
1 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modeling Approaches

• State-space Approach
• Example: Pendulum

• Block Diagram Approach
• Example: Pendulum

• Component-Oriented Approach
• Example: Pendulum

• Exercise: Tank with Controller

• Exercise: DC Motor with Controller

2 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modeling Approaches

State-space Approach

3 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

State-space Approach

• continuous time-invariant

• linear system in terms of states and inputs

𝑥 ∈ ℝ𝑛 state vector

𝑢 ∈ ℝ𝑝 input vector

𝑦 ∈ ℝ𝑞 output vector

𝐴 ∈ ℝ𝑛×𝑛 state matrix

𝐵 ∈ ℝ𝑛×𝑝 input matrix

𝐶 ∈ ℝ𝑞×𝑛 output matrix

𝐷 ∈ ℝ𝑞×𝑝 feedthrough matrix

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

4 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

State-space Approach

• continuous time-invariant

• nonlinear system in terms of states and inputs

𝑥 ∈ ℝ𝑛 state vector

𝑢 ∈ ℝ𝑝 input vector

𝑦 ∈ ℝ𝑞 output vector

𝑓: 𝑥, 𝑦 → ℝ𝑛 state equation

ℎ: 𝑥, 𝑦 → ℝ𝑞 output equation

ሶ𝑥 = 𝑓(𝑥, 𝑢)
𝑦 = ℎ(𝑥, 𝑢)

5 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

State-space Approach

• continuous time-variant

• nonlinear system in terms of states and inputs

𝑡 ∈ ℝ time

𝑥 ∈ ℝ𝑛 state vector

𝑢 ∈ ℝ𝑝 input vector

𝑦 ∈ ℝ𝑞 output vector

𝑓: 𝑥, 𝑦 → ℝ𝑛 state equation

ℎ: 𝑥, 𝑦 → ℝ𝑞 output equation

ሶ𝑥 = 𝑓(𝑡, 𝑥, 𝑢)
𝑦 = ℎ(𝑡, 𝑥, 𝑢)

6 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

State-space Approach

• Classic example: pendulum

m mass

l length

g acceleration of gravity

k damping coefficient

𝑚𝑙2 ሷ𝜃 = −𝑚𝑔𝑙 sin 𝜃 − 𝑘𝑙 ሶ𝜃

7 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

State-space Approach

• Classic example: pendulum

ሶ𝑥 =

𝑥2

−
𝑔

𝑙
sin 𝑥1 −

𝑘

𝑚𝑙
𝑥2

8 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

State-space Approach

• Classic example: pendulum

𝐴 =
0 1

−
𝑔

𝑙
cos 𝑥1 −

𝑘

𝑚𝑙

9 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

State-space Approach

• (-) No graphical representation

• (-) The system decomposition does not correspond to the
"natural" physical system structure

• (-) Breaking down into subsystems is difficult if the
connections are not of input/output type.

• (-) Two connected state-space subsystems do not usually
give a state-space system automatically.

• (+) Easy to handle for computer systems from the previous

century, before symbolic transformations for equation

systems became efficient enough

10 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modeling Approaches

Block Diagram Approach

11 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Block Diagram Approach

• Graphical modelling

• Signal-flow model

• Fixed input/output dependencies

• Usually used in control engineering

12 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Block Diagram Approach


+

-
Integrator Adder Multiplier Function

Branch Point

x

y
f(x,y)

• Special case of model components:

the causality of each interface variable

has been fixed to either input or output

Typical Block diagram model components:

• Conceptual equivalent to FMUs

13 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Block Diagram Approach

14 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Block Diagram Approach

• (-) The system decomposition topology does not correspond
to the "natural" physical system structure

• (-) Hard work of manual conversion of equations into signal-
flow representation

• (-) Physical models become hard to understand in signal
representation

• (-) Small model changes (e.g. compute positions from force
instead of force from positions) requires redesign of whole
model

• (+) Block diagram modelling works well for control systems
since they are signal-oriented rather than "physical“

• (+) Graphical modelling

15 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modeling Approaches

Component-Oriented Approach

16 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Component-Oriented Approach

• Define the system briefly
• What kind of system is it?

• What does it do?

• Decompose the system into its most important

components
• Define communication, i.e., determine interactions

• Define interfaces, i.e., determine the external ports/connectors

• Recursively decompose model components of “high complexity”

• Formulate new model classes when needed
• Declare new model classes.

• Declare possible base classes for increased reuse and maintainability

17 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Top-Down versus Bottom-up Modelling

• Top Down: Start designing the overall view.

Determine what components are needed.

• Bottom-Up: Start designing the components

and try to fit them together later.

18 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Using Library Model Components

• Decompose into subsystems

• Sketch communication

• Design subsystems models by connecting library

component models

• Simulate!

19 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Component-Oriented Approach

20 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Component-Oriented Approach

• (-) Huge system of equations

• (+) Works well for control systems since physical models
can be inverted and linearized

• (+) Graphical modelling

• (+) The system decomposition correspond to the "natural"
physical system structure

• (+) Easy to connect two systems which each other

• (+) High reusability of components, because of acausal and
object-oriented modelling

• (-) Sometimes difficult to debug

21 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Advice for Building Large System Models

1. Understand the problem:

1. What question do you want to answer?

2. Know what you want to model.

1. Draw system schematics.

2. Identify control input.

3. Draw the control loops.

4. Determine the control sequences.

2. Compartmentalize: Split the system into

subcomponents that can be tested in isolation.

3. Implement: Now, and only now, start implementing in

software.

1. Document and build test cases as you go along.

Errors are easy to detect in small models, but hard in

large models. If you add unit tests, you make sure what

has been tested remains intact as the model evolves.

2. Assemble the subcomponents to build the full model. Slide content

acknowledgement: LBL

Buildings intro tutorial

M. Wetter et al

22 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Advice for Building Large System Models
How do you debug a large system model?

• Split the model into small models — or better,

architect the large model from the beginning to be

based on smaller models

• Test the smaller models for well known conditions.

• Add smaller models to unit tests.

• The OpenModelica debugger can

be used to locate some bugs, and

to find dependencies on variables

Slide content

acknowledgement: LBL

Buildings intro tutorial

M. Wetter et al

23 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modeling Approaches

Exercise: Tank with Controller

24 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercise: Tank with Controller

level h

maxLevel

valve

levelSensor

out in

controller

 tank

 source

25 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Tank System Model FlatTank – No Graphical Structure

• No component
structure

• Just flat set of
equations

• Straight-
forward but
less flexible,
no graphical
representation

model FlatTank

// Tank related variables and parameters

parameter Real flowLevel(unit="m3/s")=0.02;

parameter Real area(unit="m2") =1;

parameter Real flowGain(unit="m2/s") =0.05;

Real h(start=0,unit="m") "Tank level";

Real qInflow(unit="m3/s") "Flow through input valve";

Real qOutflow(unit="m3/s") "Flow through output valve";

// Controller related variables and parameters

parameter Real K=2 "Gain";

parameter Real T(unit="s")= 10 "Time constant";

parameter Real minV=0, maxV=10; // Limits for flow output

Real ref = 0.25 "Reference level for control";

Real error "Deviation from reference level";

Real outCtr "Control signal without limiter";

Real x; "State variable for controller";

equation

assert(minV>=0,"minV must be greater or equal to zero");//

der(h) = (qInflow-qOutflow)/area; // Mass balance equation

qInflow = if time>150 then 3*flowLevel else flowLevel;

qOutflow = LimitValue(minV,maxV,-flowGain*outCtr);

error = ref-h;

der(x) = error/T;

outCtr = K*(error+x);

end FlatTank;

26 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Simulation of FlatTank System

• Flow increase to flowLevel at time 0

• Flow increase to 3*flowLevel at time 150

50 100 150 200 250

time

0.1

0.2

0.3

0.4

simulate(FlatTank, stopTime=250)

plot(h, stopTime=250)

27 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Object Oriented Component-Based Approach

Tank System with Three Components

TankPI

piContinuous

tank

tActuator tSensor

qIn qOut

cOut cIn

source

model TankPI

LiquidSource source(flowLevel=0.02);

PIcontinuousController piContinuous(ref=0.25);

Tank tank(area=1);

equation

connect(source.qOut, tank.qIn);

connect(tank.tActuator, piContinuous.cOut);

connect(tank.tSensor, piContinuous.cIn);

end TankPI;

• Liquid source

• Continuous PI

controller

• Tank

28 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Tank model

• The central equation regulating the behavior of the tank is the mass balance
equation (input flow, output flow), assuming constant pressure

model Tank

ReadSignal tSensor "Connector, sensor reading tank level (m)";

ActSignal tActuator "Connector, actuator controlling input flow";

LiquidFlow qIn "Connector, flow (m3/s) through input valve";

LiquidFlow qOut "Connector, flow (m3/s) through output valve";

parameter Real area(unit="m2") = 0.5;

parameter Real flowGain(unit="m2/s") = 0.05;

parameter Real minV=0, maxV=10; // Limits for output valve flow

Real h(start=0.0, unit="m") "Tank level";

equation

assert(minV>=0,"minV – minimum Valve level must be >= 0 ");//

der(h) = (qIn.lflow-qOut.lflow)/area; // Mass balance

equation

qOut.lflow = LimitValue(minV,maxV,-flowGain*tActuator.act);

tSensor.val = h;

end Tank;

29 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Connector Classes and Liquid Source Model

for Tank System

connector ReadSignal "Reading fluid level"

Real val(unit="m");

end ReadSignal;

connector ActSignal "Signal to actuator

for setting valve position"

Real act;

end ActSignal;

connector LiquidFlow "Liquid flow at inlets or outlets"

Real lflow(unit="m3/s");

end LiquidFlow;

model LiquidSource

LiquidFlow qOut;

parameter flowLevel = 0.02;

equation

qOut.lflow = if time>150 then 3*flowLevel else flowLevel;

end LiquidSource;

TankPI

piContinuous

tank

tActuator tSensor

qIn qOut

cOut cIn

source

30 Copyright © Open Source Modelica Consortium

model PIcontinuousController

extends BaseController(K=2,T=10);

Real x "State variable of continuous PI controller";

equation

der(x) = error/T;

outCtr = K*(error+x);

end PIcontinuousController;

Continuous PI Controller for Tank System

)(* xerrorKoutCtr

T

error

dt

dx

+=

=• error = (reference level –

actual tank level)

• T is a time constant

• x is controller state

variable

• K is a gain factor
)(* dt

T

error
errorKoutCtr +=

base class for controllers – to be defined

Integrating equations gives

Proportional & Integrative (PI)

error – to be defined in controller base class

31 Copyright © Open Source Modelica Consortium

The Base Controller – A Partial Model

partial model BaseController

parameter Real Ts(unit="s")=0.1

"Ts - Time period between discrete samples – discrete sampled";

parameter Real K=2 "Gain";

parameter Real T=10(unit="s") "Time constant - continuous";

ReadSignal cIn "Input sensor level, connector";

ActSignal cOut "Control to actuator, connector";

parameter Real ref "Reference level";

Real error "Deviation from reference level";

Real outCtr "Output control signal";

equation

error = ref-cIn.val;

cOut.act = outCtr;

end BaseController;

error = difference betwen reference level and

actual tank level from cIn connector

TankPI

piContinuous

tank

tActuator tSensor

qIn qOut

cOut cIn

source

32 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Simulate Component-Based Tank System

• As expected (same equations), TankPI gives the

same result as the flat model FlatTank

50 100 150 200 250

time

0.1

0.2

0.3

0.4

simulate(TankPI, stopTime=250)

plot(h, stopTime=250)

33 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Flexibility of Component-Based Models

• Exchange of components possible in a

component-based model

• Example:

Exchange the PI controller component for a PID

controller component

34 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Tank System with Continuous PID Controller

Instead of Continuous PI Controller

model TankPID

LiquidSource source(flowLevel=0.02);

PIDcontinuousController pidContinuous(ref=0.25);

Tank tank(area=1);

equation

connect(source.qOut, tank.qIn);

connect(tank.tActuator, pidContinuous.cOut);

connect(tank.tSensor, pidContinuous.cIn);

end TankPID;

• Liquid source

• Continuous PID

controller

• Tank

TankPID

pidContinuous

tank

tActuator tSensor

qIn qOut

cOut cIn

source

35 Copyright © Open Source Modelica Consortium

Continuous PID Controller

model PIDcontinuousController

extends BaseController(K=2,T=10);

Real x; // State variable of continuous PID controller

Real y; // State variable of continuous PID controller

equation

der(x) = error/T;

y = T*der(error);

outCtr = K*(error + x + y);

end PIDcontinuousController;

base class for controllers – to be defined

Integrating equations gives Proportional

& Integrative & Derivative(PID)

)(* yxerrorKoutCtr

dt

errord
Ty

T

error

dt

dx

++=

=

=

)(*
dt

errord
Tdt

T

error
errorKoutCtr ++= 

• error = (reference level –

actual tank level)

• T is a time constant

• x, y are controller state

variables

• K is a gain factor

36 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Simulate TankPID and TankPI Systems

• TankPID with the PID controller gives a
slightly different result compared to the
TankPI model with the PI controller

simulate(compareControllers, stopTime=250)

plot({tankPI.h,tankPID.h})

50 100 150 200 250
time

0.1

0.2

0.3

0.4

tankPI.h

tankPID.h

37 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Two Tanks Connected Together

TanksConnectedPI

piContinuous

tank1

tActuator tSensor

qIn qOut

cOut cIn
piContinuous

tank2

tActuator tSensor

qIn qOut

cOut cIn

source

• Flexibility of component-based models allows connecting models together

model TanksConnectedPI

LiquidSource source(flowLevel=0.02);

Tank tank1(area=1), tank2(area=1.3);;

PIcontinuousController piContinuous1(ref=0.25), piContinuous2(ref=0.4);

equation

connect(source.qOut,tank1.qIn);

connect(tank1.tActuator,piContinuous1.cOut);

connect(tank1.tSensor,piContinuous1.cIn);

connect(tank1.qOut,tank2.qIn);

connect(tank2.tActuator,piContinuous2.cOut);

connect(tank2.tSensor,piContinuous2.cIn);

end TanksConnectedPI;

38 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Simulating Two Connected Tank Systems

• Fluid level in tank2 increases after tank1 as it should

• Note: tank1 has reference level 0.25, and tank2 ref level 0.4

simulate(TanksConnectedPI, stopTime=400)

plot({tank1.h,tank2.h})

100 200 300 400
time

0.2

0.4

0.6

0.8
tank2.h

tank1.h

39 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exchange: Either PI Continuous or

PI Discrete Controller

partial model BaseController

parameter Real Ts(unit = "s") = 0.1 "Time period between discrete samples";

parameter Real K = 2 "Gain";

parameter Real T(unit = "s") = 10 "Time constant";

ReadSignal cIn "Input sensor level, connector";

ActSignal cOut "Control to actuator, connector";

parameter Real ref "Reference level";

Real error "Deviation from reference level";

Real outCtr "Output control signal";

equation

error = ref - cIn.val;

cOut.act = outCtr;

end BaseController;

model PIdiscreteController

extends BaseController(K = 2, T = 10);

discrete Real x;

equation

when sample(0, Ts) then

x = pre(x) + error * Ts / T;

outCtr = K * (x+error);

end when;

end PIdiscreteController;

model PIDcontinuousController

extends BaseController(K = 2, T = 10);

Real x;

Real y;

equation

der(x) = error/T;

y = T*der(error);

outCtr = K*(error + x + y);

end PIDcontinuousController;

40 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modeling Approaches

Exercise: DC Motor with Controller

41 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Decompose into Subsystems and

Sketch Communication – DC-Motor Servo Example

The DC-Motor servo subsystems and their connections

Controller
Electrical

Circuit
Rotational

Mechanics

42 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modeling the Controller Subsystem

Modeling the controller

Controller

Electrical

Circuit
Rotational

Mechanics

- PI

feedback1

PI1 step1

43 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modeling the Electrical Subsystem

Modeling the electric circuit

Controller

Electrical

Circuit
Rotational

Mechanics

resistor1 inductor1

signalVoltage1
EMF1

ground1

44 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modeling the Mechanical Subsystem

Modeling the mechanical subsystem including the speed sensor.

inertia1 inertia2 inertia3 idealGear1 spring1

speedSensor1

Controller
Electrical

Circuit
Rotational

Mechanics

	State-space Approach
	Slide 1: Modeling Approaches
	Slide 2: Modeling Approaches
	Slide 3: State-space Approach
	Slide 4: State-space Approach
	Slide 5: State-space Approach
	Slide 6: State-space Approach
	Slide 7: State-space Approach
	Slide 8: State-space Approach
	Slide 9: State-space Approach

	Block Diagram Approach
	Slide 10: Modeling Approaches
	Slide 11: Block Diagram Approach
	Slide 12: Block Diagram Approach
	Slide 13: Block Diagram Approach
	Slide 14: Block Diagram Approach

	Component-Oriented Approach
	Slide 15: Modeling Approaches
	Slide 16: Component-Oriented Approach
	Slide 17: Top-Down versus Bottom-up Modelling
	Slide 18: Using Library Model Components
	Slide 19: Component-Oriented Approach
	Slide 20: Component-Oriented Approach
	Slide 21: Advice for Building Large System Models
	Slide 22: Advice for Building Large System Models How do you debug a large system model?

	Exercise: Tank with Controller
	Slide 23: Modeling Approaches
	Slide 24: Exercise: Tank with Controller
	Slide 25: Tank System Model FlatTank – No Graphical Structure
	Slide 26: Simulation of FlatTank System
	Slide 27: Object Oriented Component-Based Approach Tank System with Three Components
	Slide 28: Tank model
	Slide 29: Connector Classes and Liquid Source Model for Tank System
	Slide 30: Continuous PI Controller for Tank System
	Slide 31: The Base Controller – A Partial Model
	Slide 32: Simulate Component-Based Tank System
	Slide 33: Flexibility of Component-Based Models
	Slide 34: Tank System with Continuous PID Controller Instead of Continuous PI Controller
	Slide 35: Continuous PID Controller
	Slide 36: Simulate TankPID and TankPI Systems
	Slide 37: Two Tanks Connected Together
	Slide 38: Simulating Two Connected Tank Systems
	Slide 39: Exchange: Either PI Continuous or PI Discrete Controller

	Exercise: DC Motor with Controller
	Slide 40: Modeling Approaches
	Slide 41: Decompose into Subsystems and Sketch Communication – DC-Motor Servo Example
	Slide 42: Modeling the Controller Subsystem
	Slide 43: Modeling the Electrical Subsystem
	Slide 44: Modeling the Mechanical Subsystem

