Optical Layer Systems for Product Authentication:Interference, Scattering, Light Diffusion and Ellipsometric Encoding as Public, Hidden and Forensic Security Features
DOI:
https://doi.org/10.3384/wcc2.177-180Abstract
Embedding of information on surfaces is state of the art for identification testing in which public, hidden and forensic features are used. In many instances, the legal authentication of a product, a material or a document is required. Among the surface-based encoded labels, bar codes and data matrices are most frequently applied. They are publicly visible. The material itself is irrelevant, only a sufficient optical contrast is required.However, a strong material dependence of the label can be achieved by means of Fabry-Perot layer stacks. Stack designs are described with regard to all three security levels: public features (e.g. color and tilt effect) perceptible by the human eye, hidden features (e.g. optical response in a given spectral range) detectable by commonly available instruments and forensic features (ellipsometric quantities ? and ? as a function of wavelength ? and angle of incidence AOI) only detectable by sophisticated instruments.
Regarding material-correlated authentication, ellipsometric quantities ? and ? are used as encoded forensic features for the first time. Hence, Fabry-Perot layer stacks as information carriers in combination with imaging ellipsometry as optical read-out system provide all-in-one anti-counterfeiting capabilities.