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Presentation contents

• Challenges in aircraft design

• The Codex framework

• How can the new approach improve modelling 
and collaboration?

• Outlook
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Aircraft design challenges

A complex design problem
• Multi-domain and multi-fidelity
• High amount of stakeholders involved
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High amount of legacy models available

• Legacy: monolithic, difficult to maintain and adapt to 
everchanging requirements

• SotA: OOP yet difficult to integrate with other tools
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Collaboration in aircraft design – can it be improved?
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Hypotheses

1. The application of semantic web technologies (SWT) provides a better infrastructure for 
multi-domain modelling than the current state-of-the-art Object-Oriented (OOP) methods.

2. Schema-Less modelling decreases the communication overhead, improving the ease of 
collaboration.

The aim of the Codex framework is to provide a knowledge-formalization and execution 
environment that reflects the graph structure of an effective collaborative environment.
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Codex capabilities
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Module Function

Codex-Semantic SWT core functionalities and inference engine

eng:builds

https://en.wikipedia.org/wiki/Airbus

aircraft:Aircrafthttps://www.investopedia.com
/terms/c/Company

rdf:type

rdfs:subClassOf

https://en.wikipedia.org/wiki/Vehicle
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Codex capabilities
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Module Function

Codex-Semantic SWT core functionalities and inference engine

Codex-Parametric DSL for parametric rules and engines for constraint analysis and 
solution

𝑒𝑞0: 𝑦2+𝑥2 = 5
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Codex capabilities

DLR.de  •  Chart 7

Module Function

Codex-Semantic SWT core functionalities and inference engine

Codex-Parametric DSL for parametric rules and engines for constraint analysis and 
solution

Codex-Rules DSL for production rules and engine for topological changes to 
the model

+
Rule 1: If (…) then (add lavatories)
Rule 2: if (…) then (add emergency exits)
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Codex capabilities
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Module Function

Codex-Semantic SWT core functionalities and inference engine

Codex-Parametric DSL for parametric rules and engines for constraint analysis and 
solution

Codex-Rules DSL for production rules and engine for topological changes to 
the model

Codex-Geometry Ontology for solid geometry modeling and 3D visualization of 
models

Codex-WebApp Web-based UI for improved user experience and collaboration

Codex-Visualization Knowledge graph and plots visualization

…
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Challenge 1: Modelling configurations

DLR.de  •  Chart 9

Aircraft

diameter xPos

Engine

Fuselage Wing Tail

HTP

VTP

Aircraft

diameter

Engine

xPos

Strut

Fuselage Wing Tail

HTP

VTP

Aircraft

diameter

Engine

xPosHigh

xPosLow

Fuselage Wing Tail

VTP

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021



Creating Configurations – using the OOP paradigm
Step 1 – Create the Class hierarchy 
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Creating Configurations – using the OOP paradigm
Step 2 – Create an instance of the model
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val aircraft = ConventionalAircraft()

aircraft.fuselage = ConventionalFuselage()

aircraft.fuselage.diameter = 4.0

aircraft.wing = EngineMountedWing()

aircraft.wing.xPos = 15.0

aircraft.wing.engine = Engine()

aircraft.tail = ConventionalTail()

aircraft.tail.htp = HTP()

aircraft.tail.vtp = VTP()
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Creating Configurations – using the OOP paradigm
Step 2 – Create an instance of the model
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val aircraft = StrutBracedWingAircraft()

aircraft.fuselage = EngineMountedFuselage()

aircraft.fuselage.diameter = 4.0

aircraft.fuselage.engine = Engine()

aircraft.wing = StrutBracedWing()

aircraft.wing.xPos = 15.0

aircraft.wing.strut = Strut()

aircraft.tail = TTail()

aircraft.tail.htp = HTP()

aircraft.tail.vtp = VTP()
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Creating Configurations – using the OOP paradigm
Step 3 – Apply design rules
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if (aircraft is ConventionalAircraft) {
...

} else if (aircraft is StrutBracedWingAircraft) {
...

} else if (aircraft is BoxWingAircraft) {
...

}

if (aircraft.wing is MultiSegmentWing) {

if (aircraft.wing is EngineMountedWing) {
...

} else if (aircraft.wing is StrutBracedWing) {
...

}

} else if (aircraft.wing is BoxWing) {
...

}

The set of design rules need to cover ALL possible cases explicitly
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Creating Configurations – using SWT approach
Step 1 – Declare the properties and individuals you need
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val hasPart = ObjectProperty("hasPart")

val diameter = DataProperty("diameter")

val xPos = DataProperty("xPos")

val xPosHigh = DataProperty("xPosHigh")

val xPosLow = DataProperty("xPosLow")

val aircraft = Individual("aircraft")

val fuselage = Individual("fuselage")

val wing = Individual("wing")

val htp = Individual("htp")

val vtp = Individual("vtp")

val tail = Individual("tail")

val engine = Individual("engine")
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Creating Configurations – using SWT approach
Step 2 – Connect the individuals and properties
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Aircraft

diameter xPos

Engine

Fuselage Wing Tail

HTP

VTP

:aircraft

:fuselage :wing :tail

:engine
:vtp

:htp
4.0 15.0

aircraft {

Facts {

hasPart(fuselage)

hasPart(wing)

hasPart(tail)

}

}

fuselage {

Facts {

diameter(4.0)

}

}

wing {

Facts {

xPos(15.0)

hasPart(engine)

}

}

tail {

Facts {

hasPart(htp)

hasPart(vtp)

}

}
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aircraft {

Facts {

hasPart(fuselage)

hasPart(wing)

hasPart(tail)

}

}

fuselage {

Facts {

diameter(4.0)

}

}

wing {

Facts {

xPos(15.0)

hasPart(engine)

}

}

tail {

Facts {

hasPart(htp)

hasPart(vtp)

}

}

Creating Configurations – using SWT approach
Step 2 – Connect the individuals and properties
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:aircraft

:fuselage :wing :tail

:engine
:vtp

:htp
4.0 15.0

aircraft {

Facts {

hasPart(fuselage)

hasPart(wing)

hasPart(tail)

}

}

fuselage {

Facts {

diameter(4.0)

hasPart(engine)

}

}

wing {

Facts {

xPos(15.0)

}

}

tail {

Facts {

hasPart(htp)

hasPart(vtp)

}

}

Engine Strut

:strut

aircraft {

Facts {

hasPart(fuselage)

hasPart(wing)

hasPart(tail)

}

}

fuselage {

Facts {

diameter(4.0)

hasPart(engine)

}

}

wing {

Facts {

xPos(15.0)

hasPart(strut)

}

}

tail {

Facts {

hasPart(htp)

hasPart(vtp)

}

}
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Creating Configurations – using SWT approach
Step 3 – Creating classes … only if needed

• Classes give specific meaning to individuals

• Classes don’t need to have a name
→ Anonymous Classes

• One can easily create classes using set-theory
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val Wing = Class("Wing")

val myWing = Individual("myWing") {

Types(Wing)

}

val anonClass = hasPart some Engine

Wing and Fuselage

Wing or Fuselage

Wing and not(Fuselage)
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Creating Configurations – using SWT approach
Step 4 – Apply design rules

• No need for covering the complete permutation of 
design rule sets (IF…THEN…ELSE…)

• Design rules are applied to an individual 
corresponding to a specific Class or sub-graph

• This makes rules easily exchangeable
→ They are declarative, not procedural
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hasPart some Engine {

// apply some rule to everything that

// has an Engine

}

Wing that (hasPart some Strut) {

// apply some rule to

// all StrutBracedWings

}

if (aircraft is ConventionalAircraft) {

...

} else if (aircraft is StrutBracedWingAircraft) {

...

} else if (aircraft is BoxWingAircraft) {

...

}

if (aircraft.wing is MultiSegmentWing) {

if (aircraft.wing is EngineMountedWing) {

...

} else if (aircraft.wing is StrutBracedWing) {

...

}

} else if (aircraft.wing is BoxWing) {

...

}
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Challenge 2: Balancing collaboration and modelling needs
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Multi-Domain Modelling demands a 
high degree of abstraction for easy 
cross-domain integration.

Domain-Specific Modelling demands 
high expressivity to make the 
modelling task easy for that domain.

For effective collaboration the modelling approach should cover the entire spectrum
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Codex Root Knowledge Representation

Collaboration and Modelling
Language layers
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Legacy: document based approach Current: model-based using common schema

Challenge 3: Multi-Domain Collaboration

DLR.de  •  Chart 21 15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021



Schema-Based integration Schema-Less integration

Collaboration in aircraft design
Data Federation 

Straightforward tool integration

Too rigid for highly dynamic knowledge formalization phase

All stakeholders must agree on the common schema

Domain experts model their knowledge independently

Model integrators link domain-specific models using the 
expressive power of SWT

Requires change of mindset, not straightforward
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Outlook

• Integrating with other languages and software eco-systems

• Create new KBE tools using the Codex framework

• Managing scalability and complexity

• Developing a collaborative web application for knowledge 
engineering and integration
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Thank you for your attention

Questions?

12th International Conference on Knowledge Engineering 
and Ontology Development – KEOD 2020 [link]

DOI: 10.5220/0010143202420249

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

http://www.keod.ic3k.org/?y=2020
https://www.doi.org/10.5220/0010143202420249


Contact
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Jacopo Zamboni
 jacopo.zamboni@dlr.de

Arthur Zamfir
 arthur.zamfir@dlr.de

Erwin Moerland
 erwin.moerland@dlr.de

Institute of System Architectures in Aeronautics 
@ German Aerospace Center (DLR) in Hamburg
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