between digital and analog world: Analog to Digital and Digital
to Analog Converters (ADC and DAC).

3. ADC→Algorithm→DAC is synchronous (zero-delay model!)

4. A clock controls the sampling instants. Usually periodic sampling.

A/D, Sample D/A, ZOH

Plant

171 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Controller with Sampled Data-Systems
(unclocked models, using pre() and sample())

// time-discrete controller

when {initial(),sample(3,3)} then

E*xd = A*pre(xd)+ B*y;

ud = C*pre(xd) + D*y;

end when;

// plant (continuous-time process)

0 = f(der(x), x, ud);

y = g(x);

y
ud

• y is automatically sampled at t = 3, 6, 9,…;
• xd, u are piecewise-constant variables that change values at sampling

events (implicit zero-order hold)
• initial() triggers event at initialization (t=0)

172 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Controller with Clocked Synchronous Constructs
clocked models using Clock(), previous(), hold() in Modelica 3.3

173 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Unclocked Variables in Modelica 3.2

174 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Clock variables (Clock) and Clocked Variables (Real)
(in Modelica 3.3)

175 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Clocked Synchronous Extension in Modelica 3.3

176 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

State Machines in Modelica 3.3: Simple Example

• Equations are active if corresponding clock ticks. Defaults to periodic
clock with 1.0 s sampling period

• “i” is a shared variable, “j” is a local variable. Transitions are “delayed”
and enter states by “reset”

177 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Simple Example: Modelica Code
model Simple_NoAnnotations "Simple state machine"

inner Integer i(start=0);

block State1

outer output Integer i;

output Integer j(start=10);

equation

i = previous(i) + 2;

j = previous(j) - 1;

end State1;

State1 state1;

block State2

outer output Integer i;

equation

i = previous(i) - 1;

end State2;

State2 state2;

equation

transition(state1,state2,i > 10,immediate=false);

transition(state2,state1,i < 1,immediate=false);

initialState(state1);

end Simple_NoAnnotations;

178 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Hierarchical and Parallel Composition of
Modelica State Machine Models

Semantics of Modelica state machines (and example above) inspired by
Florence Maraninchi & Yann Rémond’s “Mode-Automata” and by Marc
Pouzet’s Lucid Synchrone 3.0.

179 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Hierarchical and Parallel Composition

Semantics of Modelica state machines (and example above)
inspired by Florence Maraninchi & Yann Rémond’s “Mode-
Automata” and by Marc Pouzet’s Lucid Synchrone 3.0.

180 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Part IV

Components, Connectors and Connections –
Modelica Libraries and Graphical Modeling

181 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Software Component Model

A component class should be defined independently of the
environment, very essential for reusability

A component may internally consist of other components, i.e.
hierarchical modeling
Complex systems usually consist of large numbers of
connected components

Component

Interface

ConnectionComponent

Connector
Acausal coupling

Causal coupling

182 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Connectors and Connector Classes

Connectors are instances of connector classes

 v +

i
pin

 s

f
flange

connector Pin

Voltage v;

flow Current i;

end Pin;

Pin pin;

connector class

keyword flow
indicates that currents
of connected pins
sum to zero.

electrical connector

an instance pin
of class Pin

connector Flange

Position s;

flow Force f;

end Flange;

Flange flange;

connector class

mechanical connector

an instance flange
of class Flange

183 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

The flow prefix

Three possible kinds of variables in connectors:
• Potential variables potential or energy level
• Flow variables represent some kind of flow
• Stream variables represent fluid flow in convective transport

Coupling
• Equality coupling, for potential variables
• Sum-to-zero coupling, for flow variables

The value of a flow variable is positive when the current or the
flow is into the component

 v

+ i
pin

positive flow direction:

184 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Magnetic

Translational Position Force Linear momentum
Mechanical.

Translational

Physical Connector
Classes Based on Energy Flow

Domain
Type

Potential Flow Carrier Modelica
Library

Electrical Voltage Current Charge Electrical.

Analog

Rotational Angle Torque Angular
momentum

Mechanical.

Rotational

Magnetic Magnetic
potential

Magnetic
flux rate Magnetic flux

Hydraulic Pressure Volume flow Volume OpenHydraulics

Heat Temperature Heat flow Heat HeatFlow1D

Chemical Chemical
potential Particle flow Particles Chemical

Pneumatic Pressure Mass flow Air
PneuLibLight

185 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

connect-equations

pin1 pin2
+ +

i i

v v

connect(connector1,connector2)

Connections between connectors are realized as equations in Modelica

The two arguments of a connect-equation must be references to
connectors, either to be declared directly within the same class or be
members of one of the declared variables in that class

pin1.v = pin2.v;

pin1.i + pin2.i =0;

Pin pin1,pin2;

//A connect equation

//in Modelica:

connect(pin1,pin2);
Corresponds to

186 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Connection Equations

1 2 3 nv v v v

pin1.v = pin2.v;

pin1.i + pin2.i =0;

Pin pin1,pin2;

//A connect equation

//in Modelica

connect(pin1,pin2);
Corresponds to

Each primitive connection set of potential variables is
used to generate equations of the form:

Each primitive connection set of flow variables is used to generate
sum-to-zero equations of the form:

1 2 () 0k ni i i i

connect(pin1,pin2); connect(pin1,pin3); ... connect(pin1,pinN);

Multiple connections are possible:

187 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Common Component Structure

The base class TwoPin has
two connectors p and n for
positive and negative pins
respectively

p

p.i

p.v

n.i

n.v
n

i

i i + - TwoPin

electrical connector class

partial model TwoPin

Voltage v

Current i

Pin p;

Pin n;

equation

v = p.v - n.v;

0 = p.i + n.i;

i = p.i;

end TwoPin;

// TwoPin is same as OnePort in

// Modelica.Electrical.Analog.Interfaces

positive pin
negative pin

partial class
(cannot be
instantiated) connector Pin

Voltage v;

flow Current i;

end Pin;

188 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Electrical Components
model Resistor ”Ideal electrical resistor”

extends TwoPin;

parameter Real R;

equation

R*i = v;

end Resistor;

model Inductor ”Ideal electrical inductor”

extends TwoPin;

parameter Real L ”Inductance”;

equation

L*der(i) = v;

end Inductor;

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

model Capacitor ”Ideal electrical capacitor”

extends TwoPin;

parameter Real C ;

equation

i=C*der(v);

end Capacitor;

189 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Electrical Components cont’

model Source

extends TwoPin;

parameter Real A,w;

equation

v = A*sin(w*time);

end Resistor;

p.i n.i

p.v n.v

v(t)

+

 p.i p.v

model Ground

Pin p;

equation

p.v = 0;

end Ground;

190 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Resistor Circuit

R2 R1

R3

n p p n

p n i3

i2 i1

v1 v2

v3

R1.p.v = R2.p.v;

R1.p.v = R3.p.v;

R1.p.i + R2.p.i + R3.p.i = 0;

model ResistorCircuit

Resistor R1(R=100);

Resistor R2(R=200);

Resistor R3(R=300);

equation

connect(R1.p, R2.p);

connect(R1.p, R3.p);

end ResistorCircuit;

Corresponds to

191 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

• Modelica Standard Library (called Modelica) is a
standardized predefined package developed by
Modelica Association

• It can be used freely for both commercial and
noncommercial purposes under the conditions of
The Modelica License.

• Modelica libraries are available online including
documentation and source code from
http://www.modelica.org/library/library.html

Modelica Standard Library - Graphical Modeling

http://www.modelica.org/library/library.html

192 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica Standard Library cont’

• Blocks Library for basic input/output control blocks
• Constants Mathematical constants and constants of nature
• Electrical Library for electrical models
• Icons Icon definitions
• Fluid 1-dim Flow in networks of vessels, pipes, fluid machines, valves, etc.
• Math Mathematical functions
• Magnetic Magnetic – for magnetic applications
• Mechanics Library for mechanical systems
• Media Media models for liquids and gases
• SIunits Type definitions based on SI units according to ISO 31-1992
• Stategraph Hierarchical state machines (analogous to Statecharts)
• Thermal Components for thermal systems
• Utilities Utility functions especially for scripting

The Modelica Standard Library contains components from
various application areas, including the following sublibraries:

193 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica.Blocks

Continuous, discrete, and logical input/output blocks
to build block diagrams.

 Library

Continuous

Examples:

194 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica.Electrical

Electrical components for building analog, digital, and
multiphase circuits

Library

Analog

Library

MultiPhase

Library

Digital

V1

V2

I1

R1

R2

R3

R4

C1

C4

C5

C2

C3

Gnd1

Gnd9

Gnd3

Gnd2

Gnd6

Gnd7 Gnd8 Gnd5

Gnd4

Transistor1 Transistor2

Examples:

Library

Machines

195 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica.Mechanics

Package containing components for mechanical systems

Subpackages:
• Rotational 1-dimensional rotational mechanical components
• Translational 1-dimensional translational mechanical components
• MultiBody 3-dimensional mechanical components

197 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

PNlib - An Advanced Petri Net Library
for Hybrid Process Modeling

(time-)discrete process
(event)

continuous process
(flow)

stochastic process
(random event)

Transitions

Places

Arcs

(time-)discrete state
(integer quantity)

continuous state
(real quantity)

„normal“ arc

inhibitor arc

test arc

read arc

xHPN: Extended Hybrid Petri Nets

198 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Other Free Libraries
Up to date list at: https://www.modelica.org/libraries

• WasteWater Wastewater treatment plants, 2003
• ATPlus Building simulation and control (fuzzy control included), 2005
• MotorCycleDymanics Dynamics and control of motorcycles, 2009
• NeuralNetwork Neural network mathematical models, 2006
• VehicleDynamics Dynamics of vehicle chassis (obsolete), 2003
• SPICElib Some capabilities of electric circuit simulator PSPICE, 2003
• SystemDynamics System dynamics modeling a la J. Forrester, 2007
• BondLib Bond graph modeling of physical systems, 2007
• MultiBondLib Multi bond graph modeling of physical systems, 2007
• ModelicaDEVS DEVS discrete event modeling, 2006
• ExtendedPetriNets Petri net modeling, 2002
• External.Media Library External fluid property computation, 2008
• VirtualLabBuilder Implementation of virtual labs, 2007
• PowerSystems Power systems in transient and steady-state mode
• ...

199 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

• Powertrain
• SmartElectricDrives
• VehicleDynamics
• Hydraulics
• Pneumatics
• Engine Dynamics
• Environmental Control
• CombiPlant
• …
• (there are many more)

• Air Conditioning
• Electric Power
• Fuel Cell
• Heat Exchanger
• Hydro Power
• Liquid Cooling
• Thermal Power
• Vapor Cycle
• Battery
• Belts
• Engine
• …

Some Commercial Libraries
Up to date list at: https://www.modelica.org/libraries

200 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Connecting Components from Multiple Domains

model Generator

Modelica.Mechanics.Rotational.Accelerate ac;

Modelica.Mechanics.Rotational.Inertia iner;

Modelica.Electrical.Analog.Basic.EMF emf(k=-1);

Modelica.Electrical.Analog.Basic.Inductor ind(L=0.1);

Modelica.Electrical.Analog.Basic.Resistor R1,R2;

Modelica.Electrical.Analog.Basic.Ground G;

Modelica.Electrical.Analog.Sensors.VoltageSensor vsens;

Modelica.Blocks.Sources.Exponentials ex(riseTime={2},riseTimeConst={1});

equation

connect(ac.flange_b, iner.flange_a); connect(iner.flange_b, emf.flange_b);

connect(emf.p, ind.p); connect(ind.n, R1.p); connect(emf.n, G.p);

connect(emf.n, R2.n); connect(R1.n, R2.p); connect(R2.p, vsens.n);

connect(R2.n, vsens.p); connect(ex.outPort, ac.inPort);

end Generator;

R1

R2

ind

emf

G

ex ac iner vsen

Electrical
domain

Mechanical
domain

Block
domain

1

2

• Block domain

• Mechanical domain

• Electrical domain

201 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

DCMotor Model Multi-Domain (Electro-Mechanical)

A DC motor can be thought of as an electrical circuit
which also contains an electromechanical component.

model DCMotor

Resistor R(R=100);

Inductor L(L=100);

VsourceDC DC(f=10);

Ground G;

EMF emf(k=10,J=10, b=2);

Inertia load;

equation

connect(DC.p,R.n);

connect(R.p,L.n);

connect(L.p, emf.n);

connect(emf.p, DC.n);

connect(DC.n,G.p);

connect(emf.flange,load.flange);

end DCMotor;

load

emf
DC

G

R L

202 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Part IV
Sensitivity Analysis

using
OpenModelica

203 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OMSens – Multi-Parameter Sensitivity Analysis

• Individual and simultaneous multi-parameter analysis
• Optimization-based simultaneous analysis
• Robust derivative free optimizer Tool architecture

Heatmap visualization

204 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Introduction to Sensitivity Analysis

• Sensitivity of nonlinear systems in the form of ODEs
• Undergo noticeable dynamic

changes in response to small perturbations
in the parameters.

• OO-languages (Modelica)
• Systematic treatment of the problem
• Clear, unambiguous access to

parameters, variables and
simulation configuration.

• Reusable frameworks to
manipulate models as black boxes.

• Varied options to use internal knowledge about model structure

205 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Approaches to Sensitivity Analysis

• Individual analysis:
• One parameter perturbed at a time
• Ignores combinations of perturbations

• Simultaneous analysis:
• All possible combinations not feasible

• Would give combinatorial explosion of parameter settings
• Find “optimal” combinations of perturbations

• “Smallest simultaneous perturbations that produce
largest deviations”

• Typically: optimization-based strategies

206 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

CURVIF: robust derivative-free optimization algorithm

• The CURVI family
• Curvilinear search approach

• Three versions: CURVIF, CURVIG, CURVIH
• Function values, function values plus Gradients, and the latter plus

Hessians.
• Globally convergent
• In general uses fewer evaluations than other algorithms

• CURVIF: the flavor adopted for OMSens
• Trade-off: favor robustness, sacrifice some efficiency
• Derivative-free methods can either be robust - at the cost of using

many function evaluations, e.g. direct searches - or may present
convergence problems

207 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

LotkaVolterra – A Simple Model to be Used
for Sensitivity Analysis Exercises

model LotkaVolterra "This is the typical equation-oriented model"
parameter Real alpha=0.1 "Reproduction rate of prey";
parameter Real beta=0.02 "Mortality rate of predator per prey";
parameter Real gamma=0.4 "Mortality rate of predator";
parameter Real delta=0.02 "Reproduction rate of predator per prey";
parameter Real prey_pop_init=10 "Initial prey population";
parameter Real pred_pop_init=10 "Initial predator population";
Real prey_pop(start=prey_pop_init) "Prey population";
Real pred_pop(start=pred_pop_init) "Predator population";

initial equation
prey_pop = prey_pop_init;
pred_pop = pred_pop_init;

equation
der(prey_pop) = prey_pop*(alpha-beta*pred_pop);
der(pred_pop) = pred_pop*(delta*prey_pop-gamma);

end LotkaVolterra ;

208 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OMSens Exercise – Locate Python
Select Analysis type – OpenModelica 1.16.0 or later

Installation instructions:
https://github.com/OpenModelica/OMSens#omsens

https://github.com/OpenModelica/OMSens#omsens

209 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OMSens Exercise –results from individual analysis

More info in the file:
OMSens Example_Exercise_ Lotka-Volterra.pdf

222 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Part Vb
More

Graphical Modeling Exercises

using
OpenModelica

223 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Graphical Modeling - Using Drag and Drop Composition

224 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Graphical Modeling Animation – DCMotor

225 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

• A DC motor can be thought of as an electrical circuit which
also contains an electromechanical component
model DCMotor

Resistor R(R=100);

Inductor L(L=100);

VsourceDC DC(f=10);

Ground G;

ElectroMechanicalElement EM(k=10,J=10, b=2);

Inertia load;

equation

connect(DC.p,R.n);

connect(R.p,L.n);

connect(L.p, EM.n);

connect(EM.p, DC.n);

connect(DC.n,G.p);

connect(EM.flange,load.flange);

end DCMotor

load

EM

DC

G

R L

Multi-Domain (Electro-Mechanical) Modelica Model

226 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Automatic transformation to ODE or DAE for simulation:

(load component not included)

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

227 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercise 3.1

• Draw the DCMotor model using the graphic connection
editor using models from the following Modelica
libraries:
Mechanics.Rotational.Components,

Electrical.Analog.Basic,

Electrical.Analog.Sources

J

emf
u

G

R L • Simulate it for 15s and plot the
variables for the outgoing
rotational speed on the inertia
axis and the voltage on the
voltage source (denoted u in the
figure) in the same plot.

228 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercise 3.2

• If there is enough time: Add a torsional spring to the
outgoing shaft and another inertia element. Simulate
again and see the results. Adjust some parameters to
make a rather stiff spring.

229 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercise 3.3

• If there is enough time: Add a PI controller to the system
and try to control the rotational speed of the outgoing shaft.
Verify the result using a step signal for input. Tune the PI
controller by changing its parameters in OMEdit.

230 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Learn more…

• OpenModelica
• www.openmodelica.org

• Modelica Association
• www.modelica.org

• Books
• Principles of Object Oriented Modeling and Simulation with

Modelica 3.3: A Cyber-Physical Approach, Peter Fritzson
2015.

• Modeling and Simulation of Technical and Physical
Systems with Modelica. Peter Fritzson., 2011
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-
111801068X.html

• Introduction to Modelica, Michael Tiller

http://www.openmodelica.org/
http://www.modelica.org/
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-111801068X.html

231 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Summary

Hybrid
Modeling

Visual Acausal
Component

Modeling

Multi-Domain
Modeling

Typed
Declarative
Textual Language Thanks for listening!

