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Modeling Approaches

• State-space Approach
• Example: Pendulum

• Block Diagram Approach
• Example: Pendulum

• Component-Oriented Approach
• Example: Pendulum

• Exercise: Tank with Controller

• Exercise: DC Motor with Controller
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Modeling Approaches

State-space Approach
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State-space Approach

• continuous time-invariant

• linear system in terms of states and inputs

𝑥 ∈ ℝ𝑛 state vector

𝑢 ∈ ℝ𝑝 input vector

𝑦 ∈ ℝ𝑞 output vector

𝐴 ∈ ℝ𝑛×𝑛 state matrix

𝐵 ∈ ℝ𝑛×𝑝 input matrix

𝐶 ∈ ℝ𝑞×𝑛 output matrix

𝐷 ∈ ℝ𝑞×𝑝 feedthrough matrix

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢
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State-space Approach

• continuous time-invariant

• nonlinear system in terms of states and inputs

𝑥 ∈ ℝ𝑛 state vector

𝑢 ∈ ℝ𝑝 input vector

𝑦 ∈ ℝ𝑞 output vector

𝑓: 𝑥, 𝑦 → ℝ𝑛 state equation

ℎ: 𝑥, 𝑦 → ℝ𝑞 output equation

ሶ𝑥 = 𝑓(𝑥, 𝑢)
𝑦 = ℎ(𝑥, 𝑢)
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State-space Approach

• continuous time-variant

• nonlinear system in terms of states and inputs

𝑡 ∈ ℝ time

𝑥 ∈ ℝ𝑛 state vector

𝑢 ∈ ℝ𝑝 input vector

𝑦 ∈ ℝ𝑞 output vector

𝑓: 𝑥, 𝑦 → ℝ𝑛 state equation

ℎ: 𝑥, 𝑦 → ℝ𝑞 output equation

ሶ𝑥 = 𝑓(𝑡, 𝑥, 𝑢)
𝑦 = ℎ(𝑡, 𝑥, 𝑢)
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State-space Approach

• Classic example: pendulum

m mass

l length

g acceleration of gravity

k damping coefficient

𝑚𝑙2 ሷ𝜃 = −𝑚𝑔𝑙 sin 𝜃 − 𝑘𝑙 ሶ𝜃
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State-space Approach

• Classic example: pendulum

ሶ𝑥 =

𝑥2

−
𝑔

𝑙
sin 𝑥1 −

𝑘

𝑚𝑙
𝑥2
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State-space Approach

• Classic example: pendulum

𝐴 =
0 1

−
𝑔

𝑙
cos 𝑥1 −

𝑘

𝑚𝑙
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State-space Approach

• (-) No graphical representation

• (-) The system decomposition does not correspond to the 
"natural" physical system structure

• (-) Breaking down into subsystems is difficult if the 
connections are not of input/output type.

• (-) Two connected state-space subsystems do not usually 
give a state-space system automatically.

• (+) Easy to handle for computer systems from the previous 

century, before symbolic transformations for equation 

systems became efficient enough
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Modeling Approaches

Block Diagram Approach
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Block Diagram Approach

• Graphical modelling

• Signal-flow model

• Fixed input/output dependencies

• Usually used in control engineering
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Block Diagram Approach

 

 
+ 

- 
Integrator Adder Multiplier Function 

Branch Point 

x 

y 
f(x,y) 

• Special case of model components:

the causality of each interface variable 

has been fixed to either input or output

Typical Block diagram model components:

• Conceptual equivalent to FMUs
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Block Diagram Approach
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Block Diagram Approach

• (-) The system decomposition topology does not correspond 
to the "natural" physical system structure

• (-) Hard work of manual conversion of equations into signal-
flow representation

• (-) Physical models become hard to understand in signal 
representation

• (-) Small model changes  (e.g. compute positions from force 
instead of force from positions) requires redesign of whole 
model

• (+) Block diagram modelling works well for control systems 
since they are signal-oriented rather than "physical“

• (+) Graphical modelling
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Modeling Approaches

Component-Oriented Approach
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Component-Oriented Approach

• Define the system briefly
• What kind of system is it? 

• What does it do?

• Decompose the system into its most important 

components
• Define communication, i.e., determine interactions

• Define interfaces, i.e., determine the external ports/connectors

• Recursively decompose model components of “high complexity” 

• Formulate new model classes when needed
• Declare new model classes.

• Declare possible base classes for increased reuse and maintainability
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Top-Down versus Bottom-up Modelling

• Top Down: Start designing the overall view. 

Determine what components are needed.

• Bottom-Up: Start designing the components 

and try to fit them together later.
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Using Library Model Components

• Decompose into subsystems

• Sketch communication

• Design subsystems models by connecting library 

component models

• Simulate!
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Component-Oriented Approach
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Component-Oriented Approach

• (-) Huge system of equations

• (+) Works well for control systems since physical models 
can be inverted and linearized

• (+) Graphical modelling

• (+) The system decomposition correspond to the "natural" 
physical system structure

• (+) Easy to connect two systems which each other

• (+) High reusability of components, because of acausal and 
object-oriented modelling

• (-) Sometimes difficult to debug
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Advice for Building Large System Models

1. Understand the problem:

1. What question do you want to answer?

2. Know what you want to model.

1. Draw system schematics.

2. Identify control input.

3. Draw the control loops.

4. Determine the control sequences.

2. Compartmentalize: Split the system into 

subcomponents that can be tested in isolation.

3. Implement: Now, and only now, start implementing in

software.

1. Document and build test cases as you go along.

Errors are easy to detect in small models, but hard in

large models. If you add unit tests, you make sure what

has been tested remains intact as the model evolves.

2. Assemble the subcomponents to build the full model. Slide content

acknowledgement: LBL 

Buildings intro tutorial

M. Wetter et al
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Advice for Building Large System Models
How do you debug a large system model?

• Split the model into small models — or better, 

architect the large model from the beginning to be 

based on smaller models

• Test the smaller models for well known conditions.

• Add smaller models to unit tests.

• The OpenModelica debugger can

be used to locate some bugs, and

to find dependencies on variables

Slide content

acknowledgement: LBL 

Buildings intro tutorial

M. Wetter et al
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Modeling Approaches

Exercise: Tank with Controller
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Exercise: Tank with Controller

     

        

    

level  h 

maxLevel 

valve 

levelSensor 

out in 

controller 

 tank 

 source 
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Tank System Model FlatTank – No Graphical Structure

• No component 
structure

• Just flat set of 
equations

• Straight-
forward but 
less flexible, 
no graphical 
representation

model FlatTank

// Tank related variables and parameters

parameter Real flowLevel(unit="m3/s")=0.02;

parameter Real area(unit="m2")       =1;

parameter Real flowGain(unit="m2/s") =0.05;

Real           h(start=0,unit="m")   "Tank level";

Real           qInflow(unit="m3/s")  "Flow through input valve";

Real           qOutflow(unit="m3/s") "Flow through output valve";

// Controller related variables and parameters

parameter Real K=2                   "Gain";

parameter Real T(unit="s")= 10       "Time constant";

parameter Real minV=0, maxV=10;    // Limits for flow output

Real           ref = 0.25  "Reference level for control";

Real           error       "Deviation from reference level";

Real           outCtr      "Control signal without limiter";

Real           x;          "State variable for controller";

equation

assert(minV>=0,"minV must be greater or equal to zero");//

der(h) = (qInflow-qOutflow)/area;   // Mass balance equation

qInflow  = if time>150 then 3*flowLevel else flowLevel; 

qOutflow = LimitValue(minV,maxV,-flowGain*outCtr);

error  = ref-h;

der(x) = error/T;

outCtr = K*(error+x);

end FlatTank; 
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Simulation of FlatTank System

• Flow increase to flowLevel at time 0

• Flow increase to 3*flowLevel at time 150

 
50 100 150 200 250 

time 

0.1 

0.2 

0.3 

0.4 

simulate(FlatTank, stopTime=250)

plot(h, stopTime=250)
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Object Oriented Component-Based Approach

Tank System with Three Components

 

TankPI 

piContinuous 

tank 

tActuator tSensor 

qIn qOut 

cOut cIn 

 

source 

model TankPI

LiquidSource           source(flowLevel=0.02);

PIcontinuousController piContinuous(ref=0.25);

Tank                   tank(area=1);

equation

connect(source.qOut, tank.qIn);

connect(tank.tActuator, piContinuous.cOut);

connect(tank.tSensor, piContinuous.cIn);

end TankPI;

• Liquid source

• Continuous PI 

controller

• Tank
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Tank model

• The central equation regulating the behavior of the tank is the mass balance 
equation (input flow, output flow), assuming constant pressure

model Tank

ReadSignal  tSensor   "Connector, sensor reading tank level (m)";

ActSignal   tActuator "Connector, actuator controlling input flow";

LiquidFlow  qIn  "Connector, flow (m3/s) through input valve";

LiquidFlow  qOut "Connector, flow (m3/s) through output valve";

parameter Real area(unit="m2")       = 0.5;

parameter Real flowGain(unit="m2/s") = 0.05;

parameter Real minV=0, maxV=10; // Limits for output valve flow

Real h(start=0.0, unit="m") "Tank level";

equation

assert(minV>=0,"minV – minimum Valve level must be >= 0 ");//

der(h)      = (qIn.lflow-qOut.lflow)/area;   // Mass balance

equation

qOut.lflow  = LimitValue(minV,maxV,-flowGain*tActuator.act);

tSensor.val = h;

end Tank;
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Connector Classes and Liquid Source Model

for Tank System

connector ReadSignal "Reading fluid level"

Real val(unit="m");

end ReadSignal;

connector ActSignal  "Signal to actuator

for setting valve position"

Real act;

end ActSignal;

connector LiquidFlow  "Liquid flow at inlets or outlets"

Real lflow(unit="m3/s");

end LiquidFlow; 

model LiquidSource

LiquidFlow qOut;

parameter flowLevel = 0.02;

equation

qOut.lflow = if time>150 then 3*flowLevel else flowLevel;

end LiquidSource; 

 

TankPI 

piContinuous 

tank 

tActuator tSensor 

qIn qOut 

cOut cIn 

source 
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model PIcontinuousController

extends BaseController(K=2,T=10);

Real  x  "State variable of continuous PI controller";

equation

der(x) = error/T;

outCtr = K*(error+x);

end PIcontinuousController;

Continuous PI Controller for Tank System

)(* xerrorKoutCtr

T

error

dt

dx

+=

=• error = (reference level –

actual tank level)

• T is a time constant

• x is controller state 

variable

• K is a gain factor
)(* dt

T

error
errorKoutCtr +=

base class for controllers – to be defined

Integrating equations gives 

Proportional & Integrative (PI)

error – to be defined in controller base class
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The Base Controller – A Partial Model

partial model BaseController

parameter Real Ts(unit="s")=0.1 

"Ts - Time period between discrete samples – discrete sampled";

parameter Real K=2            "Gain";

parameter Real T=10(unit="s") "Time constant - continuous";

ReadSignal     cIn            "Input sensor level,  connector";

ActSignal      cOut           "Control to actuator, connector";

parameter Real ref            "Reference level";

Real           error          "Deviation from reference level";

Real           outCtr         "Output control signal";

equation

error    = ref-cIn.val;

cOut.act = outCtr;

end BaseController;

error  = difference betwen reference level and 

actual tank level from cIn connector

 

TankPI 

piContinuous 

tank 

tActuator tSensor 

qIn qOut 

cOut cIn 

source 
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Simulate Component-Based Tank System

• As expected (same equations), TankPI gives the 

same result as the flat model FlatTank

 
50 100 150 200 250 

time 

0.1 

0.2 

0.3 

0.4 

simulate(TankPI, stopTime=250)

plot(h, stopTime=250)
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Flexibility of Component-Based Models

• Exchange of components possible in a 

component-based model

• Example: 

Exchange the PI controller component for a PID 

controller component
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Tank System with Continuous PID Controller 

Instead of Continuous PI Controller

model TankPID

LiquidSource            source(flowLevel=0.02);

PIDcontinuousController pidContinuous(ref=0.25);

Tank                    tank(area=1);

equation

connect(source.qOut, tank.qIn);

connect(tank.tActuator, pidContinuous.cOut);

connect(tank.tSensor, pidContinuous.cIn);

end TankPID;

• Liquid source

• Continuous PID 

controller

• Tank

 

TankPID 

pidContinuous 

tank 

tActuator tSensor 

qIn qOut 

cOut cIn 

 

source 
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Continuous PID Controller

model PIDcontinuousController

extends BaseController(K=2,T=10);

Real  x; // State variable of continuous PID controller

Real  y; // State variable of continuous PID controller

equation

der(x) = error/T;

y      = T*der(error);

outCtr = K*(error + x + y);

end PIDcontinuousController;

base class for controllers – to be defined

Integrating equations gives Proportional 

& Integrative & Derivative(PID)

)(* yxerrorKoutCtr

dt

errord
Ty

T

error

dt

dx

++=

=

=

)(*
dt

errord
Tdt

T

error
errorKoutCtr ++= 

• error = (reference level –

actual tank level)

• T is a time constant

• x, y are controller state 

variables

• K is a gain factor
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Simulate TankPID and TankPI Systems

• TankPID with the PID controller gives a 
slightly different result compared to the 
TankPI model with the PI controller

simulate(compareControllers, stopTime=250)

plot({tankPI.h,tankPID.h})

 

50 100 150 200 250 
time 
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0.4 

tankPI.h 

tankPID.h 
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Two Tanks Connected Together

 

TanksConnectedPI 

piContinuous 

tank1 

tActuator tSensor 

qIn qOut 

cOut cIn 
piContinuous 

tank2 

tActuator tSensor 

qIn qOut 

cOut cIn 

 

source 

• Flexibility of component-based models allows connecting models together

model TanksConnectedPI

LiquidSource  source(flowLevel=0.02);

Tank          tank1(area=1), tank2(area=1.3);;

PIcontinuousController piContinuous1(ref=0.25), piContinuous2(ref=0.4);

equation

connect(source.qOut,tank1.qIn);

connect(tank1.tActuator,piContinuous1.cOut);

connect(tank1.tSensor,piContinuous1.cIn);

connect(tank1.qOut,tank2.qIn);

connect(tank2.tActuator,piContinuous2.cOut);

connect(tank2.tSensor,piContinuous2.cIn);

end TanksConnectedPI;
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Simulating Two Connected Tank Systems

• Fluid level in tank2 increases after tank1 as it should

• Note: tank1 has reference level 0.25, and tank2 ref level 0.4 

simulate(TanksConnectedPI, stopTime=400)

plot({tank1.h,tank2.h})

 

100 200 300 400 
time 

0.2 

0.4 

0.6 

0.8 
tank2.h 

tank1.h 
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Exchange: Either PI Continuous or 

PI Discrete Controller

partial model BaseController

parameter Real Ts(unit = "s") = 0.1 "Time period between discrete samples";

parameter Real K = 2 "Gain";

parameter Real T(unit = "s") = 10 "Time constant";

ReadSignal cIn "Input sensor level, connector";

ActSignal cOut "Control to actuator, connector";

parameter Real ref "Reference level";

Real error "Deviation from reference level";

Real outCtr "Output control signal";

equation

error = ref - cIn.val;

cOut.act = outCtr;  

end BaseController;

model PIdiscreteController

extends BaseController(K = 2, T = 10);

discrete Real x; 

equation

when sample(0, Ts) then

x = pre(x) + error * Ts / T;

outCtr = K * (x+error);

end when;

end PIdiscreteController;

model PIDcontinuousController

extends BaseController(K = 2, T = 10);

Real  x; 

Real  y; 

equation

der(x) = error/T;

y      = T*der(error);

outCtr = K*(error + x + y);

end PIDcontinuousController;
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Modeling Approaches

Exercise: DC Motor with Controller
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Decompose into Subsystems and 

Sketch Communication – DC-Motor Servo Example

The DC-Motor servo subsystems and their connections

 

Controller 
Electrical 

Circuit 
Rotational 

Mechanics 
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Modeling the Controller Subsystem

Modeling the controller

 
Controller 

Electrical 

Circuit 
Rotational 

Mechanics 

- PI 

feedback1 

PI1 step1 
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Modeling the Electrical Subsystem

Modeling the electric circuit

 
Controller 

Electrical 

Circuit 
Rotational 

Mechanics 

resistor1 inductor1 

signalVoltage1 
EMF1 

ground1 



44 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution  CC-BY

Modeling the Mechanical Subsystem

Modeling the mechanical subsystem including the speed sensor.

 

inertia1 inertia2 inertia3 idealGear1 spring1 

speedSensor1 

Controller 
Electrical 

Circuit 
Rotational 

Mechanics 
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