
1 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Debugging

Usage: Creative Commons with attribution CC-BY

2 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

• A major part of the total cost of software projects

is due to testing and debugging

• US-Study 2002:

Software errors cost the US economy annually ~60 Billion $

• Problem: Large Gap in Abstraction Level

from Equations to Executable Code

• Example error message (hard to understand)

Error solving nonlinear system 132

time = 0.002

residual[0] = 0.288956

x[0] = 1.105149

residual[1] = 17.000400

x[1] = 1.248448

...

Need for Debugging Tools

Map Low vs High Abstraction Level

3 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

• Include debugging support

within the translation process
Save element position

Normal Translation ProcessDebugging Translation

Process Additional Steps

Save element origin

(model and position)

Save equation elements origin

(model and position)

Executable

C Code

Optimized sorted
equations

Sorted equations

Flat Model

Modelica model

Modelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

Save the optimizer

transformations changes

Save all the available

origin information

Executable with all the

available origin information

Simulation with run-time

debugging functionality

Model Compiler Translation Phases

Extended with Debugging

4 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

• Additional step to

provide needed

debugging information

Save element position

Normal Translation ProcessDebugging Translation

Process Additional Steps

Save element origin

(model and position)

Save equation elements origin

(model and position)

Executable

C Code

Optimized sorted
equations

Sorted equations

Flat Model

Modelica model

Modelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

Save the optimizer

transformations changes

Save all the available

origin information

Executable with all the

available origin information

Simulation with run-time

debugging functionality

Model Compiler Translation Phases

Extended with Debugging

5 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Example Symbolic Transformations

with Compiler Debug Trace

(1) substitution:

y + der(x * (time * z))

=>

y + der(x * (time * 1.0))

(2) simplify:

y + der(x * (time * 1.0))

=>

y + der(x * time)

(3) expand derivative

(symbolic diff):

y + der(x * time)

=>

y + (x + der(x) * time)

(4) solve:

0.0 = y + (x + der(x) * time)

=>

der(x) = ((-y) - x) / time

Example: 0 = y + der(x * time * z); z = 1.0;

• Complicated to understand source of some errors

• Efficient trace of transformations

6 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Properties of Transformation Trace

 Most equations have very few

transformations on them

 Most of the interesting

equations have a few

 Still rather readable

 Some extra care to handle

Modelica variable aliasing

 Very efficient implementation,

max 1% overhead

Ops Frequency Comment

0 457 Parameters

1 89 Dummy eq & know var

2 720 Alias vars

3 479 Alias vars

4 124 Alias after simplify

5 25 Alias after simplify

6 99 Alias after simplify

7 55 Scalar eq

8 37 ...

9 110 ...

10 72 ...

11 12 ...

12 25 ...

13 35 ...

14 3 Known constant after many replacements

21 27 World object (3x3 matrix with many
occurances of aliased vars)

MSL 3.1 MultiBody DoublePendulum

7 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

OpenModelica Equation Model Debugger

0 = y + der(x * time * z); z = 1.0;

(1) substitution:

y + der(x * (time * z))

=>

y + der(x * (time * 1.0))

(2) simplify:

y + der(x * (time * 1.0))

=>

y + der(x * time)

(3) expand derivative (symbolic diff):

y + der(x * time)

=>y + (x + der(x) * time)

(4) solve:

0.0 = y + (x + der(x) * time)

=>

der(x) = ((-y) - x) / time

time <> 0

Showing

equation

transformations

of a model:

Mapping run-time error to source model position

8 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Transformations Browser – EngineV6 Overview

(11 116 equations in model)

9 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Equation Model Debugger on Siemens Model
(Siemens Evaporator test model, 1100 equations)

Pointing out the buggy equation

y = u1/u2;

that gives division by zero

Peter Fritzson OpenModelica Annual Workshop, OpenModelica Status and Directions10

New OM Debug function that can trace (and plot)

which variables and equations influence a variable

List of Variables directly influencing:

New menu choice to show direct dependencies

11 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

• ABB OPTIMAX® provides advanced model based control products

for power generation and water utilities

• ABB: “ABB uses several compatible Modelica tools, including

OpenModelica, depending on specific application needs.”

• ABB: “OpenModelica provides outstanding debugging features that

help to save a lot of time during model development.”

ABB Industry Use of OpenModelica Debugger

12 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Equation Debugging Summary

• Debugging equation-based models present new

challenges

• Equation systems are transformed symbolically to

a form hard for the user to understand

• Maintain and explain a mapping between the low

level and the high level model

• The first integrated static/dynamic debugger

of any Modelica tool

13 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Debugging Example – Detecting Source of Chattering

(excessive event switching) causing bad performance

14 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Error Indication – Simulation Slows Down

15 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercise – Equation-based Model Debugger

model ChatteringEvents1

Real x(start=1, fixed=true);

Real y;

Real z;

equation

z = noEvent(if x > 0 then -1 else 1);

y = 2*z;

der(x) = y;

end ChatteringNoEvents1;

In the model ChatteringEvents1, chattering takes place after t = 0.5, due to the

discontinuity in the right hand side of the first equation. Chattering can be detected

because lots of tightly spaced events are generated. The debugger allows to identify

the (faulty) equation that gives rise to all the zero crossing events.

• Switch to OMEdit text view (click on text button upper left)

• Open the Debugging.mo package file using OMEdit

• Open subpackage Chattering, then open model ChatteringEvents1

• Simulate in debug mode (transformational debugger)

• Click on the button Debug more (see prev. slide)

• Possibly start task manager and look at CPU. Then click stop simulation button

Uses 25% CPU

16 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Performance Analysis

Usage: Creative Commons with attribution CC-BY

17 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Performance Profiling for faster Simulation
(Here: Profiling equations of Siemens Drum boiler model with evaporator

• Measuring performance of equation blocks to find bottlenecks

• Useful as input before model simplification for real-time applications

• Integrated with the debugger to point out the slow equations

• Suitable for real-time profiling (collect less information), or a complete

view of all equation blocks and function calls

Conclusion from the evaluation:

“…the profiler makes the process

of performance optimization

radically shorter.”

18 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Using the Performance Profiler on DoublePendulum

• When running a simulation from OMEdit, it is possible to enable profiling

information, which can be combined with the transformations browser.

Set this in

simulation

Setup

DoublePendulum in

MultiBody library

https://www.openmodelica.org/doc/OpenModelicaUsersGuide/latest/debugger.html#id2

19 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Using the Performance Profiler on

the DoublePendulum model

• When profiling the DoublePendulum example from MSL, the following

output below is a typical result. This information clearly shows which

system takes longest to simulate (a linear system, where most of the time

overhead probably comes from initializing LAPACK over and over).

20 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Performance Profiler Exercise

• Try the profiler on this model. Results in Equations Browser, enlarge the

window, click on Fraction to sort in ascending/descending order.

model ProfilingTest

function f

input Real r;

output Real o = sin(r);

end f;

String s = "abc";

Real x = f(x) "This is x";

Real y(start=1);

Real z1 = cos(z2);

Real z2 = sin(z1);

equation

der(y) = time;

end ProfilingTest;

