
Semantic Knowledge-Based-Engineering

Presentation contents

• Challenges in aircraft design

• The Codex framework

• How can the new approach improve modelling
and collaboration?

• Outlook

DLR.de • Chart 2 15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Aircraft design challenges

A complex design problem
• Multi-domain and multi-fidelity
• High amount of stakeholders involved

DLR.de • Chart 3

High amount of legacy models available

• Legacy: monolithic, difficult to maintain and adapt to
everchanging requirements

• SotA: OOP yet difficult to integrate with other tools

-2000

0

2000

-15000

-10000

-5000

0

2000

4000

6000

Loads

Aerodynamics

Structure

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

http://www.dlr.de/vt/DesktopDefault.aspx/tabid-2158/3117_read-6789/gallery-1/gallery_read-Image.29.23130/

Collaboration in aircraft design – can it be improved?

DLR.de • Chart 4

Hypotheses

1. The application of semantic web technologies (SWT) provides a better infrastructure for
multi-domain modelling than the current state-of-the-art Object-Oriented (OOP) methods.

2. Schema-Less modelling decreases the communication overhead, improving the ease of
collaboration.

The aim of the Codex framework is to provide a knowledge-formalization and execution
environment that reflects the graph structure of an effective collaborative environment.

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Codex capabilities

DLR.de • Chart 5

Module Function

Codex-Semantic SWT core functionalities and inference engine

eng:builds

https://en.wikipedia.org/wiki/Airbus

aircraft:Aircrafthttps://www.investopedia.com
/terms/c/Company

rdf:type

rdfs:subClassOf

https://en.wikipedia.org/wiki/Vehicle

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Codex capabilities

DLR.de • Chart 6

Module Function

Codex-Semantic SWT core functionalities and inference engine

Codex-Parametric DSL for parametric rules and engines for constraint analysis and
solution

𝑒𝑞0: 𝑦2+𝑥2 = 5
𝑒𝑞1: 𝑦 = 𝑥𝑘 − 𝑧

𝑏𝑍: 𝑧 = 3.0
𝑏𝐾: 𝑘 = 2.0

𝑐𝑜0: 𝑦 < 0.0
𝑐𝑜1: 𝑥 > 0.0

𝑥 = 1.0
𝑦 = −2.0

bZ

X

Y

eq0

bK

Z

K

eq1

co1

co0

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Codex capabilities

DLR.de • Chart 7

Module Function

Codex-Semantic SWT core functionalities and inference engine

Codex-Parametric DSL for parametric rules and engines for constraint analysis and
solution

Codex-Rules DSL for production rules and engine for topological changes to
the model

+
Rule 1: If (…) then (add lavatories)
Rule 2: if (…) then (add emergency exits)

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Codex capabilities

DLR.de • Chart 8

Module Function

Codex-Semantic SWT core functionalities and inference engine

Codex-Parametric DSL for parametric rules and engines for constraint analysis and
solution

Codex-Rules DSL for production rules and engine for topological changes to
the model

Codex-Geometry Ontology for solid geometry modeling and 3D visualization of
models

Codex-WebApp Web-based UI for improved user experience and collaboration

Codex-Visualization Knowledge graph and plots visualization

…

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Challenge 1: Modelling configurations

DLR.de • Chart 9

Aircraft

diameter xPos

Engine

Fuselage Wing Tail

HTP

VTP

Aircraft

diameter

Engine

xPos

Strut

Fuselage Wing Tail

HTP

VTP

Aircraft

diameter

Engine

xPosHigh

xPosLow

Fuselage Wing Tail

VTP

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Creating Configurations – using the OOP paradigm
Step 1 – Create the Class hierarchy

DLR.de • Chart 10 15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Creating Configurations – using the OOP paradigm
Step 2 – Create an instance of the model

DLR.de • Chart 11

val aircraft = ConventionalAircraft()

aircraft.fuselage = ConventionalFuselage()

aircraft.fuselage.diameter = 4.0

aircraft.wing = EngineMountedWing()

aircraft.wing.xPos = 15.0

aircraft.wing.engine = Engine()

aircraft.tail = ConventionalTail()

aircraft.tail.htp = HTP()

aircraft.tail.vtp = VTP()

Aircraft

Fuselage

diameter

Wing

xPos

Engine

Tail

HTP

VTP

Aircraft

Fuselage

diameter

Wing

xPos

Tail

HTP

VTP

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Creating Configurations – using the OOP paradigm
Step 2 – Create an instance of the model

DLR.de • Chart 12

Aircraft

Fuselage

diameter

Wing

xPos

Engine

Tail

HTP

VTP

Aircraft

Fuselage

diameter

Engine

Wing

xPos

Strut

Tail

HTP

VTP

val aircraft = StrutBracedWingAircraft()

aircraft.fuselage = EngineMountedFuselage()

aircraft.fuselage.diameter = 4.0

aircraft.fuselage.engine = Engine()

aircraft.wing = StrutBracedWing()

aircraft.wing.xPos = 15.0

aircraft.wing.strut = Strut()

aircraft.tail = TTail()

aircraft.tail.htp = HTP()

aircraft.tail.vtp = VTP()

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Creating Configurations – using the OOP paradigm
Step 3 – Apply design rules

DLR.de • Chart 13

if (aircraft is ConventionalAircraft) {
...

} else if (aircraft is StrutBracedWingAircraft) {
...

} else if (aircraft is BoxWingAircraft) {
...

}

if (aircraft.wing is MultiSegmentWing) {

if (aircraft.wing is EngineMountedWing) {
...

} else if (aircraft.wing is StrutBracedWing) {
...

}

} else if (aircraft.wing is BoxWing) {
...

}

The set of design rules need to cover ALL possible cases explicitly

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Creating Configurations – using SWT approach
Step 1 – Declare the properties and individuals you need

DLR.de • Chart 14

val hasPart = ObjectProperty("hasPart")

val diameter = DataProperty("diameter")

val xPos = DataProperty("xPos")

val xPosHigh = DataProperty("xPosHigh")

val xPosLow = DataProperty("xPosLow")

val aircraft = Individual("aircraft")

val fuselage = Individual("fuselage")

val wing = Individual("wing")

val htp = Individual("htp")

val vtp = Individual("vtp")

val tail = Individual("tail")

val engine = Individual("engine")

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Creating Configurations – using SWT approach
Step 2 – Connect the individuals and properties

DLR.de • Chart 15

Aircraft

diameter xPos

Engine

Fuselage Wing Tail

HTP

VTP

:aircraft

:fuselage :wing :tail

:engine
:vtp

:htp
4.0 15.0

aircraft {

Facts {

hasPart(fuselage)

hasPart(wing)

hasPart(tail)

}

}

fuselage {

Facts {

diameter(4.0)

}

}

wing {

Facts {

xPos(15.0)

hasPart(engine)

}

}

tail {

Facts {

hasPart(htp)

hasPart(vtp)

}

}

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

aircraft {

Facts {

hasPart(fuselage)

hasPart(wing)

hasPart(tail)

}

}

fuselage {

Facts {

diameter(4.0)

}

}

wing {

Facts {

xPos(15.0)

hasPart(engine)

}

}

tail {

Facts {

hasPart(htp)

hasPart(vtp)

}

}

Creating Configurations – using SWT approach
Step 2 – Connect the individuals and properties

DLR.de • Chart 16

Aircraft

Fuselage

diameter

Wing

xPos

Engine

Tail

HTP

VTP

:aircraft

:fuselage :wing :tail

:engine
:vtp

:htp
4.0 15.0

aircraft {

Facts {

hasPart(fuselage)

hasPart(wing)

hasPart(tail)

}

}

fuselage {

Facts {

diameter(4.0)

hasPart(engine)

}

}

wing {

Facts {

xPos(15.0)

}

}

tail {

Facts {

hasPart(htp)

hasPart(vtp)

}

}

Engine Strut

:strut

aircraft {

Facts {

hasPart(fuselage)

hasPart(wing)

hasPart(tail)

}

}

fuselage {

Facts {

diameter(4.0)

hasPart(engine)

}

}

wing {

Facts {

xPos(15.0)

hasPart(strut)

}

}

tail {

Facts {

hasPart(htp)

hasPart(vtp)

}

}

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Creating Configurations – using SWT approach
Step 3 – Creating classes … only if needed

• Classes give specific meaning to individuals

• Classes don’t need to have a name
→ Anonymous Classes

• One can easily create classes using set-theory

DLR.de • Chart 17

val Wing = Class("Wing")

val myWing = Individual("myWing") {

Types(Wing)

}

val anonClass = hasPart some Engine

Wing and Fuselage

Wing or Fuselage

Wing and not(Fuselage)

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Creating Configurations – using SWT approach
Step 4 – Apply design rules

• No need for covering the complete permutation of
design rule sets (IF…THEN…ELSE…)

• Design rules are applied to an individual
corresponding to a specific Class or sub-graph

• This makes rules easily exchangeable
→ They are declarative, not procedural

DLR.de • Chart 18

hasPart some Engine {

// apply some rule to everything that

// has an Engine

}

Wing that (hasPart some Strut) {

// apply some rule to

// all StrutBracedWings

}

if (aircraft is ConventionalAircraft) {

...

} else if (aircraft is StrutBracedWingAircraft) {

...

} else if (aircraft is BoxWingAircraft) {

...

}

if (aircraft.wing is MultiSegmentWing) {

if (aircraft.wing is EngineMountedWing) {

...

} else if (aircraft.wing is StrutBracedWing) {

...

}

} else if (aircraft.wing is BoxWing) {

...

}

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Challenge 2: Balancing collaboration and modelling needs

DLR.de • Chart 19

Multi-Domain Modelling demands a
high degree of abstraction for easy
cross-domain integration.

Domain-Specific Modelling demands
high expressivity to make the
modelling task easy for that domain.

For effective collaboration the modelling approach should cover the entire spectrum

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Codex Root Knowledge Representation

Collaboration and Modelling
Language layers

DLR.de • Chart 20

XSD UML DSL A DSL B

DSL A-BCPACS SysML

m
o

re
 a

b
st

ra
ct

m
o

re
 e

x
p

re
ssiv

e

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Legacy: document based approach Current: model-based using common schema

Challenge 3: Multi-Domain Collaboration

DLR.de • Chart 21 15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Schema-Based integration Schema-Less integration

Collaboration in aircraft design
Data Federation

Straightforward tool integration

Too rigid for highly dynamic knowledge formalization phase

All stakeholders must agree on the common schema

Domain experts model their knowledge independently

Model integrators link domain-specific models using the
expressive power of SWT

Requires change of mindset, not straightforward

DLR.de • Chart 22 15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

Outlook

• Integrating with other languages and software eco-systems

• Create new KBE tools using the Codex framework

• Managing scalability and complexity

• Developing a collaborative web application for knowledge
engineering and integration

DLR.de • Chart 23 15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

DLR.de • Chart 24

Thank you for your attention

Questions?

12th International Conference on Knowledge Engineering
and Ontology Development – KEOD 2020 [link]

DOI: 10.5220/0010143202420249

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

http://www.keod.ic3k.org/?y=2020
https://www.doi.org/10.5220/0010143202420249

Contact

DLR.de • Chart 25

Jacopo Zamboni
 jacopo.zamboni@dlr.de

Arthur Zamfir
 arthur.zamfir@dlr.de

Erwin Moerland
 erwin.moerland@dlr.de

Institute of System Architectures in Aeronautics
@ German Aerospace Center (DLR) in Hamburg

15th MODPROD Workshop on Model-Based Cyber-physical Product Development • Codex – Semantic Knowledge-Based-Engineering > A. Zamfir, J. Zamboni • 3rd of February 2021

