Sensitization of Er³⁺ Emission in Er- and Yb-doped Si Thin Films by Laser Ablation

Shinji Kawai*

Industrial Technology Center of SAGA, Tosu, Saga 841-0052, Japan

* Corresponding author; kawai@saga-itc.go.jp

Shuji Komuro and Toru Katsumata

Sensor Photonics Research Center, Toyo University, Kawagoe, Saitama 350-8585, Japan

Keywords: rare-earth doping; ytterbium; sensitization; laser ablation

Abstract

Erbium (Er)- and ytterbium (Yb)-doped Si (Si:Er,Yb) thin films have been controllably synthesized over the Er and Yb concentrations ranging from 10^{18} to 10^{20} cm⁻³ by laser ablation technique. From the PL spectra and the concentration dependence of the intensity of Er3+ emission at 1.54 µm, Yb³⁺ acts as an efficient sensitizer of the Er³⁺-related PL. Enhancement by a factor of 1.5 due to Yb codoping is observed from the Si:Er,Yb films.

1. Introduction

Rare-earth (RE) doping of Si and Si-related materials [1-5] has attracted much attention for the development of Si-based optoelectronic devices initiated by the report on the photoluminescence (PL) centered at around 1.54 μ m of Er³⁺ (⁴I_{13/2} \rightarrow ⁴I_{15/2}) in Si [1]. Ytterbium (Yb) is known as a sensitizer for Er³⁺ emission at 1.54 μ m in Er-doped materials [2]. Since the energy level of the Yb³⁺-²F_{5/2} state is close to that of the Er³⁺-⁴I_{11/2} state, optical transitions between them are expected to raise the excitation efficiency of the Er³⁺. Therefore, much attention has been given to Er, Yb-codoped Si and Si-related materials for Si-based optoelectronic device application. Kozanecki et al. presented that the codoping of Yb leads to the enhancement of Er³⁺-related PL at 1.54 μ m in the Er-doped SiO₂ films [2]. However, there are few studies on Er and Yb codoping of Si matrix.

In this study, we investigate the synthesis of Er- and Yb-doped Si (Si:Er,Yb) thin films by laser ablation. Laser ablation technique is simple and useful for doping the RE elements into the host materials [3]. The relationship between the Er^{3+} -related PL and the Yb doping level is discussed.

2. Experimental

The ceramic target prepared by a hot press technique from a mixture of Si, prescribed amount

1 wt % Er₂O₃, and Yb₂O₃ was used in our experiments. The Er atomic density included in the target is calculated to be 5.5×10^{19} cm⁻³. Komuro et al. have showed that the Er atomic densities in the Er-doped Si (Si:Er) films linearly depend on those in the targets by x-ray fluorescence spectroscopy (XFS) and secondary ion mass spectroscopy (SIMS) [4, 5]. A schematic of our laser ablation chamber is shown in Fig. 1. A Q-switched YAG (QW-YAG) laser with fourth harmonics (wavelength of 266 nm; pulse duration of 5 ns; energy density per pulse of approximately 1 J/cm²) was used to ablate the target. The background pressure of the vacuum chamber before ablation was lower than 1×10^{-7} Torr. The bulk target and Si(100) substrate were separated by the distance of approximately 40 mm in the chamber. Six targets samples with different amounts of Yb₂O₃ (0.03, 0.1, 0.3, 1, 3, and 10 wt %) were used to synthesize the Si:Er,Nd films with various Yb concentrations $(1.1 \times 10^{18}, 4.0 \times 10^{18}, 1.1 \times 10^{19}, 4.0 \times 10^{19}, 1.1$ \times 10²⁰, and 4.0 \times 10²⁰ cm⁻³). The Si:Er,Yb films with approximately 200 nm thick were synthesized on Si(100) substrates at room temperature (RT). After deposition, the Si:Er,Yb films were annealed at 800 °C for 5 min in an N2 atmosphere to activate RE incorporation in the films. PL measurements were performed by using Ar^+ laser irradiation at 488 nm. The visible and near infrared (IR) emissions were detected by a photomultiplier tube and a liquid- N_2 cooled Ge p-i-n photodiode, respectively.

Figure 1 A schematic of our laser ablation chamber.

3. Results and discussion

In order to characterize the structure of the films, x-ray diffraction (XRD) measurements were performed. No appreciable diffraction peaks (not shown) were observed from the samples. This

indicates that the Si:Er,Yb films consist of amorphous phase. Previously, we showed that SiOx phase is formed in the Si:Nd films synthesized by laser ablation because the broad PL peaks due to SiOx is observed at around 658 nm [5], which is consistent with the result of the present XRD measurements.

Figures 2 (a) and (b) show the PL spectra from the annealed Si:Er,Yb films at 20 K in the two near IR regions. As shown in Fig. 2 (a), the PL peak at 0.983 μ m is attributed to the ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$ transition in Er³⁺, which is observed from the samples with 1 wt % Er₂O₃ and 0.03 – 1 wt % Yb₂O₃. In the samples with 3 and 10 wt % Yb₂O₃, the PL peak at 0.979 μ m due to the ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ transition in Yb³⁺ is observed while the peak at 0.983 μ m disappears. From Fig. 2 (b), intense and sharp PL originating from intra-4f transitions in Er³⁺ is observed from the 1 wt % Er₂O₃ and 0.3 wt % Yb₂O₃ samples.

Figures 2 (a) and (b) PL spectra at 20 K from the films with different Yb concentrations.

Figure 3 shows the Yb concentration dependence of the intensity of the 1.54 µm-PL due to the ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transition in Er³⁺ at 20 K. The PL intensity increases the Yb concentration in the range from 0.03 to 0.3 wt % Yb₂O₃ while it decreases with that in the range from 1 to 10 wt % Yb₂O₃. Noted that the 1.54 µm-PL intensity for the Si:Er,Yb films with 1 wt % Er₂O₃ and 0.3 wt % Yb₂O₃ is enhanced by a factor of 1.5 higher than that for the Si:Er films with 1 wt % Er₂O₃. Therefore, it is found that for the excitation wavelength at 488 nm Yb³⁺ act as the efficient sensitizers of the Er³⁺ emission at 1.54 µm due to the ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transition.

Figures 3 Yb concentration dependence of the Er3+ emission intensity at 1.54 µm.

4. Conclusions

We showed a simple and useful technique to synthesize Si:Er thin films codoped with Yb. The control of Yb codoping level ranging from 10^{18} to 10^{20} cm⁻³ in films was achieved. The sensitization of the intra-4f-shell emission of Er³⁺ due to Yb codoping was observed in the Si:Er,Yb films. Our results suggest a possibility of fabricating Si-based optoelectronic devices such as light-emitting diodes and lasers by using the Si:Er,Yb films.

Acknowledgements

One of the authors (S.K) would like to thank Prof. T. Motooka of Kyushu University for his useful discussions.

Reference

- [1] H. Ennen et al., Appl. Phys. Lett. 43, 943 (1983).
- [2] A. Kozaneki at al., Appl. Phys. Lett. 73, 2929 (1998).
- [3] S. Komuro et al., Appl. Phys. Lett. 69, 3896 (1996).
- [4] S. Komuro et al., Appl. Phys. Lett. 74, 377 (1999).
- [5] S. Kawai et al., Phys. Status Solidi C 7, 579 (2010).