
1 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Discrete Events and Hybrid Systems

Picture: Courtesy Hilding Elmqvist

2 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Events

Events are ordered in time and form an event history

time
event 1 event 2 event 3

• A point in time that is instantaneous, i.e., has zero duration

• An event condition that switches from false to true in order for the event

to take place

• A set of variables that are associated with the event, i.e. are referenced

or explicitly changed by equations associated with the event

• Some behavior associated with the event, expressed as conditional

equations that become active or are deactivated at the event.

Instantaneous equations is a special case of conditional equations that

are only active at events.

3 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica Hybrid Modeling

Hybrid modeling = continuous-time + discrete-time modeling

Real x;

Voltage v;

Current i;

Events

discrete Real x;

Integer i;

Boolean b;

• A point in time that is instantaneous, i.e., has zero duration

• An event condition or clock tick so that the event can take place

• A set of variables that are associated with the event

• Some behavior associated with the event,

e.g. conditional equations that become active or are deactivated at

the event

time

Continuous-time

Discrete-time

Clocked discrete-time

4 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Event Creation – if

model Diode "Ideal diode"

extends TwoPin;

Real s;

Boolean off;

equation

off = s < 0;

if off then

v=s

else

v=0;

end if;

i = if off then 0 else s;

end Diode;

if <condition> then

<equations>

elseif <condition> then

<equations>

else

<equations>

end if;

if-equations, if-statements, and if-expressions

False if s<0

If-equation choosing
equation for v

If-expression

5 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Event Creation – when

when <conditions> then

<equations>

end when; // un-clocked version

when-equations (two kinds: unclocked and clocked)

Only dependent on time, can be
scheduled in advance

Time event

when time >= 10.0 then

...

end when;

time
event 1 event 2 event 3

Equations only active at event times

State event

when sin(x) > 0.5 then

...

end when;

Related to a state. Check for
zero-crossing

when clock then

<equations>

end when; // clocked version

6 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Generating Repeated Events by unclocked sample

The call sample(t0,d) returns

true and triggers events at times
t0+i*d, where i=0,1, …

model SamplingClock

Integer i;

discrete Real r;

equation

when sample(2,0.5) then

i = pre(i)+1;

r = pre(r)+0.3;

end when;

end SamplingClock;

time

sample(t0,d)

false

true

t0 t0+d t0+2d t0+3d t0+4d

Variables need to be
discrete

Creates an event

after 2 s, then
each 0.5 s

pre(...) takes the

previous value
before the event.

7 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Generating Clock Tick Events using Clock()
(clocked models, Modelica 3.3 and later)

• Clock() – inferred clock

• Clock(intervalCounter, resolution) – clock with

Integer quotient (rational number) interval

• Clock(interval) – clock with a Real value interval

• Clock(condition, startInterval)

• Clock – solver clock

class ClockTicks

// Integer quotient rational number interval clock

Clock c1 = Clock(3,10); // ticks: 0, 3/10, 6/10, ..

// Clock with real value interval between ticks

Clock c2 = Clock(0.2); // ticks: 0.0, 0.2, 0.4, ...

end ClockTicks;

8 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

initial and terminal events

Initialization actions are triggered by initial()

Actions at the end of a simulation are triggered by terminal()

time

terminal()

false

true

event at end

time

initial()

false

true

event at start

10 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Reinit – Discontinuous Changes of Continuous

model BouncingBall "the bouncing ball model"

parameter Real g=9.81; //gravitational acc.

parameter Real c=0.90; //elasticity constant

Real height(start=10),velocity(start=0);

equation

der(height) = velocity;

der(velocity)=-g;

when height<0 then

reinit(velocity, -c*velocity);

end when;

end BouncingBall;

The value of a continuous-time state variable can be instantaneously
changed by a reinit-equation within a when-equation

Reinit ”assigns”

continuous-time variable
velocity a new value

Initial conditions

11 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercise – BouncingBall

• Locate the BouncingBall model in one of the hybrid

modeling sections of DrModelica (the When-

Equations link in Section 2.9), run it, change it

slightly, and re-run it.

12 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Obtaining Predecessor Values

of a Variable Using pre()

At an event, pre(y) gives the previous value of y immediately

before the event, except for event iteration of multiple events at

the same point in time when the value is from the previous

iteration

• The variable y has one of the basic types Boolean, Integer, Real,

String, or enumeration, a subtype of those, or an array type of one

of those basic types or subtypes

• The variable y is a discrete-time variable

• The pre operator can not be used within a function

time

y

event

y

pre(y)

13 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

model WhenConflictX // Erroneous model: two equations define x

discrete Real x;

equation

when time>=2 then // When A: Increase x by 1.5 at time=2

x = pre(x)+1.5;

end when;

when time>=1 then // When B: Increase x by 1 at time=1

x = pre(x)+1;

end when;

end WhenConflictX;

Event Priority

Erroneous multiple definitions, single assignment rule violated

Using event priority

to avoid erroneous

multiple definitions

model WhenPriorityX

discrete Real x;

equation

when time>=2 then // Higher priority

x = pre(x)+1.5;

elsewhen time>=1 then // Lower priority

x = pre(x)+1;

end when;

end WhenPriorityX;

14 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Detecting Changes of Boolean

Variables Using edge()and change()

The expression edge(b)

is true at events when b

switches from false to true

Detecting changes of boolean variables using edge()

Detecting changes of discrete-time variables using change()

The expression change(v)

is true at instants when v

changes value

time

event

b

edge(b)

event

true

true

false

false

time

event

v

change(v)

event

true

4.1

false

3.2

4.5

true

15 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Creating Time-Delayed Expressions

Creating time-delayed expressions using delay()

In the expression delay(v,d) v is delayed by a delay time d

time

t1

v

t2

4.1

3.2

4.5

t1+d

delay(v,d)

t2+d

4.1

3.2

4.5

start+d

16 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

A Sampler Model

model Sampler

parameter Real sample_interval = 0.1;

Real x(start=5);

Real y;

equation

der(x) = -x;

when sample(0, sample_interval) then

y = x;

end when;

end Sampler;
simulate(Sampler, startTime = 0, stopTime = 10)

plot({x,y})

2 4 6 8 10
t

1

2

3

4

5

17 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Application: Digital Control Systems

• Discrete-time controller + continuous-time plant =

hybrid system or sampled-data system

• Typically periodic sampling, can be modeled with
“when sample(t0,td) then …”

18 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Sampled Data-Systems in Modelica

// time-discrete controller

when {initial(),sample(3,3)} then

E*xd = A*pre(xd)+ B*y;

ud = C*pre(xd) + D*y;

end when;

// plant (continuous-time process)

0 = f(der(x), x, ud);

y = g(x);

y
ud

• y is automatically sampled at t = 3, 6, 9,…;

• xd, u are piecewise-constant variables that change values at

sampling events (implicit zero-order hold)

• initial() triggers event at initialization (t=0)

19 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Water Tank System with PI Controller

TankPI

piContinuous

tank

tActuator tSensor

qIn qOut

cOut cIn

source

model TankPI

LiquidSource source(flowLevel=0.02);

Tank tank(area=1);

PIcontinuousController piContinuous(ref=0.25);

equation

connect(source.qOut, tank.qIn);

connect(tank.tActuator, piContinuous.cOut);

connect(tank.tSensor, piContinuous.cIn);

end TankPI;

model Tank

ReadSignal tOut; // Connector, reading tank level

ActSignal tInp; // Connector, actuator controlling input flow

parameter Real flowVout = 0.01; // [m3/s]

parameter Real area = 0.5; // [m2]

parameter Real flowGain = 10; // [m2/s]

Real h(start=0); // tank level [m]

Real qIn; // flow through input valve[m3/s]

Real qOut; // flow through output valve[m3/s]

equation

der(h)=(qIn-qOut)/area; // mass balance equation

qOut=if time>100 then flowVout else 0;

qIn = flowGain*tInp.act;

tOut.val = h;

end Tank;

level

maxLevel

pump
tank

levelSensor

out in

20 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Water Tank System with PI Controller – cont’

partial model BaseController

parameter Real Ts(unit = "s") = 0.1 "Time period between discrete samples";

parameter Real K = 2 "Gain";

parameter Real T(unit = "s") = 10 "Time constant";

ReadSignal cIn "Input sensor level, connector";

ActSignal cOut "Control to actuator, connector";

parameter Real ref "Reference level";

Real error "Deviation from reference level";

Real outCtr "Output control signal";

equation

error = ref - cIn.val;

cOut.act = outCtr;

end BaseController;

model PIdiscreteController

extends BaseController(K = 2, T = 10);

discrete Real x;

equation

when sample(0, Ts) then

x = pre(x) + error * Ts / T;

outCtr = K * (x+error);

end when;

end PIdiscreteController;

model PIDcontinuousController

extends BaseController(K = 2, T = 10);

Real x;

Real y;

equation

der(x) = error/T;

y = T*der(error);

outCtr = K*(error + x + y);

end PIDcontinuousController;

21 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Water Tank System with PI Controller – cont’

partial model BaseController

parameter Real Ts(unit = "s") = 0.1 "Time period between discrete samples";

parameter Real K = 2 "Gain";

parameter Real T(unit = "s") = 10 "Time constant";

ReadSignal cIn "Input sensor level, connector";

ActSignal cOut "Control to actuator, connector";

parameter Real ref "Reference level";

Real error "Deviation from reference level";

Real outCtr "Output control signal";

equation

error = ref - cIn.val;

cOut.act = outCtr;

end BaseController;

model PIdiscreteController

extends BaseController(K = 2, T = 10);

discrete Real x;

equation

when sample(0, Ts) then

x = pre(x) + error * Ts / T;

outCtr = K * (x+error);

end when;

end PIdiscreteController;

model PIDcontinuousController

extends BaseController(K = 2, T = 10);

Real x;

Real y;

equation

der(x) = error/T;

y = T*der(error);

outCtr = K*(error + x + y);

end PIDcontinuousController;

22 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercise – Square Signal

• Make a square signal with a period of 1s and that

starts at t = 2.5s.

• Hint: an easy way is to use sample(...) to generate

events, and define a variable that switches sign at

each event.

26 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Concurrency and Resource Sharing

model DiningTable

parameter Integer n = 5 "Number of philosophers and forks";

parameter Real sigma = 5 " Standard deviation for the random function";

// Give each philosopher a different random start seed

// Comment out the initializer to make them all hungry simultaneously.

Philosopher phil[n](startSeed=[1:n,1:n,1:n], sigma=fill(sigma,n));

Mutex mutex(n=n);

Fork fork[n];

equation

for i in 1:n loop

connect(phil[i].mutexPort, mutex.port[i]);

connect(phil[i].right, fork[i].left);

connect(fork[i].right, phil[mod(i, n) + 1].left);

end for;

end DiningTable;

Thinking

Thinking

Thinking

Thinking

Thinking

Eating

Eating

Eating

Eating

Eating

Dining Philosophers Example

27 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Exercise – Hybrid DC Motor - Generator

• What is needed if you want to make a hybrid DC motor, i.e. a DC

motor that also can act like a generator for a limited time?

• Make it work like a DC motor for the first 20s

• Apply a counteracting torque on the outgoing axis for the next 20s,

and then turn off the counteracting torque, i.e. you would like to

have a torque pulse starting at 20s and lasting 20s.

28 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Clocked Synchronous Models

and State Machines

and Applications for

Digital Controllers

29 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Control System Applications

Control System

A control system is a device, or set of devices, that manages,

commands, directs or regulates the behavior of other devices or

systems (wikipedia).

Sensors

Control

Computing

Actuators

Measurements Controller Outputs

30 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Control Theory Perspective
Feedback Control System

r(t)

e(t)

y(t)

u(t)

reference (setpoint) error

measured process variable (plant output)

control output variable (plant input)

Usual Objective

Plant output should follow the reference signal.

Controller Plant

(Physical System)

31 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Embedded Real-Time Control System

Clock

Algorithm

Computer

1. Discrete-time controller + continuous-time plant ≡ hybrid system or

sampled-data system

2. Interface between digital and analog world: Analog to Digital and Digital to

Analog Converters (ADC and DAC).

3. ADC→Algorithm→DAC is synchronous (zero-delay model!)

4. A clock controls the sampling instants. Usually periodic sampling.

A/D, Sample D/A, ZOH

Plant

32 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Controller with Sampled Data-Systems
(unclocked models, using pre() and unclocked sample())

// time-discrete controller

when {initial(),sample(3,3)} then

E*xd = A*pre(xd)+ B*y;

ud = C*pre(xd) + D*y;

end when;

// plant (continuous-time process)

0 = f(der(x), x, ud);

y = g(x);

y
ud

• y is automatically sampled at t = 3, 6, 9,…;

• xd, u are piecewise-constant variables that change values at sampling

events (implicit zero-order hold)

• initial() triggers event at initialization (t=0)

33 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Controller with Clocked Synchronous Constructs
clocked models using Clock(), previous(), hold() in Modelica 3.3

Using previous() instead of pre(), hold() to get values between ticks,

and clocked sample() to sample at clock ticks.

34 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Unclocked Variables in Modelica 3.2

35 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Clock variables (Clock) and Clocked Variables

(Real) (in Modelica 3.3)

36 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Clocked Synchronous Extension in Modelica 3.3

37 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

State Machines in Modelica 3.3: Simple Example

• Equations are active if corresponding clock ticks. Defaults to periodic

clock with 1.0 s sampling period

• “i” is a shared variable, “j” is a local variable. Transitions are “delayed”

and enter states by “reset”

38 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Simple Example: Modelica Code

model Simple_NoAnnotations "Simple state machine"

inner Integer i(start=0);

block State1

outer output Integer i;

output Integer j(start=10);

equation

i = previous(i) + 2;

j = previous(j) - 1;

end State1;

State1 state1;

block State2

outer output Integer i;

equation

i = previous(i) - 1;

end State2;

State2 state2;

equation

transition(state1,state2,i > 10,immediate=false);

transition(state2,state1,i < 1,immediate=false);

initialState(state1);

end Simple_NoAnnotations;

39 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Hierarchical and Parallel Composition of

Modelica State Machine Models

Semantics of Modelica state machines (and example above) inspired by

Florence Maraninchi & Yann Rémond’s “Mode-Automata” and by Marc

Pouzet’s Lucid Synchrone 3.0.

40 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Synchronous Language Elements in Modelica 3.3

• Recent language extension of the Modelica standard

• Introduced new language elements suited for modelling

digital control systems

• Motivated by synchronous languages for reactive system

(real-time constraints!)

• Synchronous languages have been particularly

successful for safety-relevant applications

Benveniste, A., Edwards, S. A., Halbwachs, N., Le Guernic, P., and de Simone,

R. The synchronous languages 12 years later. In Proceedings of the IEEE,

volume 91 (1), pages 64–83, 2003. doi:10.1109/JPROC.2002.805826.

41 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Improvements in Modelica 3.3 Sampled Control

• Possible to detect modelling errors if accidentally

connecting control blocks with different sampling period

• All variables assigned in an old when-clause need to be

treated as “discrete-time states” even if only a subset are real

discrete-time states.

• General equations are allowed in clocked partitions and in

particular also in clocked when-clauses.

• Equations in different (old) when clauses are only

synchronous if triggered by same event (i.e., when

sample(0,3) then . . . ≠ when sample(0,3) then . . .). In

contrast, clocking information is propagated by clock

inference.

• Improved support for inverse-models for advanced

controllers

42 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Comparison to Sampled Data-systems in Modelica 3.2

No Clocks in Modelica 3.2. Periodically sampled data

systems are defined by a sample operator.

Note: The ’old’ sample is completely different from the

’new’ clocked sample!

event = sample(0,3);

when event then

xd = A*pre(xd) + B*y;

u = C*pre(xd) + D*y;

end when;

y (continuous input) is automatically sampled at t = 0, 3, 6, .

. .; variables xd, u are piecewise-constant variables that

change values at the sampling events.

Example with old

unclocked sample

43 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

New Language Elements in Clocked Modelica 3.3

Clock Constructors Clock(); Clock(intervalCounter, resolution);

Clock(interval); Clock(condition, startInterval);

Clock(c, solverMethod);

Base-clock

conversion operators

sample(u,c); hold(u)

Sub-clock

conversion operators

subSample(u,factor); superSample(u,factor);

shiftSample(u,shiftCounter,resolution);

backSample(u,backCounter,resolution);

noClock(u)

Other operators previous(u); interval(u)

44 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

The Modelica_Synchronous library

The Modelica_Synchronous library was developed for precise and

convenient definition and synchronization of multi-rate data systems.

Martin Otter, Bernhard Thiele, Hilding Elmqvist. A Library for Synchronous Control Systems

in Modelica. In 9th Int. Modelica Conference, Munich, Germany, September 2012.

45 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

The Modelica_Synchronous library cont’

The Modelica_Synchronous library was developed for precise and

convenient definition and synchronization of multi-rate data systems.

Martin Otter, Bernhard Thiele, Hilding Elmqvist. A Library for Synchronous Control Systems

in Modelica. In 9th Int. Modelica Conference, Munich, Germany, September 2012.

46 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica_Synchronous: Cascaded Control

47 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Modelica_Synchronous: Inverse Models

48 Copyright © Open Source Modelica Consortium Usage: Creative Commons with attribution CC-BY

Synchronous Language Elements in OM

• OpenModelica 1.11.0 and later has full support for

the clocked synchronous extension.

• Basic graphical editing support for state machines

available in OMEdit

• For digital control, try examples from the

Modelica_Synchronous library

• For state machines try the two examples in file

StateMachines.onb

	Slide 1: Discrete Events and Hybrid Systems
	Slide 2: Events
	Slide 3: Modelica Hybrid Modeling
	Slide 4: Event Creation – if
	Slide 5: Event Creation – when
	Slide 6: Generating Repeated Events by unclocked sample
	Slide 7: Generating Clock Tick Events using Clock() (clocked models, Modelica 3.3 and later)
	Slide 8: initial and terminal events
	Slide 10: Reinit – Discontinuous Changes of Continuous
	Slide 11: Exercise – BouncingBall
	Slide 12: Obtaining Predecessor Values of a Variable Using pre()
	Slide 13: Event Priority
	Slide 14: Detecting Changes of Boolean Variables Using edge()and change()
	Slide 15: Creating Time-Delayed Expressions
	Slide 16: A Sampler Model
	Slide 17: Application: Digital Control Systems
	Slide 18: Sampled Data-Systems in Modelica
	Slide 19: Water Tank System with PI Controller
	Slide 20: Water Tank System with PI Controller – cont’
	Slide 21: Water Tank System with PI Controller – cont’
	Slide 22: Exercise – Square Signal
	Slide 26: Concurrency and Resource Sharing
	Slide 27: Exercise – Hybrid DC Motor - Generator
	Slide 28: Clocked Synchronous Models and State Machines and Applications for Digital Controllers
	Slide 29: Control System Applications
	Slide 30: Control Theory Perspective Feedback Control System
	Slide 31: Embedded Real-Time Control System
	Slide 32: Controller with Sampled Data-Systems (unclocked models, using pre() and unclocked sample())
	Slide 33: Controller with Clocked Synchronous Constructs clocked models using Clock(), previous(), hold() in Modelica 3.3
	Slide 34: Unclocked Variables in Modelica 3.2
	Slide 35: Clock variables (Clock) and Clocked Variables (Real) (in Modelica 3.3)
	Slide 36: Clocked Synchronous Extension in Modelica 3.3
	Slide 37: State Machines in Modelica 3.3: Simple Example
	Slide 38: Simple Example: Modelica Code
	Slide 39: Hierarchical and Parallel Composition of Modelica State Machine Models
	Slide 40: Synchronous Language Elements in Modelica 3.3
	Slide 41: Improvements in Modelica 3.3 Sampled Control
	Slide 42: Comparison to Sampled Data-systems in Modelica 3.2
	Slide 43: New Language Elements in Clocked Modelica 3.3
	Slide 44: The Modelica_Synchronous library
	Slide 45: The Modelica_Synchronous library cont’
	Slide 46: Modelica_Synchronous: Cascaded Control
	Slide 47: Modelica_Synchronous: Inverse Models
	Slide 48: Synchronous Language Elements in OM

