Petter Krus, LiU

REQUIREMENT SPACES FOR SUSTAINABLE TECHNOLOGIES

Introduction

- Requirements for more sustainable systems often means that new technological solutions should be introduced. In most cases this is not straightforward.
- Our assumption is that first we need to determine the specific set of achievable requirements for a technology. Secondly, it is also important to understand for what type of system the new technology is viable for.
- In order to illustrate this mapping of domains of valid requirements, we examined the increasing demand for electrical power systems for aircraft and vehicles.

Comparison CO2 Producers in Sweden

- Swede's flying 2019 approx. 10 million tonnes CO2
- Swede's car use 2019 approx. 10 million tonnes CO2
- Heavy road transport 5 million tonnes CO2
- Work machines 3.5 million tonnes CO2
- Ships to and from Sweden, 8 million tonnes of CO2
- SSAB's direct CO2 emissions of 9.8 million tonnes of CO2

Alternatives Hydrogen (burn or fuel cell) / synfuel Battery Battery / hydrogen fuel cell Battery / hydrogen fuel cell Hydrogen (burn or fuel cell) / synfuel Hydrogen

Requirement space Framework

Requirement space

Technology and Requirement Space

The design process with the *Requirement space* as a function of the *Technology characteristics* is indicated.

Specific Power

Truck diesel	o.7 kW/kg				
Petrol engine (with turbo)	1-8 kW/kg				
Turbo shaft engine	6-10 kW/kg				
Electric motor	1-10 kW/kg				
Fuel cell (incl. syst)	o.4-o.8 kW/kg				
1932 Pratt & Withney	1.2 kW/kg				

Saab 340 Max speed 502 km/h Cruise 467 km/h Engine 5% of empty weight

Specific power [kW/kg]

GeeBee racer Max speed 476 km/h 1932 Engine 50% of empty weight

Specific Energy

Diesel (about the same as petrol and kerosene)	12600 Wh/kg	
Battery (Tesla, pack level)	177 Wh/kg	
Hydrogen	33000 Wh/kg	Hyo
Hydrogen pressure storage	1700-3300 Wh/kg	~5 ⁹ sys

Hydrogen stored is ~5%-10% of storage system weight

Truck diesel	0.4
Petrol engine (with turbo)	0.25
Turbo shaft engine	0.5
Electric motor	0.95
Fuel cell (incl. syst)	0.4-0.6
Battery	0.96

Efficiency

Fuel cell+electric motor comparable to combustion engine

Technology Comfort Zone, TCZ

- Improvement in the technology coefficient, ζ, such as e.g. tensile strength, specific energy or power, should have a strong effect on system performance p
- The change in a design parameters, *x*, such as component size, should have a lower effect on system performance *p*.
- A low sensitivity from design parameters, x, to cost, c, making it cheap to increase performance through design parameters.

Technology sensitivity

Performance

$$p = f_p(x, \zeta)$$
$$k_{0, p, i} = \frac{x_i}{p} \frac{\partial p}{\partial x_i}$$

Cost benefit factor

$$\kappa_{i} = \frac{k_{0,p,i}}{k_{0,c,i}} = \left(\frac{x_{i}}{p}\frac{\partial p}{\partial x_{i}}\right) \left(\frac{x_{i}}{c}\frac{\partial c}{\partial x_{i}}\right)^{-1} = \frac{c}{p}\left(\frac{\partial p}{\partial x_{i}}\right) \left(\frac{\partial c}{\partial x_{i}}\right)^{-1}$$

Cost

$$c = f_c(x, \zeta)$$
$$k_{0,c,i} = \frac{x_i}{c} \frac{\partial c}{\partial x_i}$$

How many percent the performance can be increased if cost is increased one percent.

Electric Vehicle Modelling

				Price	El	empty	min	empty		Battery	Battery	Electric	
				without	power	weight	weight	weight-batt	Battery	weight	capacity	range	
	year	Price incl tax	Price excl tax	battery	[kW]	[kg]	[kg]	[kg]	fraction	[kg]	[kWh]	[km]	kWh/100km
BMW i3	2019	419000	335200	208600	125	1270	1370	1002	0.267584	268.0941	42.2	310	13.6
Nissan Leaf 40	2019	397000	317600	197600	110	1580	1680	1326	0.191659	254.1176	40	240	16.7
Nissan Leaf 62	2019	461500	369200	183200	160	1640	1740	1246	0.316088	393.8824	62	364	17.0
VW e-Golf	2019	403000	322400	226400	100	1640	1540	1437	0.1415	203.2941	32	190	16.8
Tesla Model 3 SR	2019	531700	425360	254360	211	1611	1711	. 1249	0.289953	362.1176	57	409	13.9
Tesla Model 3 LR	2019	649600	519680	279680	211	1847	1947	1339	0.37963	508.2353	80	560	14.3
Tesla S SR	2019	830000	664000	409000	581	2108	2208	1568	0.344388	540	85	450	18.9
Tesla S LR	2019	946000	756800	456800	581	2200	2300	1565	0.406015	635.2941	100	610	16.4
Tesla X SR	2019	923000	738400	513400	386	2330	2430	1854	0.257061	476.4706	75	375	20.0
Tesla X LR	2019	1039000	831200	531200	386	2459	2559	1824	0.348353	635.2941	100	505	19.8

Electric Vehicle Modelling

Cost is increasing much more than proportionally to size. This means that for a large car a battery of the same fraction of vehicle weight will be a smaller fraction of the total cost.

 $E_{cons} = a_E m_{tot}^{b_E} = 0.004397 m_{tot}^{0.5163} \, [\text{kwh/km}]$

$$c_0 = a_c m_0^{b_c} = 0.00192661 m_0^{2.599} [SEK]$$

2000

Vehicle Modelling

$$R = \frac{E_b}{E_{cons}} = \frac{\varsigma_b m_b}{a_E (m_0 + m_b)^{b_E}} = \frac{35.25m_b}{(m_0 + m_b)^{0.5163}} \text{ [km]}$$

$$Range$$

$$c_t = c_0 + c_b = a_c m_0^{b_c} + k_{bc} m_b = 0.00192661m_0^{2.599} + 444.6m_b \text{ [SEK]} \text{ Cost}$$

$$\Psi = \frac{m_b}{m_0}$$

$$Design \ parameter$$

$$k = \frac{R}{c_t} \left(\frac{\partial c_t}{\partial \Psi}\right) \left(\frac{\partial R}{\partial \Psi}\right)^{-1} = \frac{k_b m_0 (1 + \Psi)^{1.5163}}{(\Psi + 9.695 \times 10^{-6} m_0^{1.599}) (-0.5163k_b^2 m_0^2 (1 + \Psi)^{0.5163} + (1 + \Psi)^{1.5163})}$$

Technology Zones

Diagram of the technology zones (left) and range (right). The curves to the left show lines with constant cost benefit factor. Note tNote tNote that larger cars can have a higher battery fraction and hence range.

Technology Forecasting: Electric Cars

- Assuming incremental refinement of Li-ion technology
- (Placke et al., 2017) suggests about 3 Wh/kg/year.
- A cost reduction of 8 %/year

Electric cars forecasting to 2024

K=1

Technology sensitive zone

R=500km

Battery fraction

R=100km

0

500

1000

Vehicel mass, m_o, excl. battery [kg]

1500

2000

Diagram of the technology zones (left) and range (right) estimated for 2024. The curves show lines with constant κ between 1 and 3. There is a new area where new products are likely to be located.

The criticality of technology for electric aircraft

Aircraft range

$$R = \frac{\varsigma_b}{g} \eta \left(\frac{L}{D}\right) \frac{W_b}{W_0}$$

 $\Psi = W_b / W_1$

$$R = \eta \frac{\varsigma_b}{g} \left(\frac{L}{D}\right) \frac{\Psi}{1 + \Psi}$$

 $W_1 = W_0 - W_b$

Assuming cost proportioinal takeoff weight

$$\kappa = \frac{k_{0,p}}{k_{0,c}} = \Psi^{-1}$$

Electric Aircraft Range Forecasting

The cost benefit factor as a function of (theoretical) range. The curves represent 2019 technology and with estimated technology level 2025 and 2030. Long term improvement assumed to be an optimistic 8%/year.

Electric Trucks

Cars are rapidly going into the technology comfort zone for batteries.

Short and medium range trucks could use battery. *Technology comfort* zone

A 40 ton long haul truck could do this with about 2 ton of batteries (4 with reserves). 10% should be doable if required. *Technology comfort* zone.

- Hydrogen storage and Fuel cells could be a viable option.
- System weight would be between that for a diesel truck and a battery truck
- Electric roads? ... not likely, huge investment (60-100 billion SEK in Sweden)...

Long haul trucks requires 4.5 h driving and 45 min rest.

Would require charging of >0.5MW.

Fire safety?

Electric Construction Machines

- Excavators have an average power much less than trucks.
- A workday on a battery charge could be done. There is a counterbalance weight anyway... *Technology Comfort Zone*
- Construction on sites often without a charging infrastructure.
- Fuel cell is interesting.

Aircraft

- Burning hydrogen directly in the engines.
- Hydrogen storage system is a problem especially for long haul (low energy density, J/m³)
- Airbus points at this for short and medium range aircraft.

Airbus long haul concept from 2001

- Battery is hardly relevant
- An optimistic theoretical range is about 560km with 50% takeoff weight with batteries. Commercial range means that an alternative airport should be reached and an extra 45 min loitering, severely restricting the operations making it CO2 irrelevant.
- Technology critical/impossible

Aircraft with Fuel-Cells

Fuel cells have low power density making it useful for only slow aircraft (commuters). *Technology sensitive*

They have to compete head-on with hydrogen burning aircraft of comparable efficiency.

Business case have to build on secondary aspects, e.g. maintenance.

Conclusion

- In this presentation, we have demonstrated the concepts of :
 - Cost-benefit factor which is used to define:
 - Technology comfort zone
 - Where technology can readily be used.
 - Technology sensitive zone
 - Where product benefit strongly from technology improvements.
 - Technology critical zone
 - Where technology needs to be developed to be useful for the product.
- This is used to map requirement spaces, where feasible products can be realized.
 - It is particularly useful in select technologies for the green transformation.

