Control and Decision Communication Across Heterogeneous Model Types

Hessam S. Sarjoughian Chao Zhang Xuanli Lin

hss@asu.edu | http://sarjoughian.faculty.asu.edu/ | https://acims.asu.edu

MODPROD

Session 3b: Cyber-Physical Systems February 3-4, 2021

observations on DEVS/Modelica co-simulation

- hybrid models are often needed for simulating system-of-systems, including Cyber-Physical Systems.
- co-Simulation uses some means for individual simulated models to interact
- co-simulating parallel DEVS with Functional Mockup Units
- co-simulation computation efficiency for the master DEVS-Suite and slave OpenModelica simulators

continuous and discrete dynamical models

model elements	system-the	system-theoretic modeling methods		
	Differential Equation	Discrete-Time	Discrete-Event	
time base	continuous	discrete	continuous	
inputs, outputs, and states	vector space	arbitrary	arbitrary	
input segments	piecewise-continuous	sequences	discrete events	
state and output segments	continuous	sequences	piecewise-constant	

	DEVS	Modelica	DEVS-FMI Interface
data type	arbitrary	numeric	numeric
data trajectories	events/piecewise constant	piecewise constant	events

parallel DEVS formalism

- system-theoretic
- strong I/O modularity
- strict composition hierarchy
- separate external & internal behaviors
- parallel behavior
- continuous time-base
- computationally efficient

atomic DEVS models define basic structure and state-time behaviors

coupled DEVS models define composition of atomic/coupled models

atomic DEVS model simulator

Execution protocol

if no input event & no next internal state event

 \rightarrow do nothing

else if any internal state event

→ execute internal event

else if any input event(s)

 \rightarrow execute input event(s)

else if any internal state event \land any input event(s)

→ execute input and internal state events in some order

- *tL*: time of last event
- *tN*: time of next event
- Input can be injected at arbitrary interarrival periods $0 \le \Delta t \le \infty$

coupled DEVS model simulator

FMU execution: interfacing & embedding

FMI++, JavaFMI, and DEVS-FMI

• FMUs

 Modelica generates FMUs using standardized API and the actual model

• DEVS-FMI (FMI++, JavaFMI) and JavaFMI plugin

- Start, initialize, terminate the simulation
- Step the simulation
- Cancel a step
- Read/write to values from/to the FMU

DEVS-FMI

- Interacts with JavaFMI simulation wrapper to manage FMUs
- Provides basic utilities that can be used for other co-simulations

DEVS-Suite and Matlab co-simulation

- Computer hardware + software
 - Circular Router Buffer (RTL-DEVS, DEVS) master simulator
 - Circular Buffer
 - Router
 - Route finder (FMU/Matlab) slave simulator
 - Finding routes in 2D Network-on-Chip untimed
 - DEVS-FMI co-simulator
 - Every FMU execution cycle is coordinated as black-box under the execution cycles of the coupled/atomic execution protocols
 - DEVS execution protocol synchronizes in lock-step the DEVS I/O with the FMU I/O at increasingly monotonic time instances.

co-simulator: DEVS-Suite, DEVS-FMI (FMI++)

co-simulator: DEVS-Suite, DEVS-FMI (JavaFMI)

co-simulator: DEVS-Suite, JavaFMI

- Composable Cellular Automata are specified in DEVS
- ODE and PDE are specified in Modelica
- Each moving agent communicates with its corresponding diffusion cell. Agents can communicate with their neighbors

$X \times Y$	6 × 2	6 × 20	30 × 20	60 × 20
	number of equations			
ODE	228	2,280	11,400	22,800
PDE	24	240	1,200	2,400

co-simulation computation efficiency (samples)

plot X axis: Cellular Automata $(X \times Y)$ cells: 12, 120, 600, 800, 1200

plot *Y* axis: execution time [seconds]

FMU file size linearly scales with CA size

interactions (control & decision)				
	Agent ↔ Agent + Agent ↔ ODE/PDE	Agent ↔ ODE/PDE		
Mac IOS (64 GB RAM)	Mac-Y	Mac-N		
Win 10 (8 GB RAM)	Win-Y	Win-N		

conclusions

- Hybrid models developed using formal modeling approaches are key to managing complexity and scale traits of simulating Systems-of-Systems including Cyber-Physical Systems.
- Parallel DEVS and Modelica coupled with FMI form a strong duo for co-simulation of time-sensitive, safety-critical systems.
- DEVS-FMI vs. direct FMI have competing roles for hybrid model modularity/hierarchy vs. co-simulation performance.

Thank You Q/A

